

June 26, 2000

Maxon America Inc. 10828 North West Air World Drive Kansas, MO 64153-1238 USA

Attn.: Mr. Roger Bisby

Subject: Verification Testing in accordance with SAR (Specific Absorption Rate)

requirements using guidelines established in:

IEEE C95.1-1991,

FCC OET Bulletin 65 (Supplement C) Industry Canada RSS-102 (Issue 1)

Product: Maxon Model: MX-1111

Dear Mr. Bisby,

The product sample has been tested in accordance with SAR (Specific Absorption Rate) requirements using guidelines established in IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-102 (Issue 1), and the results and observation were recorded in the engineering report, Our File No.: MXA-002Q

Enclosed you will find a copy of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P.Eng Vice President - Engineering

Encl.

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Telephone (905) 829-1570 Facsimile (905) 829-8050

CERTIFICATE OF COMPLIANCE

June 26, 2000

Maxon America Inc. 10828 North West Air World Drive Kansas, MO 64153-1238 USA

NOT TRANSFERABLE

This Verification Certificate is hereby issued to the named GRANTEE and is VALID ONLY for the equipment identified hereon for use under the rules and regulations listed below:

GRANTEE'S NAME: Maxon America Inc.

PRODUCT UNDER TEST: Maxon

MODEL NO.: MX-1111

FCC ID: F3JMX1111

APPLICABLE STANDARDS: SAR (Specific Absorption Rate) requirements using

guidelines established in IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-102(Issue 1)

EQUIPMENT TYPE: Cellular Telephone

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA) & IC (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Approved by: Tri M. Luu, P.Eng. V.P. – Engineering

File No.: MXA-002Q

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Telephone (905) 829-1570
Facsimile (905) 829-8050
Website: www.ultratech-labs.com
Email: vhk.ultratech@sympatico.ca

ENGINEERING TEST REPORT

Maxon Model No.: MX-1111

Applicant: Maxon America Inc.

10828 North West Air World Drive Kansas, MO 64153-1238 USA

Tested in Accordance With

SAR (Specific Absorption Rate) Requirements using guidelines established in IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-102(Issue 1)

UltraTech's File No.: MXA-002Q

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs	
Date:	
Report Prepared by: JaeWook Choi	Tested by: JaeWook Choi, SAR Engineer
Issued Date: June 26, 2000	Test Dates: June 06, 2000

The results in this Test Report apply only to the sample(s) tested, which has been randomly selected.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Telephone (905) 829-1570 Facsimile (905) 829-8050
Website: www.ultratech-labs.com Email: vhk.ultratech@sympatico.ca

TABLE OF CONTENTS

EXHIBI	Т 1.	INTRODUCTION	2
1.1.	SCOP	E	2
1.2.		RENCES	
EXHIBI	Т 2.	SUMMARY OF TEST RESULTS & GENERAL STATEMENT OF CERTIFICATION	3
EXHIBI	Т 3.	GENERAL INFORMATION	4
3.1.	APPLI	CANT AND MANUFACTURER	4
3.2.	DEVI	CE UNDER TEST (DUT)	4
3.3.		OGRAPH OF DUT	
3.4.		OF DUT'S ACCESSORIES:	
3.5.		AL CHANGES ON THE DUT'S HARDWARE/SOFTWARE FOR TESTING PURPOSES	
3.6.	ANCI	LLARY EQUIPMENT	7
3.7.		RAL TEST CONFIGURATIONS	
		General	
	3.7.1.1.	1 1	
		Exercising Equipment	
3.8.		pecific Operating ConditionsRAL BLOCK DIAGRAM OF TEST SETUP	
3.8.	GENE		
EXHIBI	T 4.	SUMMARY OF TEST RESULTS	9
4.1.	LOCA	TION OF TESTS	9
4.2.	SUMM	IARY OF SAR TEST RESULTS	9
EXHIBI	Т 5.	RADIO INFORMATION	10
5.1.	MEAS	SUREMENT	10
5.2.		MEASUREMENT DATA	
5.3.	Modi	FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSE	11
EXHIBI	Т 6.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR SAR	12
6.1.	LOCA	TION OF TEST	12
6.2.		UREMENT SYSTEM SPECIFICATIONS	
6.3.		Procedures	
6.4.	PHAN	ТОМ	12
6.5.	SIMUI	ATED TISSUE	13
6.5		Preparation	
6.6.		UREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE	
6.6		Description of the slotted coaxial waveguide	
6.7.		EM DESCRIPTION	
6.8.		EXTRAPOLATION (CURVE FITTING)	
6.9.		POLATION AND GRAM AVERAGING	
6.10.		WER MEASUREMENT	
6.11.	POS	SITIONING OF D.U.T.	17
ANNEY	Д. Нга	D LEFT FAR SAR MEASUREMENT	21
		UE CALIBRATION	
131 41 415V	ים. דוטנ	OL CALIDATION	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	SAR (Specific Absorption Rate) Requirements		
	IEEE C95.1-1991,		
	FCC OET Bulletin 65 (Supplement C),		
	Industry Canada RSS-102 (Issue 1).		
Title	Safety Levels with respect to human exposure to Radio Frequency Electromagnetic Fields		
	Guideline for Evaluating the Environmental Effects of Radio frequency Radiation		
Purpose of Test:	To show compliance with Federal regulated SAR requirements in Canada and the US.		
Method of Measurements:	IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-102(Issue		
	1)		
Exposure Category	[X] General population, uncontrolled exposure		
	[] occupational, controlled exposure		

1.2. REFERENCES

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title	
Industry Canada	1999	"Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to	
RSS102		Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency	
		Fields"	
NCRP Report No.86	1986	"Biological Effects and Exposure Criteria for radio Frequency Electromagnetic	
		Fields"	
FCC OET Bulletin 65	1997	"Evaluating Compliance with FCC Guidelines for Human Exposure to radio	
		Frequency Fields"	
ANSI/IEEE C95.3	1992	"Recommended Practice for the Measurement of Potentially Hazardous	
		Electromagnetic Fields - RF and Microwave"	
ANSI/IEEE C95.1	1992	"Safety Levels with Respect to Human Exposure to Radio Frequency	
		Electromagnetic Fields, 3kHz to 300GHz"	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 2. SUMMARY OF TEST RESULTS & GENERAL STATEMENT OF CERTIFICATION

SAR Limits	Test Requirements	Compliance (Yes/No)
General population/Uncontrolled exposure 0.08W/kg whole body average and spatial peak SAR of 1.6W/kg, averaged over 1gram of tissue Hands, wrist, feet and ankles have a peak SAR not to exceed 4 W/kg, averaged over 10 grams of tissue.	Requirements using guidelines established in IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102 (Issue 1).	Yes
Occupational/Controlled Exposure 0.4W/kg whole body average and spatial peak SAR of 8W/kg, averaged over 1gram of tissue Hands, wrist, feet and ankles have a peak SAR not to exceed 20 W/kg, averaged over 10 grams of tissue.	Requirements using guidelines established in IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102 (Issue 1).	N/A

TESTIMONIAL AND STATEMENT OF CERTIFICATION

THIS IS TO CERTIFY:

- 1) THAT the application was prepared either by, or under the direct supervision of the undersigned.
- 2) THAT the measurement data supplied with the application was taken under my direction and supervision.
- 3) THAT the data was obtained on representative production units, representative.
- 4) THAT, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certified by:

Tri Minh Luu, P. Eng.
V.P., Engineering

DATE: June 26, 2000

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

 $Tel.\ \#:\ 905-829-1570,\ Fax.\ \#:\ 905-829-8050,\ \ Email: \ \underline{\ vhk.ultratech@sympatico.ca},\ \ Website:\ http://www.ultratech-labs.com$

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

EXHIBIT 3. GENERAL INFORMATION

3.1. APPLICANT AND MANUFACTURER

APPLICANT:				
Name:	Maxon America Inc.			
Address:	10828 North West Air World Drive			
	Kansas, MO 64153-1238			
	USA			
Contact Person:	Mr. Roger Bisby			
	Phone #: +1-816-891-3434 (721)			
	Fax #: +1-816-891-8815			
	Email Address:			

MANUFACTURER:			
Name:	Maxon Electronics Co LTD		
Address:	70-55 Song Jeong Dong Hung Duk Ku		
	Cheong Ju City,		
	Korea		
Contact Person:	Mr. Roger Bisby		
	Phone #: +1-816-891-3434 (721)		
	Fax #: +1-816-891-8815		
	Email Address:		

3.2. DEVICE UNDER TEST (DUT)

The following information are supplied by the applicant.

Manufacturer	Maxon Electronics Co LTD	
Trade Name	Maxon	
Type/Model Number	MX-1111	
Serial Number	AR10601011005000042	
Type of Equipment	Cellular Telephone	
Frequency of Operation	824 MHz ~ 849 MHz	
Rated RF Power	0.5 W	
Antenna Type	Helix	
External Power Supply	Ni-MH Battery Pack (DC 3.6V 600mAh)	
Primary User Functions of DUT:	Voice Radio Communication Through Air	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

 $Tel.~\#.~905-829-1570, Fax.~\#.~905-829-8050,~Email: \\ \underline{vhk.ultratech@sympatico.ca},~Website:~http://www.ultratech-labs.com$

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Specific Absorption Rate Page 5
Maxon

3.3. PHOTOGRAPH OF DUT

< Front View >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

Specific Absorption Rate Page 6
Maxon

< Rear View >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

Specific Absorption Rate Page 7

Maxon

3.4. LIST OF DUT'S ACCESSORIES:

None

3.5. SPECIAL CHANGES ON THE DUT'S HARDWARE/SOFTWARE FOR TESTING PURPOSES

None

3.6. ANCILLARY EQUIPMENT

None

3.7. GENERAL TEST CONFIGURATIONS

3.7.1. **General**

3.7.1.1. Equipment Configuration

Power and signal distribution, grounding, interconnecting cabling and physical placement of equipment of a test system shall simulate the typical application and usage in so far as is practicable, and shall be in accordance with the relevant product specifications of the manufacturer.

The configuration that tends to maximize the DUT's emission or minimize its immunity is not usually intuitively obvious and in most instances selection will involve some trial and error testing. For example, interface cables may be moved or equipment re-orientated during initial stages of testing and the effects on the results observed.

Only configurations within the range of positions likely to occur in normal use need to be considered.

The configuration selected shall be fully detailed and documented in the test report, together with the justification for selecting that particular configuration.

3.7.1.2. Exercising Equipment

The exercising equipment and other auxiliary equipment shall be sufficiently decoupled from the EUT so that the performance of such equipment does not significantly influence the test results.

3.7.2. Specific Operating Conditions

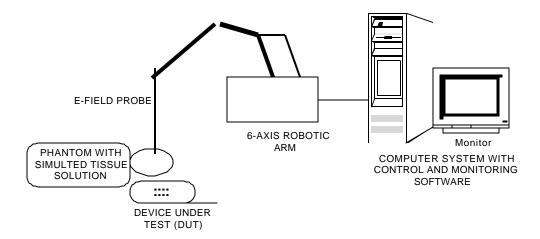
Not specified.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

File #: MXA-002Q


- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Specific Absorption Rate Page 8

3.8. GENERAL BLOCK DIAGRAM OF TEST SETUP

Maxon

The EUT was configured as normal intended use. The following block diagram shows the equipment arrangement during tests:

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

 $Tel.~\#:~905-829-1570,~Fax.~\#:~905-829-8050,~Email:~\underline{\underline{\underline{\underline{whk.ultratech@sympatico.ca}}},~Website:~http://www.ultratech-labs.com$

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

Specific Absorption Rate Page 9

Maxon

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in:

3000 Bristol Circle, Oakville, Ontario, Canada.

4.2. SUMMARY OF SAR TEST RESULTS

The maximum SAR was found to be 1.50 W/Kg at 824 MHz measured on the fixed antenna configuration. The DUT was found to be in compliance with the 1.6 W/Kg limit.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

 $Tel.~\#:~905-829-1570,~Fax.~\#:~905-829-8050,~Email:~\underline{\underline{\underline{\underline{whk.ultratech@sympatico.ca}}},~Website:~http://www.ultratech-labs.com$

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 5. RADIO INFORMATION

5.1. MEASUREMENT

EUT Information		Condition		
Radio Type	Cellular phone	Robot Type	6 Axis	
Model Number	MX-1111	Scan Type	SAR	
Serial Number	AR10601011005000042	Measured Field	Е	
Frequency Band	824 ~ 849	Phantom Type	Head Left Ear	
(MHz)				
Frequency Tested	824, 836, 849	Phantom Position	Left Ear	
(MHz)				
Nominal Output Power	0.5	Room Temperature	24 ± 1 °C	
(W)				
Antenna Type	Helix			
Signal Type	AMPS			
Duty Cycle	100 %			

Type of Tissue	Brain	
Target Frequency (MHz)	835	
Target Dielectric Constant	46.1	
Target Conductivity (S/m)	0.74	
Composition (by weight)	Tap Water (43.69%) Sugar (56.25%) HEC (0.05%) Bactericide (0.01%)	
Measured Dielectric Constant	44.4	
Measured Conductivity (S/m)	0.76	
Probe Name	E	
Probe Orientation	Isotropic	
Probe Offset (mm)	3.0	
Sensor Factor	10.8	
Conversion Factor	0.61	
Calibration Date (MM/DD/YY)	03/24/99	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

June 26, 2000

File #: MXA-002Q

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Specific Absorption Rate Page 11

Maxon

5.2. SAR MEASUREMENT DATA

Maximum Field at (5, -35)				
DUT Positioning	Frequency (MHz)	Measured Power (dBm)	SAR (W/Kg)	DUT Configuration
Head – Left Ear	836	26.5 avg	1.50	

DUT Positioning	Frequency	Measured Power	SAR	DUT Configuration
DOT FOSITIONING	(MHz)	(dBm)	(W/Kg)	DOT Configuration
	824	26.5 avg	1.50	
Head – Left Ear	836	26.1 avg	1.23	
	849	24.3 avg	0.89	

5.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSE

None

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 6. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR SAR

6.1. LOCATION OF TEST

All tests were performed at Ultratech Group of Labs located at:

3000 Bristol Circle, Oakville, Ontario, Canada.

6.2. MEASUREMENT SYSTEM SPECIFICATIONS

Positioner	Probe	
Type: 3D Near Field Scanner	Sensor : E-Field	
Location Repeatability: 0.1mm	Spatial Resolution: 0.1 cm ³	
Speed 180 °/sec	Isotropic Response : ± 0.25 dB	
AC motors	Dynamic Range : 2 μW/g to 100 mW/g	
Commutan		
Computer	Phantom	
Type: 166 MHz Pentium	Tissue : Simulated Tissue with electrical	
•		
Type: 166 MHz Pentium	Tissue : Simulated Tissue with electrical characteristics similar to those of the human at	

6.3. TEST PROCEDURES

In the SAR measurement, the positioning of the probes must be performed with sufficient accuracy to obtain repeatable measurements in the presence of rapid spatial attenuation phenomena. The accurate positioning of the E-field probe is accomplished by using a high precision robot. The robot can be taught to position the probe sensor following a specific pattern of points. In a first sweep, the sensor is positioned as close as possible to the interface, with the sensor enclosure touching the inside of the fiberglass shell. The SAR is measured on a grid of points, which covers the curved surface of the phantom in an area larger than the size of the DUT. After the initial scan, a high-resolution grid is used to locate the absolute maximum measured energy point. At this location, attenuation versus depth scan will be accomplished by the measurement system to calculate the SAR value.

6.4. PHANTOM

The phantom used in the evaluation of the RF exposure of the user of the wireless device is a clear fiberglass enclosure 1.5 mm thick, shaped like a human head or body and filled with a mixture simulating the dielectric characteristics of the brain, muscle or other types of human tissue. The maximum width of the cranial model is 17 cm, the cephalic index is 0.7 and the crown circumference of the cranial model is 61 cm. The ear is 6 mm above the outer surface of the shell.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

File #: MXA-002Q

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Specific Absorption Rate Page 13

6.5. SIMULATED TISSUE

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

Ingredient	Quantity	
Water	40.4 %	
Sugar	56.0 %	
Salt	2.5 %	
HEC	1.0 %	
Bactericide	0.1 %	

Table. Example of composition of simulated tissue.

This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

Tissue Density: Approximately 1.25 g/cm³

6.5.1. Preparation

We determine the volume needs and carefully measure all components. A clean container is used were the ingredients will be mixed. A stirring paddle and a hand drill is used to stir the mixture. First we heat the DI water to about 40 °C to help the ingredients to dissolve and then we pour the salt and the bactericide. We stir until all the ingredients are completely dissolved. We continue stirring slowly while adding the sugar. We avoid high RPM from the mixing device to prevent air bubbles in the mixture. Later on, we add the HEC to maintain the solution homogeneous. Mixing time is approximately 30 to 40 min.

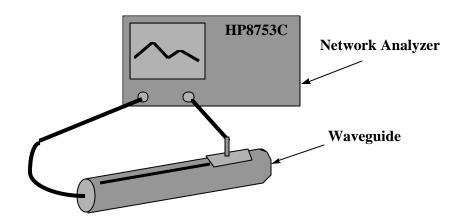
6.6. MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE

- 1) Network Analyzer HP8753C or others
- 2) Slotted Coaxial Waveguide

6.6.1. Description of the slotted coaxial waveguide

The cylindrical waveguide is constructed with copper tube of about 30 to 40 cm of length, generally 12.5 mm diameter, with connectors at both ends. Inside of this tube, a conductive rod about 6.3 mm is coaxial supported by the two ends connectors (radiator). A slot 3 mm wide start at the beginning of the tube to almost the two third of the tube length. The outer edge of the slotted tube is marked in centimeters (10 to 12) every 1 centimeter, 0.5 if higher frequencies. A saddle piece containing the sampling probe is inserted in the slot so the tip of the probe is close but not in contact with the inner conductor (radiator).

To measure the electrical characteristics of the liquid simulated tissue, we fill the coaxial waveguide, select CW frequency and measure amplitude and phase with the Network Analyzer for every point in the slot (typically 11). An effort is made to keep the results dielectric constant and conductivity within 5 % of published data.


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Electrical Characteristics Measurement Setup

$$c = 3 \cdot 10^8 \text{ m/s}$$

$$A = \frac{\Delta A}{20} \ln_{10} \frac{1}{m}$$

$$q = \frac{\Delta q \cdot 2p}{360}$$

$$I = \frac{c}{f} \cdot \frac{100}{2.54} \text{ inches}$$

$$e_{re} = \frac{(A^2 + q^2) \cdot I^2}{4p^2}$$

$$q' = \left| \frac{|A| \cdot I}{4p \sqrt{e_{re}}} \right|$$

$$S = \tan(2q')$$

$$e_r = \frac{e_{re}}{\sqrt{(1+S^2)}}$$

$$s = S \cdot 2p \cdot f \cdot 8.854 \cdot 10^{12} \cdot e_r \text{ (S/m)}$$

where;

Maxon

 ΔA is the amplitude attenuation in dB

 $\Delta\theta$ is the phase change in degrees for 5 cm of wave propagation in the slotted line

f is the frequency of interest in Hz

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: whk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Specific Absorption Rate Page 15

6.7. SYSTEM DESCRIPTION

Maxon

The measurement system consists of an E-field probe, instrumentation amplifiers, RF transparent cable connecting the amplifiers to the computer, the robotics arm with its extension and proximity sensors, a phantom with simulated tissue and a radio holder to support the device under test. The E-field probe is a three channel device used to measure RF electric fields in the near vicinity of the source. The three sensors are mutually orthogonal positioned dipoles, and are constructed over a quartz substrate. Located in the center of the dipole is a Schottky diode. High impedance lines are connecting the sensor to the amplifier and then optically linked to the computer. The probe has an isotropic response and is transparent to the RF fields.

Calibration is performed by two steps:

- 1) Determination of free space E-field from amplified probe outputs in a test RF field. This calibration is performed in a TEM cell when the frequency is below 1 GHz and in a waveguide or some other methodologies above 1 GHz. For the free space calibration, we place the probe in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. This reading equate to 1mW/cm² if that power density is available in the correspondent cavity.
- Correlation of the measured free space E-field, to temperature rise in a dielectric medium. E-field
 temperature correlation calibration is performed in a planar phantom filled with the appropriate simulated
 tissue.

For temperature correlation calibration, a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. First, the location of the maximum E-field close to the phantom's inner surface is determined as a function of power into the RF source; in this case, a dipole. Then, the E-field probe is moved sideways so that the temperature probe, while affixed to the E-field probe is placed at the previous location of the E-field probe. Finally, temperature changes for 30 seconds exposure at the same RF power levels used for the E-field measurement are recorded. The following equation relates SAR to initial temperature slope:

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)},$

C = heat capacity of tissue (brain or muscle), $\Delta T =$ temperature increase due to RF exposure.

The heat capacity used for brain simulated tissue is 2.7 joules C/g and 3.0 joules C/g for muscle.

SAR is proportional to ? T / ?t, the initial rate of tissue heating, before thermal diffusion takes place. Now, it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

$$SAR = \frac{\left|E\right|^2 \cdot \mathbf{s}}{\mathbf{r}}$$

where:

 σ = Simulated tissue conductivity,

 $\rho =$ Tissue density (1.25 g/cm³ for simulated tissue)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

File #: MXA-002Q

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Specific Absorption Rate Page 16

Maxon

DATA EXTRAPOLATION (CURVE FITTING) 6.8.

There is a distance from the center of the sensor (diode) to the end of the protective tube called 'probe offset'. To compensate we use an exponential curve fitting method to obtain the peak surface value from the voltages measured at the distance from the inner surface of the phantom. At the point where the highest voltage was recorded, the field is measured as close as possible to the phantom's surface and every 1mm along the \ Z \ axis for a distance of 50 mm. The appropriate exponential curve is obtained from all the points measured and used to define an exponential decay of the energy density versus depth.

$$E(z) = E_0 \cdot e^{-z/d} \text{ (mV)}$$

6.9. INTERPOLATION AND GRAM AVERAGING

The voltage, (1 cm) above the phantoms surface (E_{tot} 1 cm), is needed to calculate the exposure over one gram of tissue. This SAR value that estimates the average over 1 gram of tissue, is obtained by taking the integral over 1 cm² surface of the measured field along the exponential decay curve of the energy density with depth.

$$SAR(mW/g) = \int_{v=1g} SAR(\bullet) dv = \int_{s=1cm^2} \int_0^{1cm} E(z) \cdot \frac{CF}{SensorFactor} dz ds$$

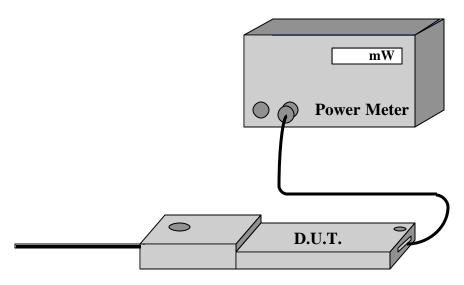
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: whk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

File #: MXA-002Q

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)
- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


Specific Absorption Rate Page 17

Maxon

6.10. POWER MEASUREMENT

When ever possible, a conducted power measurement is performed. To accomplish this, we utilize a fully charged battery, a calibrated power meter and a cable adapter provided by the manufacturer. The data of the cable and related circuit losses are also provided by the manufacturer. The power measurement is then performed across the operational band and the channel with the highest output power is recorded.

Power measurement is performed before and after the SAR to verify if the battery was delivering full power for the time of test. A difference in output power would determinate a need for battery replacement and repetition the SAR test.

Measured Power Heasured Power + Cable and Switching Mechanism Loss

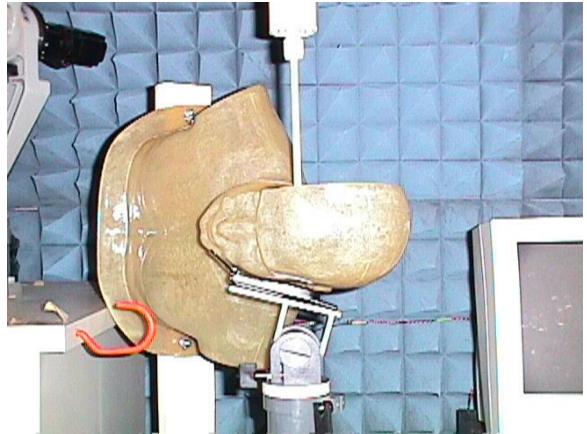
6.11. POSITIONING OF D.U.T.

The clear fiberglass phantom shell have been previously marked with a highly visible line, so can easily be seen through the liquid simulated tissue. In the case of testing a cellular phone, this line is connecting the ear channel with the corner of the lips. The D.U.T. is then placed by centering the speaker with the ear channel and the center of the radio width with the corner of the mouth. At the same time the surface of the D.U.T. is always in contact with the phantoms shell. Three points contact; two in the ear region and one on the chin in addition to the previously describe alignment will assure repeatability of the test.

For HAND HELD devices (push-to-talk), or any other type of wireless transmitters, the D.U.T. will be positioned as suggested by manufacturer operational manuals.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4


Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

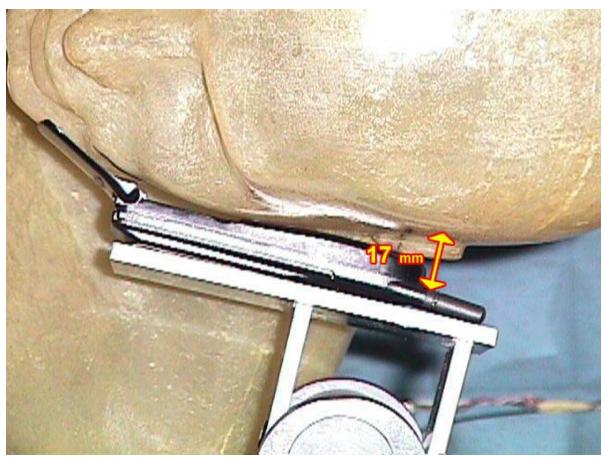
Specific Absorption Rate Page 18
Maxon

Positions of the D.U.T

< Head Left Ear >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4


Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

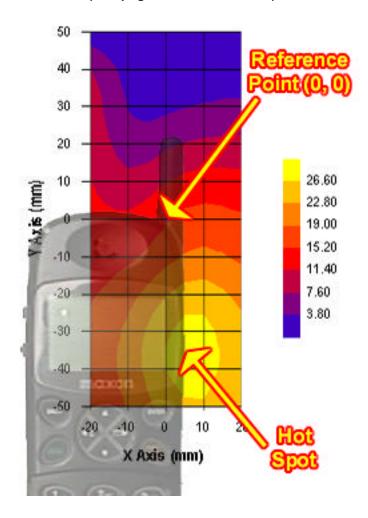
File #: MXA-002Q

Specific Absorption Rate Page 19 Maxon

< Head Left Ear >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com


Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

Maximum Field Location

(See page 10 & 11 for details)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

Specific Absorption Rate Page 21

Maxon

ANNEX A: Head Left Ear SAR MEASUREMENT

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

Test Information

Date : 6/6/00
Time : 1:53:31 PM

 Product
 : Cellular Phone
 Test
 : SAR

 Manufacturer
 : Maxon
 Frequency (MHz)
 : 824

 Model Number
 : MX-1111
 Nominal Output Power (W)
 : 0.5

 Serial Number
 : AR10601011005000042
 Antenna Type
 : Helix

 FCC ID Number
 : F3JMX1111
 Signal
 : AMPS

<u>Phantom</u> : Head - Left Ear **Dielectric Constant** : 44.4 Simulated Tissue : Brain Conductivity : 0.76

 Probe
 : E
 Antenna
 Position
 : FIX

 Probe
 Offset (mm)
 : 3.00
 Measured
 Power (dBm)
 : 25.8

Sensor Factor (mV) : 10.8 (conducted)

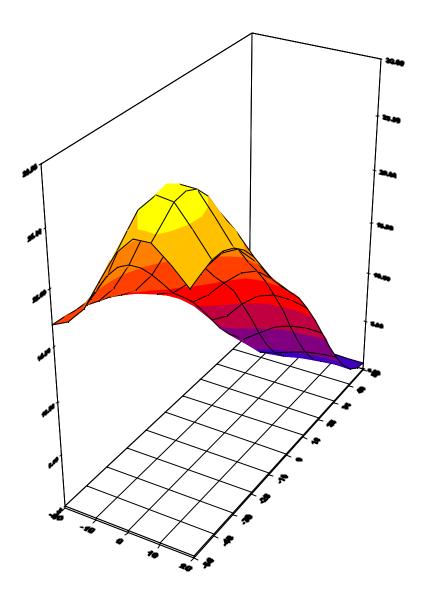
Conversion Factor : 0.61 Cable Insertion Loss (dB) : 0.7

Calibrated Date : 3/24/99 Compensated Power (dBm) : 26.5

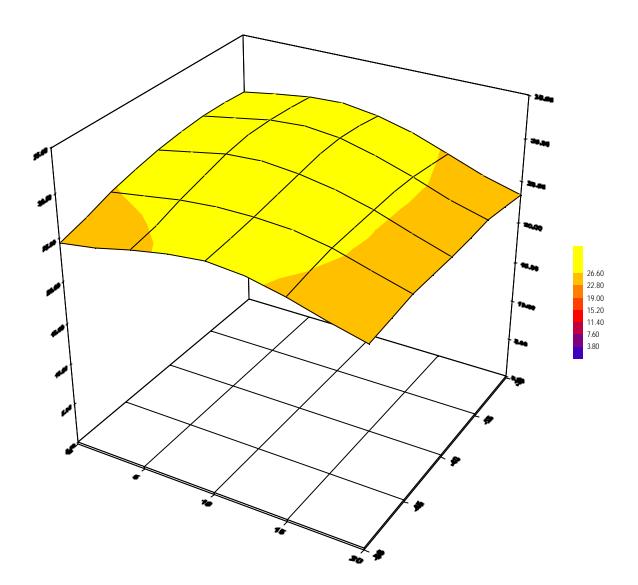
Amplifier Setting :

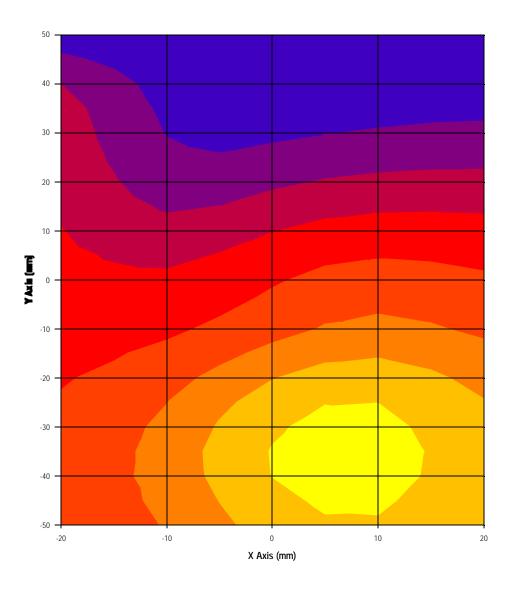
Channel 1: 0.0045 Channel 2: 0.0039 Channel 3: 0.0031

Location of Maximum Field:

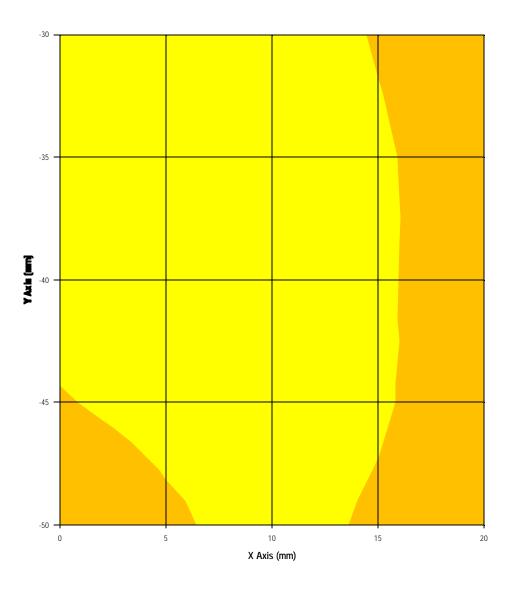

X = 5 Y = -35

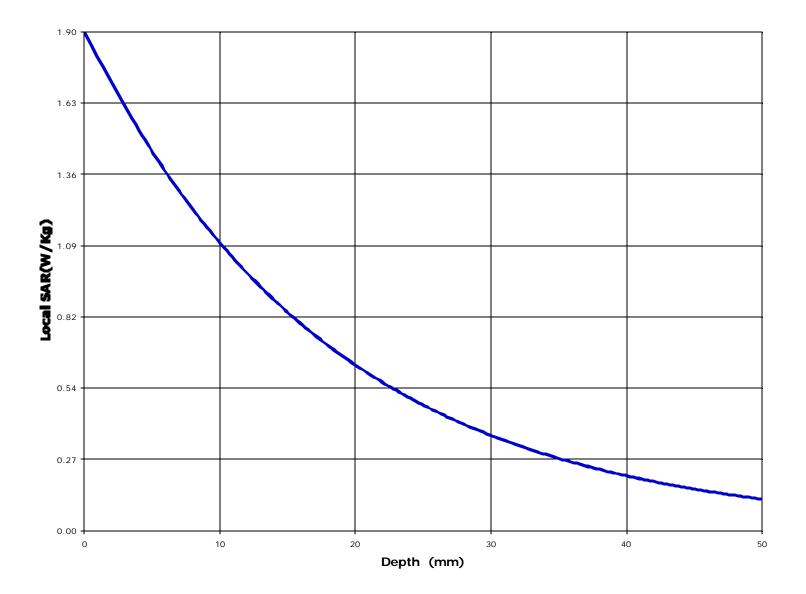
Measured Values (mV):

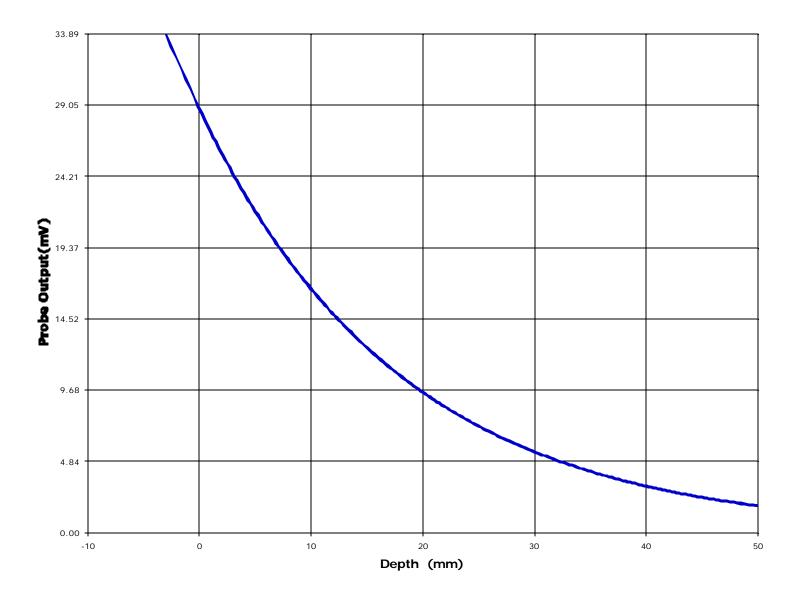

 29.34
 26.89
 25.17
 23.88
 22.81
 21.84


 20.97
 20.08
 19.23
 18.42
 17.63

<u>Peak Voltage (mV)</u> : 33.89 <u>1 Cm Voltage (mV)</u> : 19.51 <u>SAR (W/Kg)</u> : 1.50







Test Information

Date : 6/6/00
Time : 2:46:46 PM

 Product
 : Cellular Phone
 Test
 : SAR

 Manufacturer
 : Maxon
 Frequency (MHz)
 : 836

 Model Number
 : MX-1111
 Nominal Output Power (W)
 : 0.5

 Serial Number
 : AR10601011005000042
 Antenna Type
 : Helix

 FCC ID Number
 : F3JMX1111
 Signal
 : AMPS

<u>Phantom</u> : Head - Left Ear **Dielectric Constant** : 44.4 Simulated Tissue : Brain Conductivity : 0.76

 Probe
 : E
 Antenna
 Position
 : FIX

 Probe
 Offset (mm)
 : 3.00
 Measured
 Power (dBm)
 : 25.4

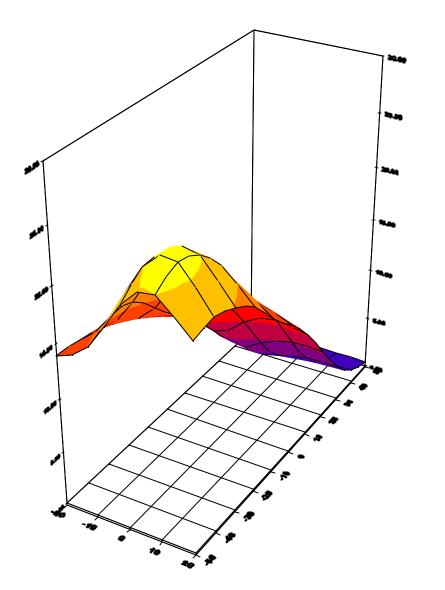
Sensor Factor (mV) : 10.8 (conducted)

Conversion Factor : 0.61 Cable Insertion Loss (dB) : 0.7

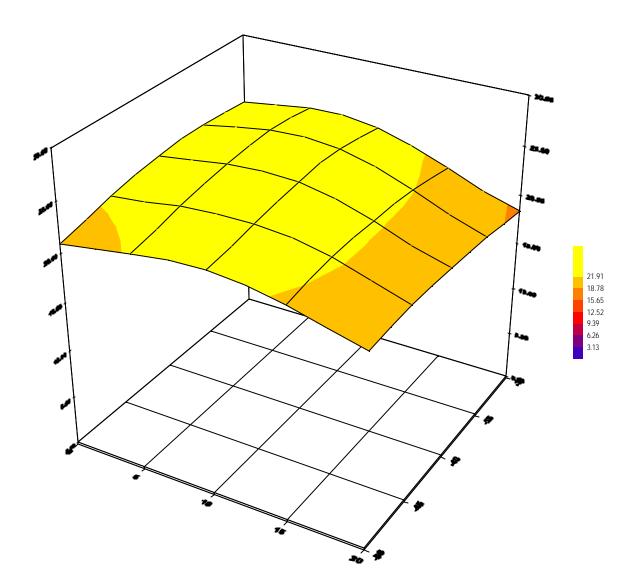
Calibrated Date : 3/24/99 Compensated Power (dBm) : 26.1

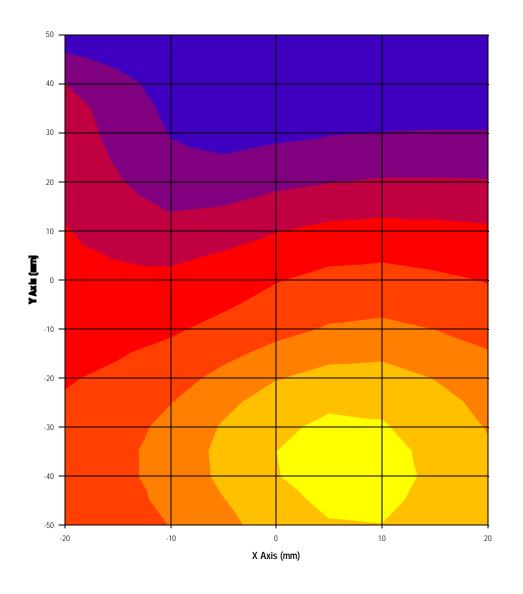
Amplifier Setting :

Channel 1: 0.0045 Channel 2: 0.0039 Channel 3: 0.0031

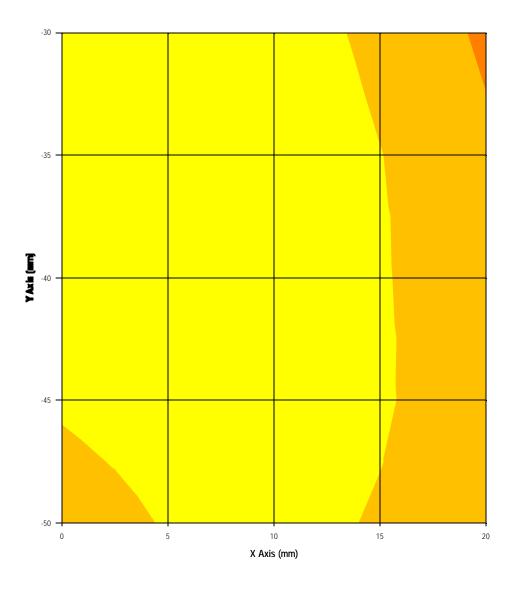

Location of Maximum Field:

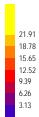
X = 5 Y = -35

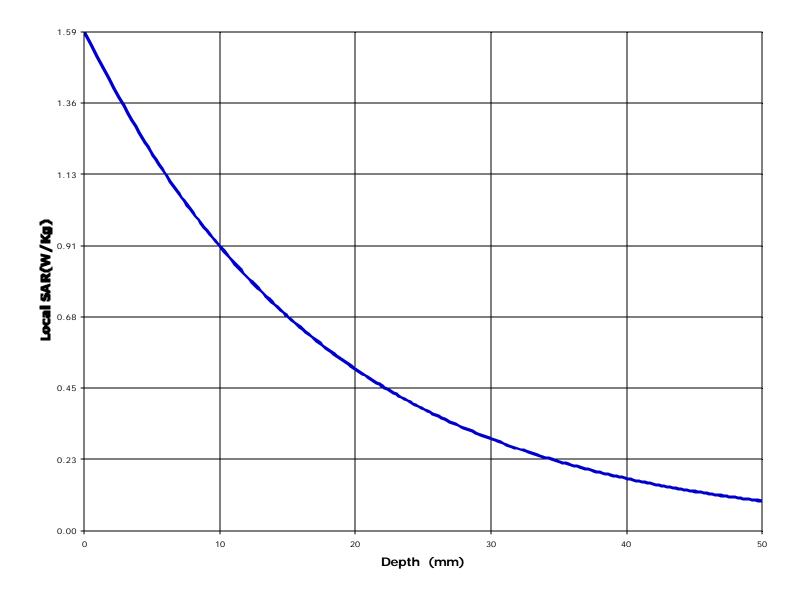

Measured Values (mV) :

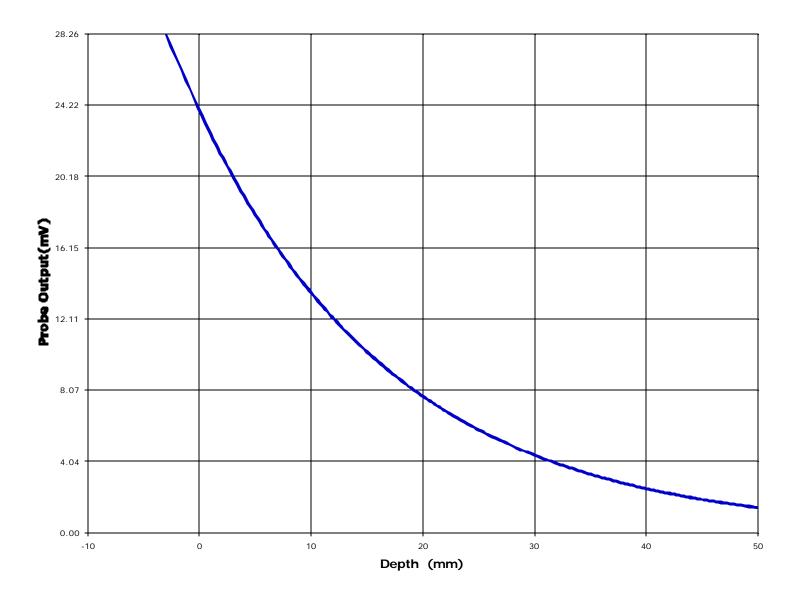

24.44 22.27 20.79 19.74 18.83 18.01

17.44 16.56 15.82 15.13 14.51




21.91 18.78 15.65 12.52 9.39 6.26 3.13





21.91 18.78 15.65 12.52 9.39 6.26 3.13

Test Information

Date : 6/6/00
Time : 3:29:26 PM

 Product
 : Cellular Phone
 Test
 : SAR

 Manufacturer
 : Maxon
 Frequency (MHz)
 : 849

 Model Number
 : MX-1111
 Nominal Output Power (W)
 : 0.5

 Serial Number
 : AR10601011005000042
 Antenna Type
 : Helix

 FCC ID Number
 : F3JMX1111
 Signal
 : AMPS

<u>Phantom</u> : Head - Left Ear **Dielectric Constant** : 44.4 Simulated Tissue : Brain Conductivity : 0.76

 Probe
 : E
 Antenna
 Position
 : FIX

 Probe
 Offset (mm)
 : 3.00
 Measured
 Power (dBm)
 : 23.6

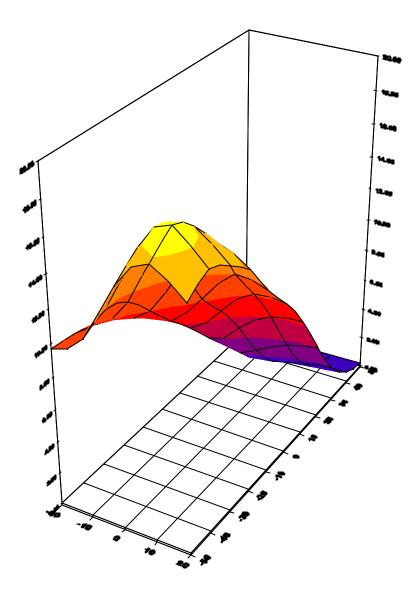
Sensor Factor (mV) : 10.8 (conducted)

Conversion Factor : 0.61 Cable Insertion Loss (dB) : 0.7

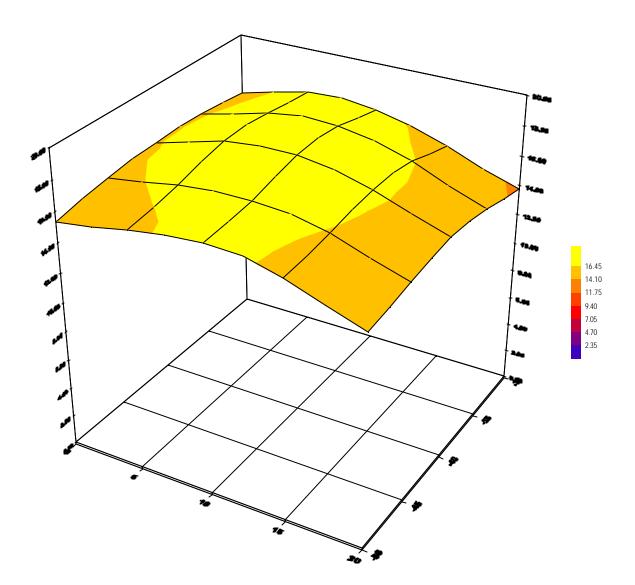
Calibrated Date : 3/24/99 Compensated Power (dBm) : 24.3

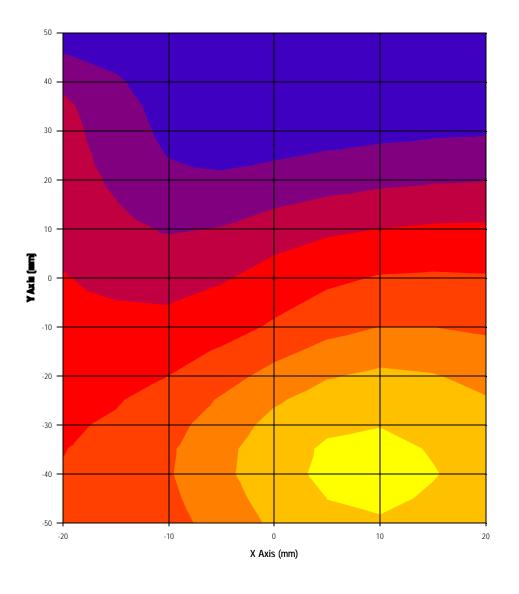
Amplifier Setting :

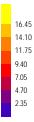
Channel 1: 0.0045 Channel 2: 0.0039 Channel 3: 0.0031

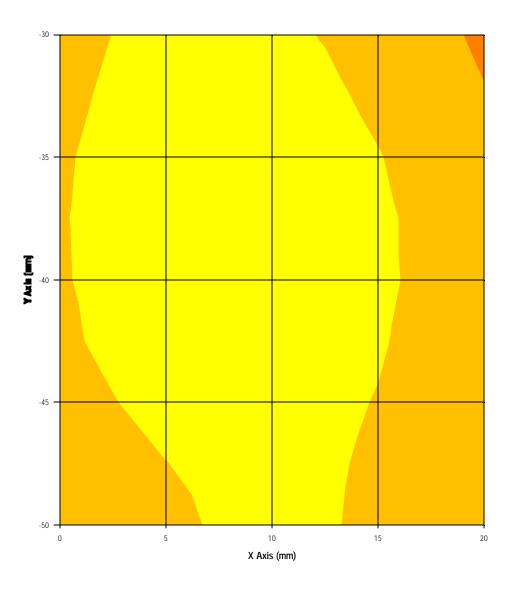

Location of Maximum Field:

X = 10 Y = -40

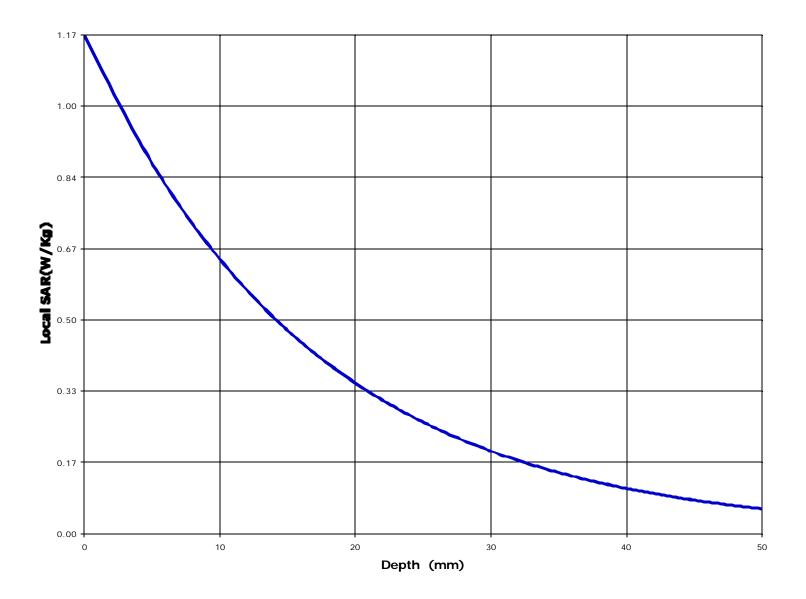

Measured Values (mV) :

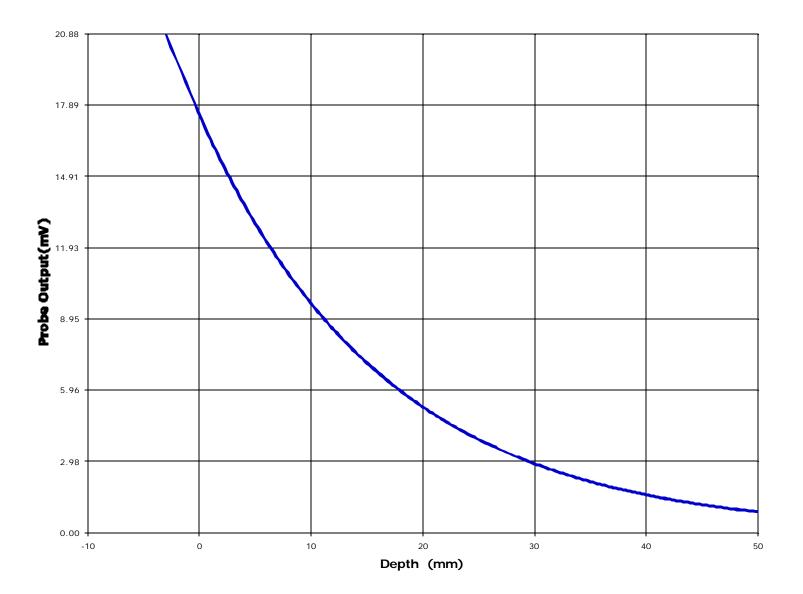

 17.85
 16.30
 15.04
 14.18
 13.44
 12.83


 12.23
 11.65
 11.12
 10.61
 10.14



16.45 14.10 11.75 9.40 7.05 4.70 2.35





16.45 14.10 11.75 9.40 7.05 4.70 2.35

Specific Absorption Rate Page 22

Maxon

ANNEX B: TISSUE CALIBRATION

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia)

- Recognized/Listed by FCC (USA), Industry Canada (Canada)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: MXA-002Q

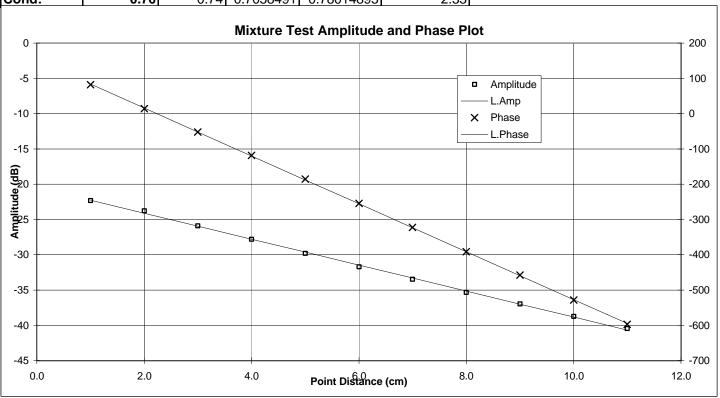
Frequency: 835 MHz

		Date:	4/26/00		
Composition)				
Tap Water(%)	DI Water(%)	Sugar(%)	Salt(%)	HEC(%)	Bactericide(%)
43.74	0	56.25	0	0.01	0

Mixture: Brain ('Brain' or 'Muscle')

of Points: 11

Point	Amplitude	Phase	
1	-22.33	81.87	
2	-23.79	14.26	
3	-25.92	-52.06	
4	-27.82	-118.53	
5	-29.80	174.19	
6	-31.70	105.31	
7	-33.47	37.00	
8	-35.33	-31.22	
9	-36.95	-98.10	
10	-38.72	-168.71	
11	-40.46	122.83	


75.5	
-51.6	
-53.5	-1.837727273
-55.3	-20.45454545
-56.9	-67.88881818
	151.5910909

Omega:	5246459731	rad/sec
Epsilon 0:	8.85E-14	F/m
mu:	1.26E-08	
alpha avg:	-0.211576171	Np/cm
beta avg:	-1.184883403	rad/cm

Room Temp

25

Results:		Target	Low Limit	High Limit	% Off Target
D. Const:	44.4	46.1	43.781496	48.3900743	-3.77
Cond:	0.76	0.74	0.7058491	0.78014895	2.33

Point Dist: