

TABLE OF CONTENTS LIST FOR PART 90 UHF DEVICE

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

TEST REPORT:

PAGE 1.....COVER SHEET - GENERAL INFORMATION & TECHNICAL DESCRIPTIVE
PAGE 2.....TECHNICAL DESCRIPTION CONTINUED &
PAGE 3.....RF POWER OUTPUT
PAGE 4.....MOD CHARACTERISTICS
PAGE 5.....AUDIO FREQUENCY RESPONSE PLOT
PAGE 6-11...MODULATION LIMITING PLOTS
PAGE 12.....AUDIO LOW PASS FILTER
PAGE 13-14..OCCUPIED BANDWIDTH
PAGE 15-18..OCCUPIED BANDWIDTH PLOTS
PAGE 19.....SPURIOUS EMISSIONS AT ANTENNA TERMINALS
PAGE 20.....METHOD OF MEASURING SPURIOUS EMISSIONS AT ANTENNA TERM.
PAGE 21-22..FIELD STRENGTH OF SPURIOUS EMISSIONS
PAGE 23.....METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS
PAGE 24.....FREQUENCY STABILITY
PAGE 25.....SPECTRAL EFFICIENCY PROC. & PLOT
PAGE 26-28..LIST OF TEST EQUIPMENT

EXHIBITS CONTAINING:

EXHIBIT 1.....FCC ID LABEL SAMPLE
EXHIBIT 2.....LABEL LOCATION
EXHIBIT 3.....SCHEMATICS
EXHIBIT 4.....BLOCK DIAGRAM
EXHIBIT 5.....THEORY OF OPERATION
EXHIBIT 6.....EXTERNAL PHOTOGRAPHS
EXHIBIT 7.....INTERNAL PHOTOGRAPHS
EXHIBIT 8.....ALIGNMENT PROCEDURE
EXHIBIT 9.....USERS MANUAL
EXHIBIT 10.....TEST SET-UP PHOTO

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

TABLE OF CONTENTS LIST

GENERAL INFORMATION REQUIRED
FOR TYPE ACCEPTANCE

2.1033 (c)(1)(2) TOPAZ3, LLC will sell the FCC ID: F3JSD125V3 VHF transceiver in quantity, for use under FCC RULES PART 90.

2.1033 (c) TECHNICAL DESCRIPTION
2.1033 (3) User Manual See Exhibit 14

2.1033 (4) Type of Emission: 11K25F3D For 12.5 kHz
11K0F3E For 12.5 kHz
18K0F3E For 25 kHz

For 12.5 kHz

Bn = 2M + 2DK
M = 9,600 Bits per second
D = 0.825 kHz (Peak Deviation)
K = 1
Bn = $2(9600/2) + 2(0.825k)(1) = 9.6k + 1.65k = 11.25k$

90.209(b)(5) AUTHORIZED BANDWIDTH = 11.25 kHz.

For 12.5 kHz

Bn = 2M + 2DK
M = 3000 Hz
D = 2.5 kHz (Peak Deviation)
K = 1
Bn = $2(3000) + 2(2.5)(1) = 6k + 5k = 11k$

90.209(b)(5) AUTHORIZED BANDWIDTH = 11.25 kHz.

For 25 kHz

Bn = 2M + 2DK
M = 3000 Hz
D = 6000 Hz (Peak Deviation)
K = 1
Bn = $2(3000) + 2(6000) = 6k + 12k = 18k$

90.209(b)(5) AUTHORIZED BANDWIDTH = 20.00 kHz.

2.1033 (5) Frequency Range: 216-220 MHz

(6) Power Range and Controls: There are NO user Power controls.

(7) Maximum Output Power Rating:
0.5 Watts, into a 50 ohm resistive load.

(8) DC Voltages and Current into Final Amplifier:

POWER INPUT
FINAL AMPLIFIER ONLY
Vce = 12 Volts
IC = HIGH - 1.17 A
LOW - 0.53 A

(9) Tune-up procedure. The tune-up procedure is given in EXHIBIT 8.

2.1033 (10) Complete Circuit Diagrams: The circuit diagram is included as EXHIBIT 2. The block diagram is included as EXHIBIT 3.

(11) Function of each electron tube or semiconductor device or other active circuit device:
-SEE EXHIBIT 14.

(8) Instruction book. The instruction manual is included as EXHIBIT 14.

(10) Description of all circuitry and devices provided for determining and stabilizing frequency is included in the circuit description in the instruction manual.

2.1033(c)(11) A photograph or drawing of the equipment identification label is shown in Exhibit 1.

2.1033(c)(12) Photographs of the equipment of sufficient clarity to reveal equipment construction and layout and label location are shown in Exhibit 6-7.

2.1033(c)(13) For equipment employing digital modulation, a detail description of the modulation technique. This UUT uses FSK to modulate the transmitter.

2.1033(c)(14) data required for 2.1046 to 2.1057 See Below

90.203(e) There are NO user controls and the frequency of this unit must be programmed using software not provided to the end user.

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 2 of 27

2.1046(a) RF power output.

RF power is measured by connecting a 50 ohm, resistive wattmeter to the RF output connector. With a nominal battery voltage of 7.8 VDC, and the transmitter properly adjusted the RF output measures:

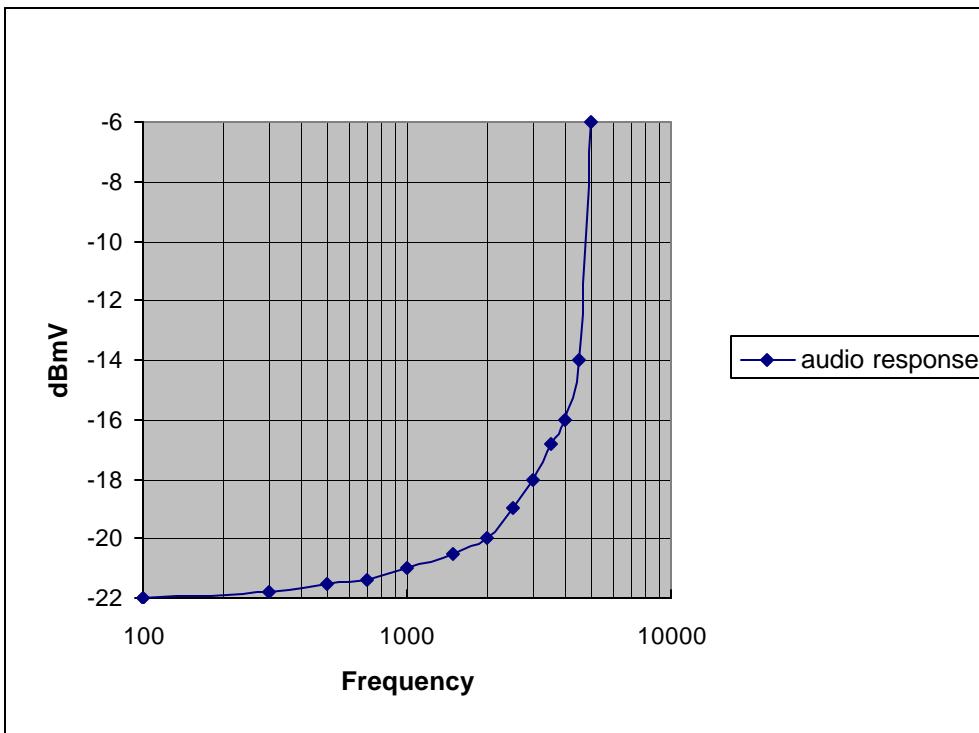
POWER OUTPUT
INPUT POWER - HIGH: $(12V)(1.17A) = 14.04$ Watts
INPUT POWER - LOW: $(12V)(.53A) = 6.36$ Watts

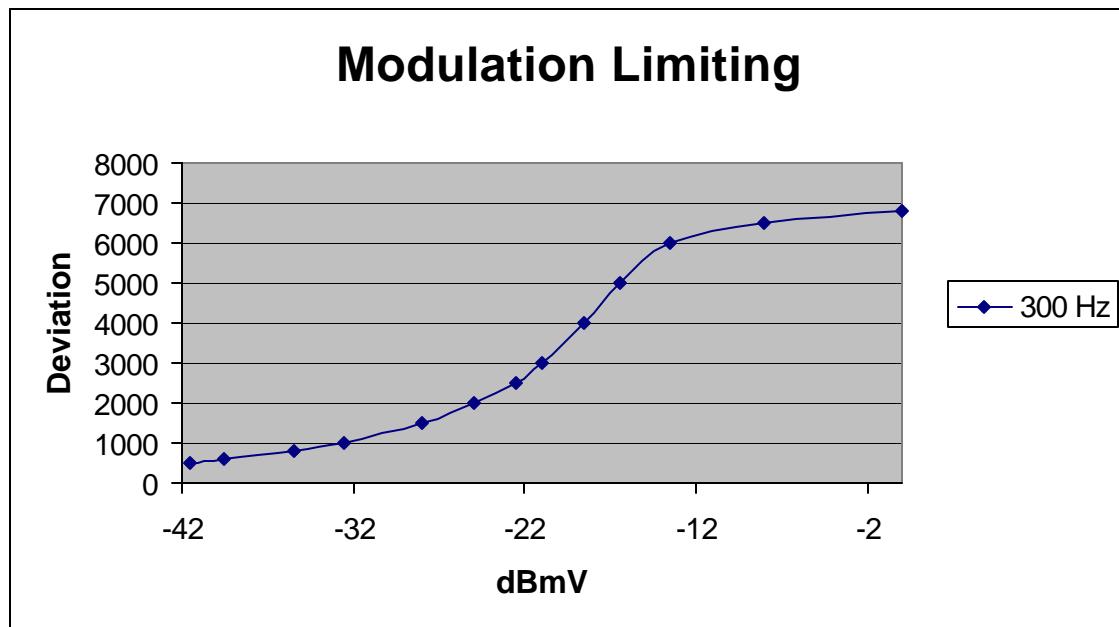
OUTPUT POWER: HIGH - 5 Watts
LOW - 1 Watts

METHOD OF MEASURING RF POWER OUTPUT

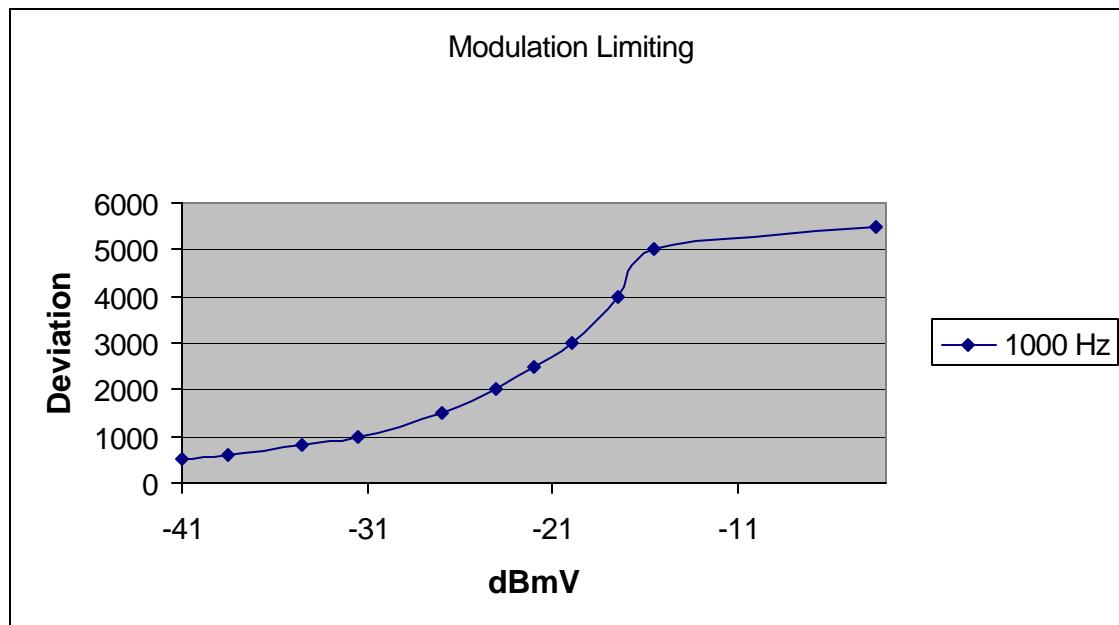
2.1047(a)(b) Modulation characteristics:

AUDIO FREQUENCY RESPONSE


The audio frequency response was measured in accordance with TIA/EIA Specification 603. The audio frequency response curve is shown on page 5.

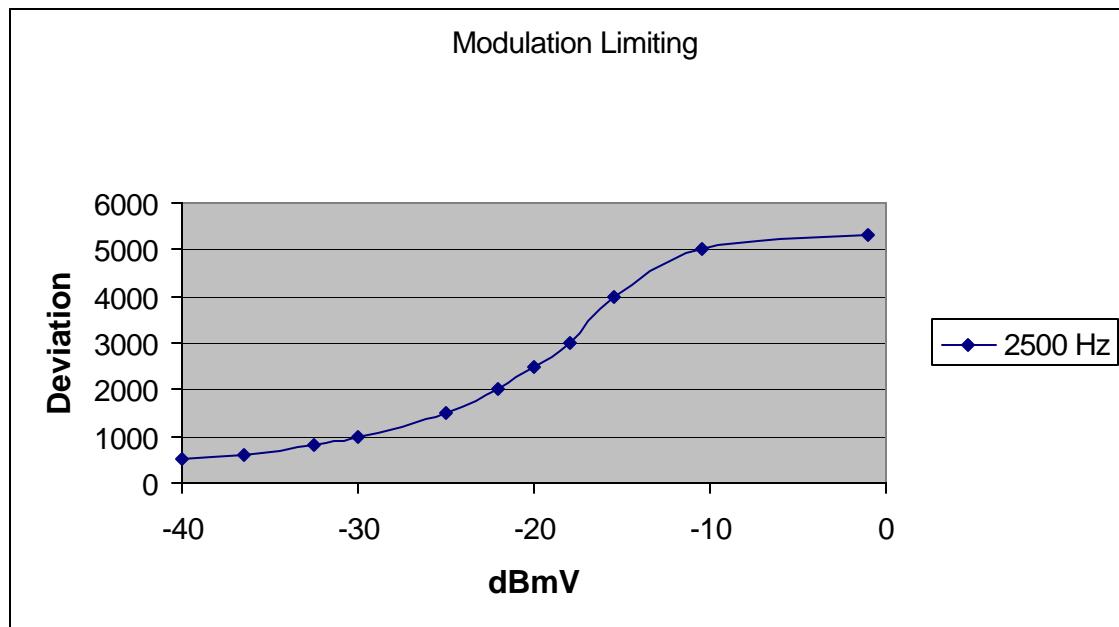

The audio signal was fed into a dummy microphone circuit and into the microphone connector. The input required to produce 30 percent modulation level was measured.

2.1047(b) Audio input versus modulation


The audio input level needed for a particular percentage of modulation was measured in accordance with TIA/EIA Specification 603. The audio input curves versus modulation are shown in pages 6-8. Curves are provided for audio input frequencies of 300, 1000, and 2500 Hz.

Post Limiter Filter The filter must be between the modulation limiter and the modulated stage. At any frequency between 3 & 20 kHz the filter must have an attenuation of $60\log(f/3)$ greater than the attenuation at 1 kHz. See the plot; page 9.

MODULATION LIMITING PLOT FOR 25 kHz CHANNEL SPACING - 1000 Hz

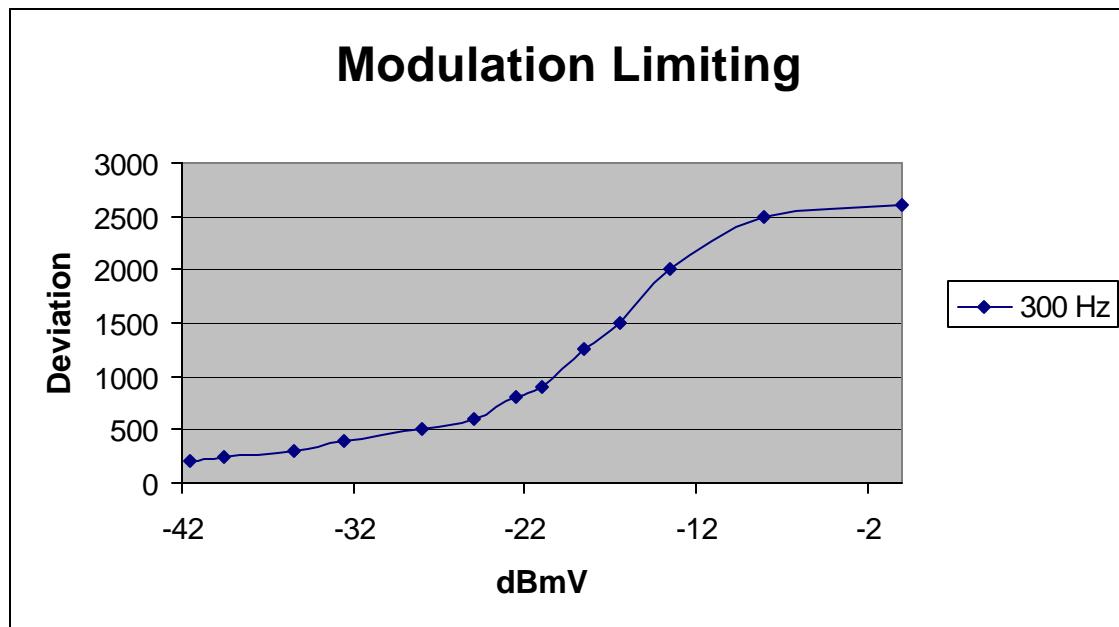

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 7 of 27

MODULATION LIMITING PLOT FOR 25 kHz CHANNEL SPACING - 2500 Hz

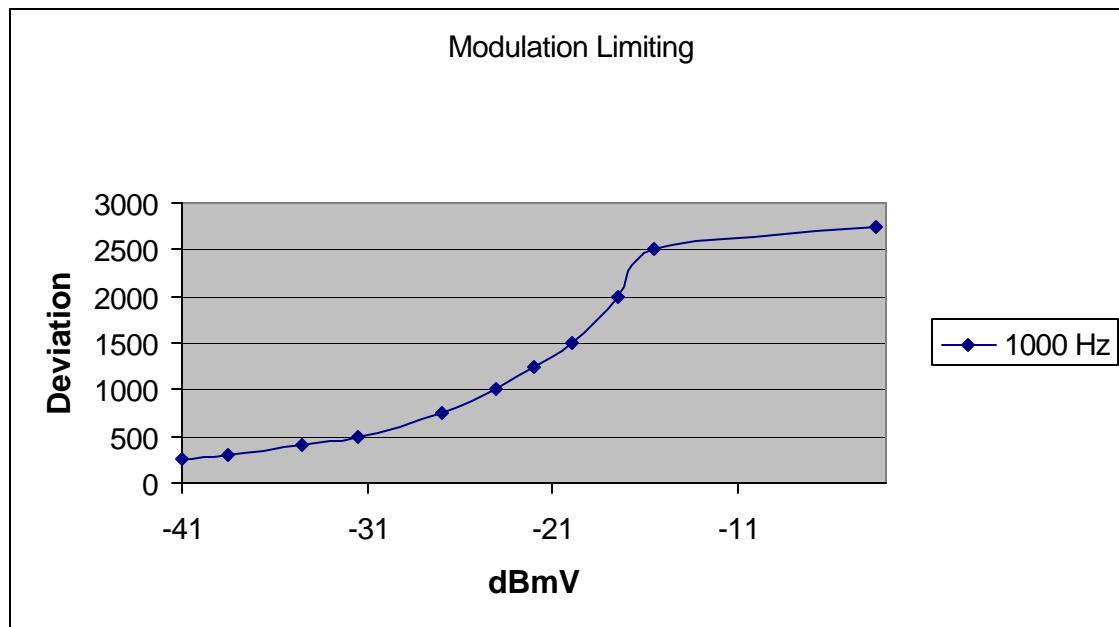

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 8 of 27

MODULATION LIMITING PLOT FOR 12.5 kHz SPACING

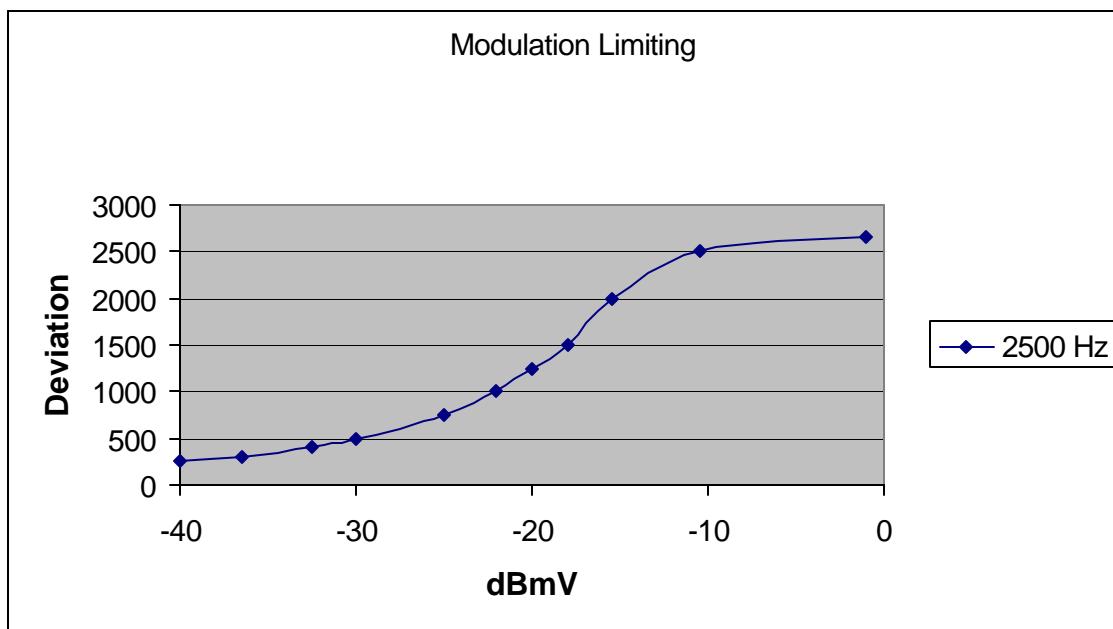

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 9 of 27

MODULATION LIMITING PLOT FOR 12.5 kHz SPACING - 1000 Hz

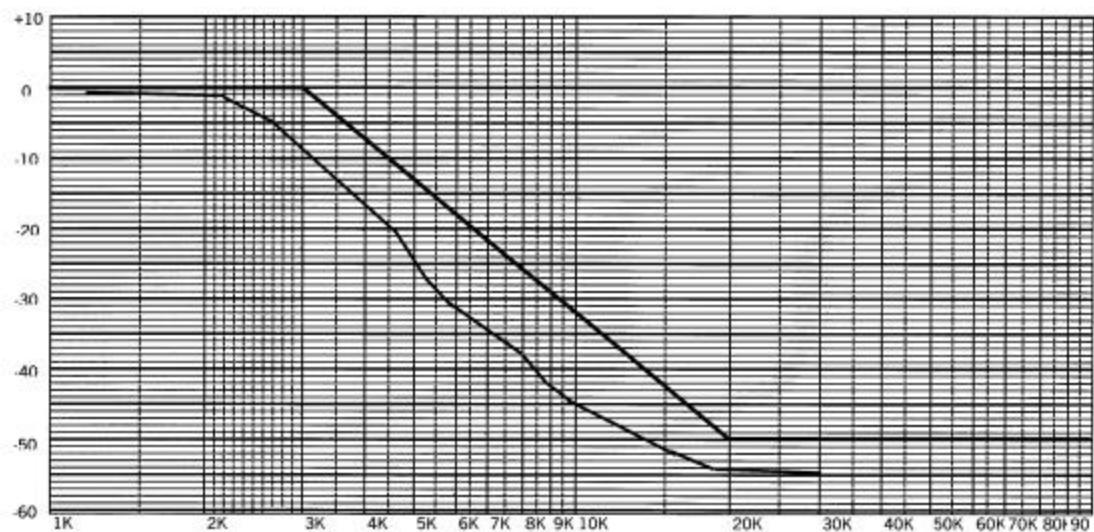

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 10 of 27

MODULATION LIMITING PLOT FOR 12.5 kHz SPACING


APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 11 of 27

Audio Lowpass Filter

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 12 of 27

2.1049 Occupied bandwidth:
90.210(c,)

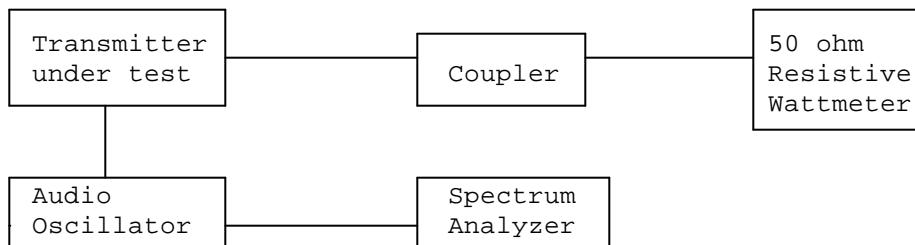
For transmitters that are not equipped with an audio low pass filter pursuant to S90.211(b), the power of any emission must be attenuated below the unmodulated carrier output power as follows: (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency(fd in kHz) of more than 5 kHz but not more than 10 kHz: At least $83 \log(fd/5)$ dB; (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency(fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: At least $29 \log(fd^2/11)$ dB or 50 dB, whichever is the lesser attenuation; (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: At least $43 + 10 \log(Po)$ dB.

90.210(d) Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

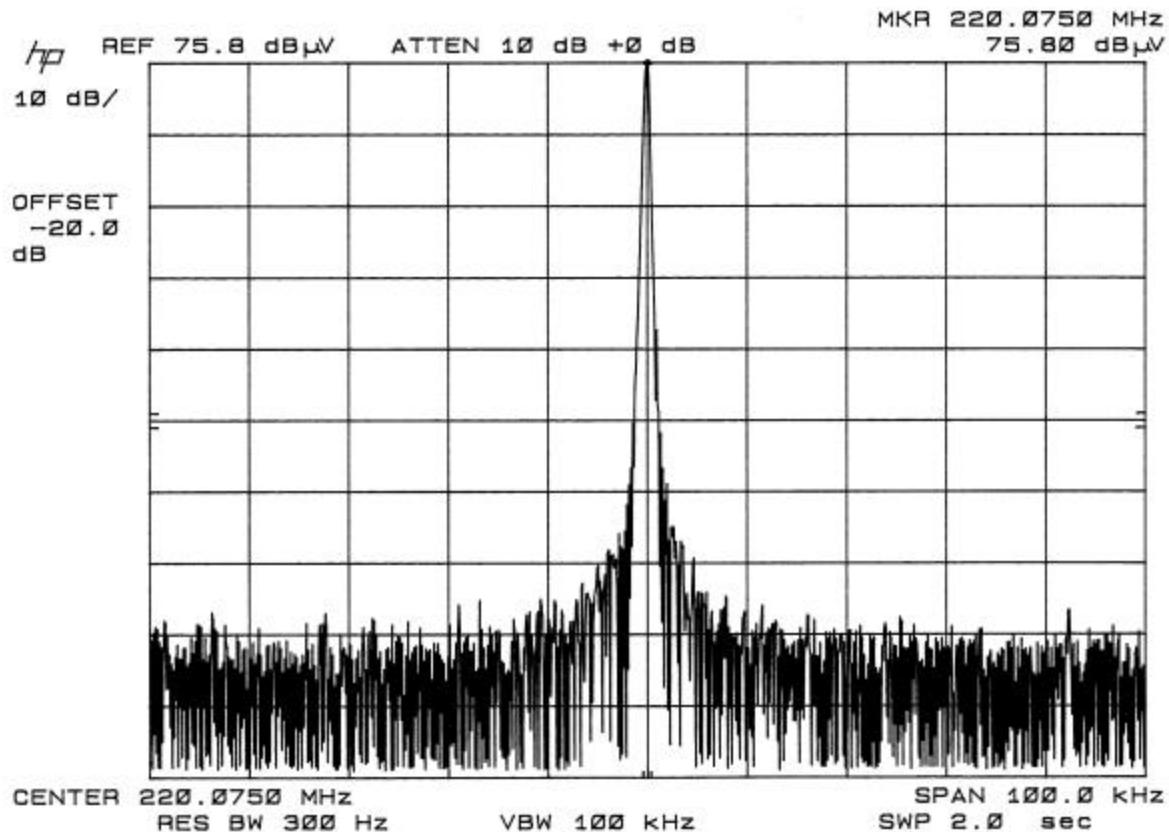
(1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB.

(2) On any frequency from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least $7.27(f_d - 2.88)$ dB.

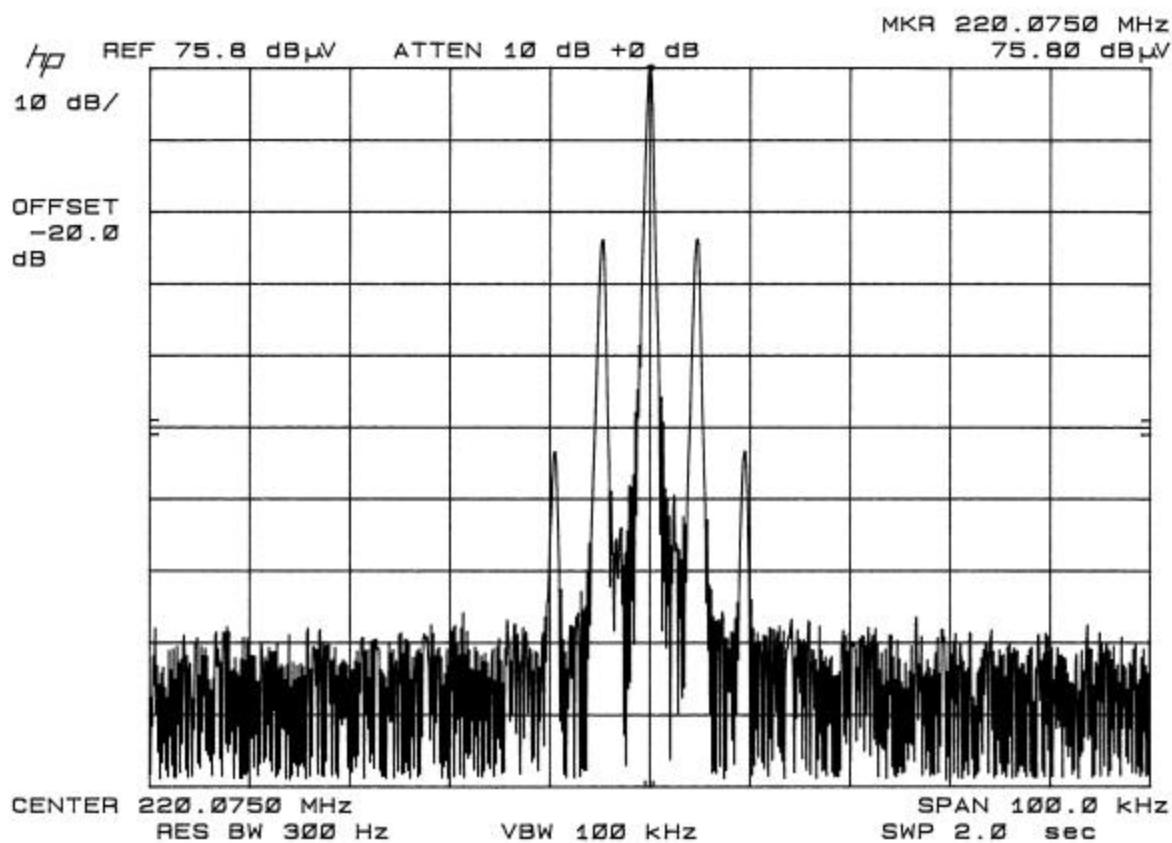
(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log(P)$ dB or 70 dB, whichever is the lesser attenuation.


Data in the plots show that on any frequency removed from the assigned frequency by more than 50%, but not more than 100%: At least 25dB. On any frequency removed from the assigned frequency by more than 100%, but not more than 250%: At least 35 dB. On any frequency removed from the assigned frequency by more than 250%, of the authorized bandwidth: At least $43 + \log(P)$ dB.

Radiotelephone transmitter with modulation limiter.

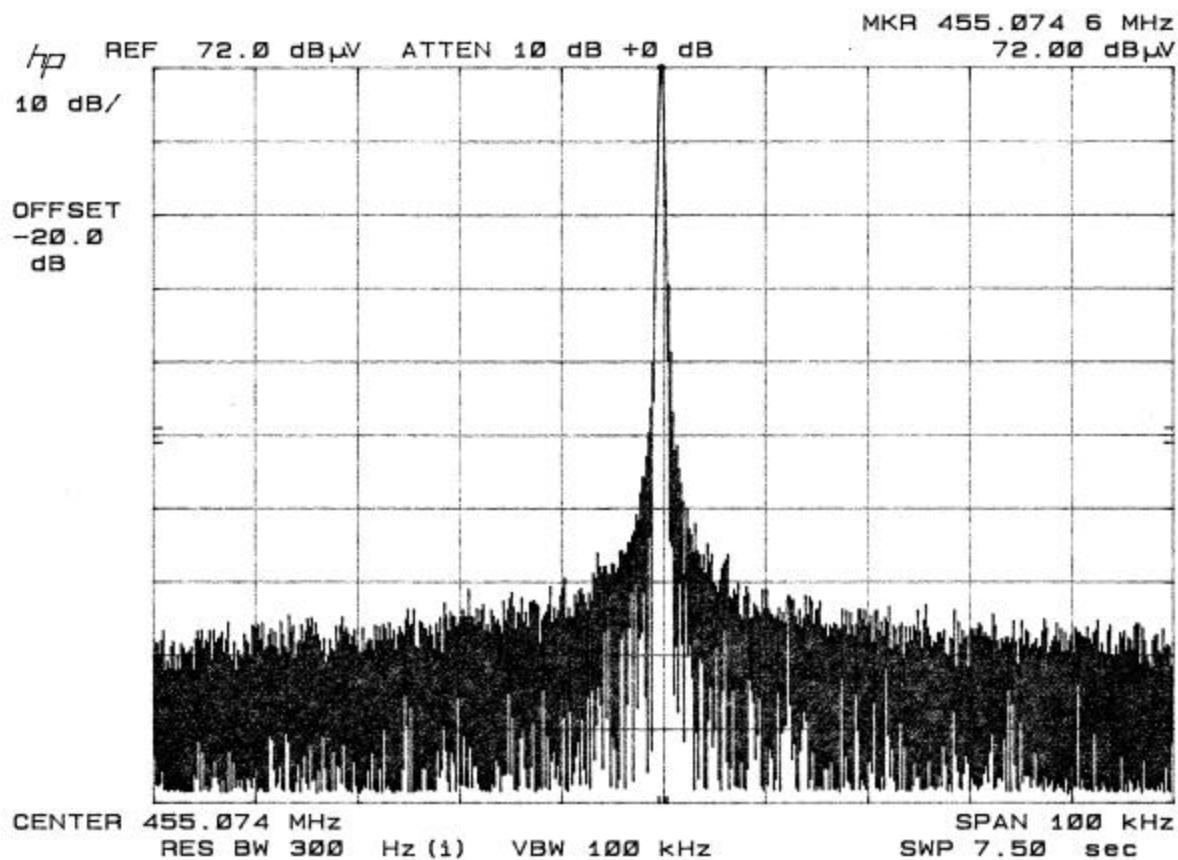

Test procedure: TIA/EIA-603 para 2.2.11, with the exception that various tones were used.

Test procedure diagram

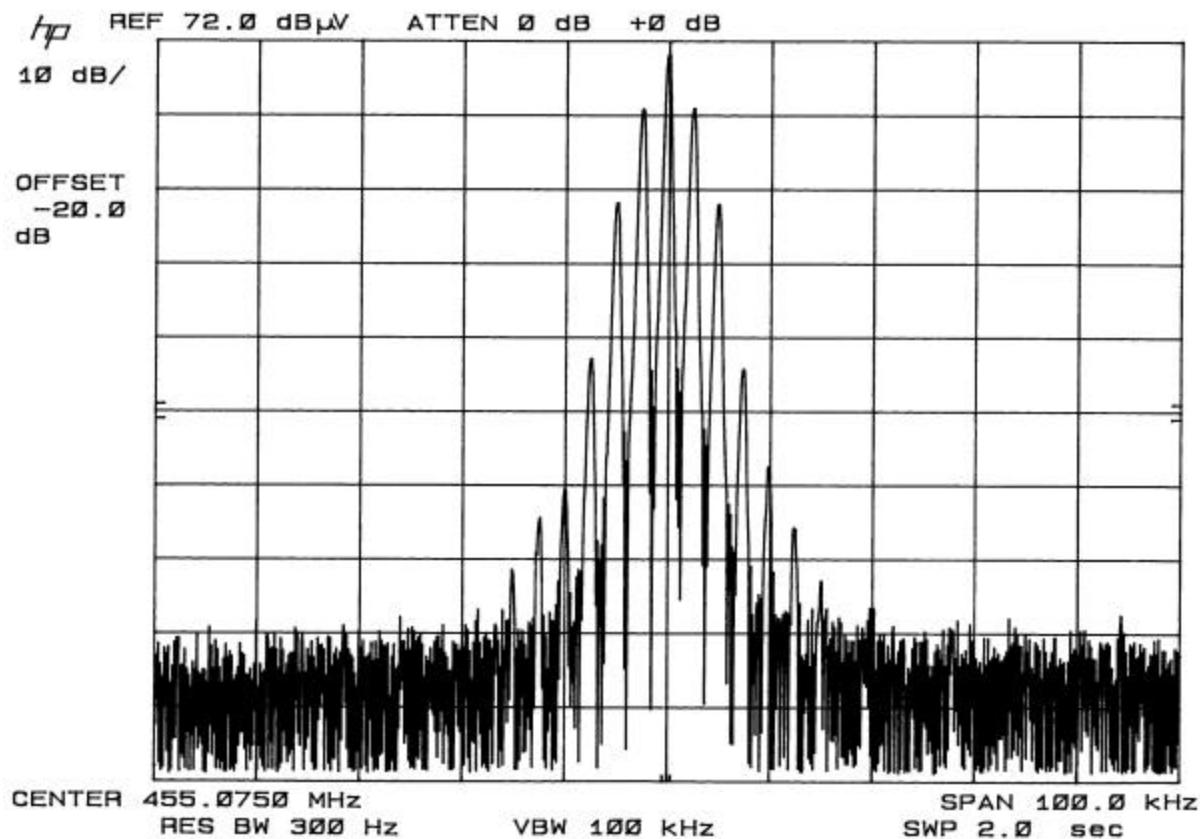

OCCUPIED BANDWIDTH MEASUREMENT

OCCUPIED BANDWIDTH CW PLOT

OCCUPIED BANDWIDTH PLOT - 9600 BAUD


APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3


REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 16 of 27

OCCUPIED BANDWIDTH CW PLOT

OCCUPIED BANDWIDTH PLOT

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 18 of 27

2.1051 Spurious emissions at antenna terminals (conducted):
 2.1052 Data on the following page shows the level of conducted spurious responses. The carrier was modulated 100% using a 2500 Hz tone. The spectrum was scanned from 0.4 to at least the 10th harmonic of the fundamental. The measurements were made in accordance with standard TIA/EIA-603.

REQUIREMENTS: Emissions must be $43 + 10\log(P_o)$ dB below the mean power output of the transmitter.

For 25 kHz

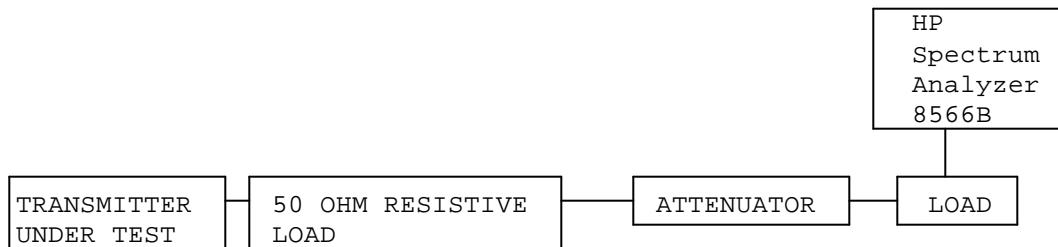
HIGH POWER: $43 + 10\log(5) = 50$ dB
 LOW POWER: $43 + 10\log(1) = 43$ dB

EMISSION FREQUENCY MHz	dB BELOW CARRIER HIGH POWER	dB BELOW CARRIER LOW POWER
220	00.0	00.0
440.1	82	76.6
660.2	101.6	99.0
880.3	104.5	96.8
1100.4	92.2	83.6
1320.5	84.4	76.5
1540.6	85.8	78.1
1760.7	105.9	101.8
1980.8	92.3	84.3
2200.9	81.1	89.1

For 12.5 kHz

HIGH POWER: $50 + 10\log(5) = 57$ dB
 LOW POWER: $50 + 10\log(1) = 50$ dB

EMISSION FREQUENCY MHz	dB BELOW CARRIER HIGH POWER	dB BELOW CARRIER LOW POWER
220	00.0	00.0
440.1	82	76.6
660.2	101.6	99.0
880.3	104.5	96.8
1100.4	92.2	83.6
1320.5	84.4	76.5
1540.6	85.8	78.1
1760.7	105.9	101.8
1980.8	92.3	84.3
2200.9	81.1	89.1


APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 19 of 27

Method of Measuring Conducted Spurious Emissions

METHOD OF MEASUREMENT: The procedure used was TIA/EIA-603 STANDARD without any exceptions. An audio generator was connected to the UUT through a dummy microphone circuit and the output of the transmitter connected to a standard load and from the standard load through a pre-selector filter of the spectrum analyzer. The spectrum was scanned from 400 kHz to at least the tenth harmonic of the fundamental using a HP model 8566B spectrum analyzer. The measurements were made using the shielded room located at TIMCO ENGINEERING INC. 849 N.W. State Road 45, Newberry, Florida 32669.

2.1053 Field strength of spurious emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

REQUIREMENTS: Emissions must be $50 + 10\log(P_o)$ dB below the mean power output of the transmitter for 12.5 kHz and $43 + 10\log(P_o)$ dB for 25 kHz.

For 25 kHz

HIGH POWER: $43 + 10\log(5) = 50$ dB

LOW POWER: $43 + 10\log(1) = 43$ dB

TEST DATA (HIGH):

Emission Frequency	dBc	Margin
220.1	0	0.00
440.1	72	15
660.2	79	22
880.3	86	29
1100.4	78	21
1320.4	61	23
1540.5	64	7
1760.6	75	18
1980.7	79	22
2200.8	74	17

TEST DATA (LOW):

Emission Frequency	dBc	Margin
MHz	dBc	dB
220.1	0	0.00
440.1	75	25
660.2	79	29
880.3	85	35
1100.4	82	32
1320.4	66	16
1540.5	70	32
1760.6	82	32
1980.7	76	26
2200.8	79	29

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

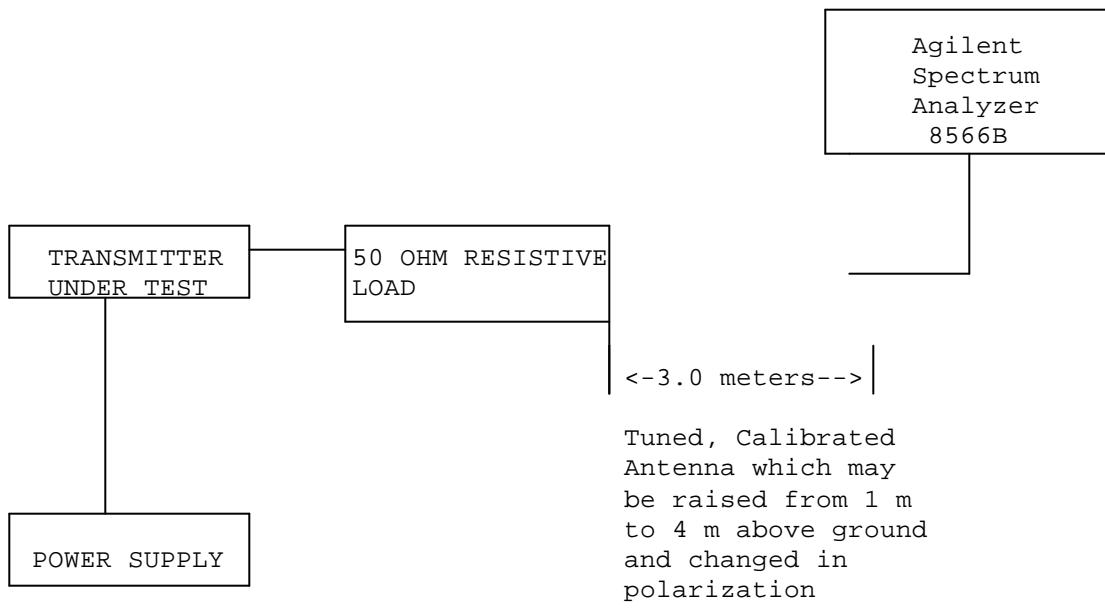
2.1053 Field strength of spurious emissions:
NAME OF TEST: RADIATED SPURIOUS EMISSIONS
REQUIREMENTS: Emissions must be $50 + 10 \log(P_o)$ dB below the mean power output of the transmitter for 12.5 kHz and $43 + 10 \log(P_o)$ dB for 25 kHz.

For 12.5 kHz

TEST DATA (LOW):

TEST DATA (HIGH):

Emission Frequency	dBc	Margin
220.1	0	0.00
440.1	72	22
660.2	79	29
880.3	86	36
1100.4	78	28
1320.4	61	11
1540.5	64	14
1760.6	75	25
1980.7	79	29
2200.8	74	24


TEST DATA (LOW):

Emission Frequency		
MHz	Margin	
220.1	0	0.00
440.1	75	32
660.2	79	36
880.3	85	42
1100.4	82	39
1320.4	66	23
1540.5	70	27
1760.6	82	39
1980.7	76	33
2200.8	79	36

APPLICANT: TOPAZ3, LLC
FCC ID: F3JSD125V3
REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc
Page 22 of 27

METHOD OF MEASUREMENTS: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental. This test was conducted per TIA/EIA STANDARD 603 using the substitution method. Measurements were made at the open field test site of TIMCO ENGINEERING, INC. located at 849 NW State Road 45, Newberry, FL 32669.

Method of Measuring Radiated Spurious Emissions

Equipment placed 80 cm above ground on a rotatable platform.

2.1055 Frequency stability:

90.213(a)(1)

Temperature and voltage tests were performed to verify that the frequency remains within the .00015%, 1.5 ppm specification limit, for 25 kHz spacing & 0.00025% for 12.5 kHz spacing and 0.0001% for 6.25 kHz spacing. The test was conducted as follows: The transmitter was placed in the temperature chamber at 25 degrees C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15 second intervals. The worse case number was taken for temperature plotting. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -30 degrees C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15 second intervals. The worst case number was recorded for temperature plotting. This procedure was repeated in 10 degree increments up to + 50 degrees C.

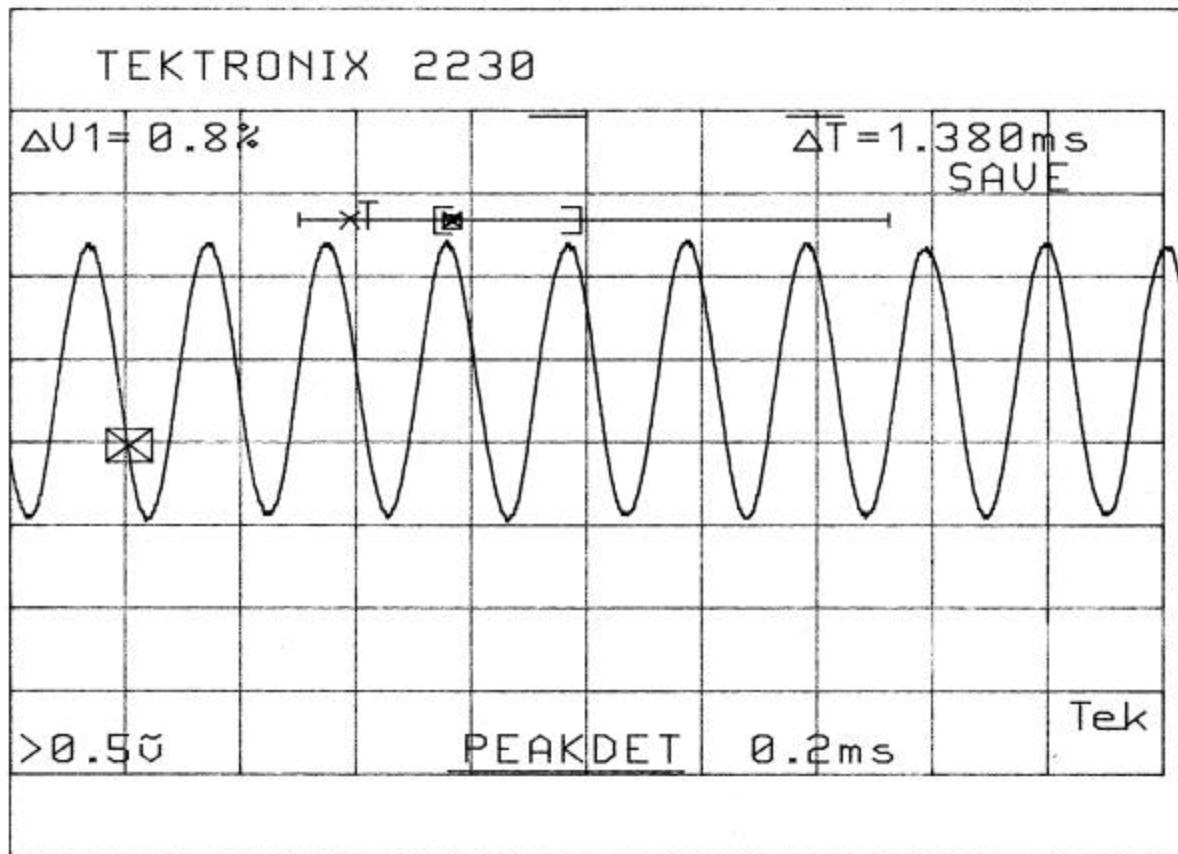
Readings were also taken at minus 20% of the battery voltage of 12.5 VDC, which we estimate to be the battery endpoint.

MEASUREMENT DATA:

Temperature C	Frequency Mhz	PPM
-29.20	218.075450	1.49
-20.10	218.075255	0.60
-10.00	218.075133	0.04
-0.10	218.075134	0.04
10.20	218.075157	0.15
20.00	218.075125	0.00
29.70	218.075039	-0.39
40.10	218.074913	-0.97
50.30	218.074807	-1.46

Supply voltage %	Supply voltage	PPM
0.80	10.20	-0.11

APPLICANT: TOPAZ3, LLC


FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 24 of 27

SPECTRAL EFFICIENCY

Procedure: The RF transmitters carrier is modulated by an audio generator that is set to frequencies that are equivalent to 9600 and 19200 baud. The RF output is then demodulated by a standard receiver and plotted. The results are shown below.

Spectral Efficiency 9600 baud

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 25 of 27

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer (Tan)	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X	Receiver, Blue Tower Spectrum Analyzer (Blue)	HP	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
X	RF Preselector (Blue)	HP	85685A	2926A00983	CHAR 10/22/01	10/22/03
X	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA -180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 26 of 27

	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
	Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc

Page 27 of 27

	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03
	Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
	Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
	BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/03
	BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/03
	BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
	High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
	Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
	Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
	Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/03
	Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
	Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
	Egg Timer	Unk			CHAR 8/31/01	8/31/03
	Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
	Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
	Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
	Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
	Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
	Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: TOPAZ3, LLC

FCC ID: F3JSD125V3

REPORT #: T:\T\Topaz3LLC_F3J\911UT2\911UT2TestReport.doc