NEUTRON EMC LAB	NE	UTRO	N EMC	LAB.
-----------------	----	------	-------	------

MEASUREMENT/TECHNICAL REPORT

APPLICTNT: QTRONIX CPRPORATION

MODEL NO.: SCORPIUS 980TU plus

FCC ID: F2Q4NE98ØTU

This report concerns (check one) : Original Grant Class II Change
Equipment type: Keyboard
Deferred grant requested per 47CFR 0.457(d)(1)(ii)? Yes No ✓ If yes, defer until: (date) We, the undersigned, agree to notify the Commission by (date) / / of the intended date of announce ment of the product so that the grant can be issued on that date.
Transiyion Rules Request per 15.37? No If no, assumed Part 15, Subpart B for unintentional radiator the new 47 CFR (10-1-90 Edition) provision.
Report Prepared by Testing House: Neutron Engineering Inc. for Company: Name QTRONIX CORPORATION Address 9F, #75, Sec, 1 Hsin Tai Wu Rd. Hsichih, Taipei Hsien, Taiwan, R. O. C. Applicant Signature; Alan Hsu / Electronic Chief
Alan Hsu / Electronic Chief

						_	
	-	17	RO	NI		\sim	
n			~ ()	N	$\vdash IV$		ıΔR

CERTIFICATION

We hereby certify that:

The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (1992) /CISPR22(1996) and the energy emitted by the sample EUT tested as described in this report is in compliance with CLASS B conducted and radiated emission limits of FCC Rules Part 15, Subpart B/CISPR22(1996).

> **Prepared** Sherry Kuo by:

Reviewed Andy Chiu by:

Sherry Kno Andy Chie George You Approved by: George Yao

Issued Date Jan. 14, 2000

Report No. NEI-FCCB-99199

Company Stamp:

NEUTRON ENGINEERING INC.

20, Alley 50, Lane 119, Dong Hwu Rd., P.O. Box 6-158, Nei Hwu, Taipei, Taiwan TEL; (02) 2646-5426 FAX; (02) 2646-6815

Table of Contents

1.	Gener	rai imormauon	
	1-1	Product Description	4
	1-2	Related Submittal(s)/Grant(s)	4
	1-3	Tested System Details	5
	1-4	Test Methodology	6
	1-5	Test Facility	6
2.	Syster	m Test Configuration	
	2-1	Justification	7
	2-2	EUT Exercise Software	7
	2-3	Special Accessories	8
	2-4	Equipment Modifications	8
	2-5	Configuration of Tested System.	9
	Figure	e 2-1 Configuration of Tested System	11
3.	Cond	ucted and Radiated Measurement Photos	
	Figure	e 3-1.Conducted Measurement Photos	12
	Figure	e 3-2 Radiated Measurement Photos	13
4.	Cond	ucted Emission Datas	14
5.	Radia	ted Emission Datas	
	5-1	Radiated Emission Data	15
	5-2	Field Strength Calculation	16
	5-3	Correction Factor Table VS Frequency	17

N	IFI	ITR	10	JF	M C	IΔR
- 17	יבו	JIN	J I	v CI	VI C	ᅜᄶᄆ

1. GENERAL INFORMATION

1-1. Product Description

The QTRONIX CORPORATION Model: SCORPIUS 980TU plus (referred to as the EUT in this report) has an enhanced slim design and can work with any USB compatible computer. The summarized feature of EUT are described as following:

- Easily "plug and play" and compatible with IBM PC which supports USB.
- Featuring with 20 hot key to quickly access Internet browser and multimedia applications
- 10 of the 20 hot keys are programmable which can be re-defined by user's command after installing the included software
- Multimedia functions support five DVD players: ATI, Creative, Realmagic, Win DVD and Power DVD
- Support three Windowsσ 98 ACPI keys
- Built-in trackball with scroll-in-mouse program activate Scrolling and Zoom functions
- Sleek style with detachable ergonomic wrist pad
- Adjustable tilt mechanism.
- High quality rubber membrane key switches.
- Permanently attached coiled cord.
- Tactile key stroke.
- N-key -roll- over.
- 20,000,000 lift cycles per switch.

A more detailed and/or technical description of EUT is attached in User's Manual.

1-2. Related Submittal(s) / Grant (s)

1-2-1. Models Covered

Models covered in this test report submitted for FCC ID filing is model <u>SCORPIUS 980TU</u> <u>plus</u>

1-2-2. Models Difference

N/A

NEUTRON EMC LAB.

1-3. Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

Model No.	FCC ID	Equipment	Cable
SCORPIUS 980TU plus	F2Q4NE980TU	Keyboard	Shielded Data Cable
444	N/A ⁽³⁾	PC	Un-Shielded Power Cord.
CM753ET	N/A ⁽³⁾	Monitor	Shielded Data Cable ⁽²⁾ Un-Shielded Power Cord
DPU-414	N/A ⁽³⁾	Printer	Shielded Data Cable Un-Shielded Power Cord
DM-1414V	N/A ⁽³⁾	Modem	Shielded Data Cable Un-Shielded Power Cord
M-S34	DZL211029	Mouse	Shielded Data Cable Un-Shielded Power Cord

Notes:

- (1) EUT submitted for grant.
- (2) Monitor's attached video cable without ferrite core.
- (3) The support equipment was passed by Declaration of Conformity.

1-4. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (1992)/CISPR22 (1996). Radiated testing was performed at an antenna to EUT distance 10 meters.

1-5. Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of No. 132-1, Lane 329, Sec. 2, Palain Road, Shijr Jen 221, Taipei, Taiwan, R.O.C. of NEUTRON ENGINEERING INC. This site has been fully described in report dated Jun. 25, 1999 Submitted to your office, and accepted in a letter dated Sep. 02, 1999 (Reg. No. 95335).

N	IFI	ITR	ON	I EV	1C	ΙΔΡ
ľ	1 = 1	אוע	יוט	4 E IV	/I C	LAD.

2. System Test Configuration

2-1. Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). The EUT was connected to support equipment-personal computer. Peripherals of PC, such as monitor, modem and printer were contained in this system in order to comply with the CISPR22 (1996) Rules requirement. The PC operated in the default 640 x 480 / 31.5 KHz VGA Graphic mode. This operating condition was tested and used to collect the included data.

2-2. EUT Exercise Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, contained on a 3-1/2 inch disk, was inserted into driver A and is auto-starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is:

- 1. Read (write) from (to) mass storage device (Disk).
- 2. Send "H" pattern to video port device (Monitor).
- 3. Send "H" pattern to parallel port device (Printer).
- 4. Send "H" pattern to serial port device (Modem).
- 5. Repeated from 2 to 4 continuously.

As the EUT are strictly input devices, no data is transmitted to (from) them during test. They are, however, continuously scanned for data input activity.

NF	JTR	NO	FM(LAB.	
11 -	_			<i>,</i>	

2-3. Special Accessories

No any other special accessory used for compliance testing.

2-4. Equipment Modifications

In order to achieve in compliance with Class B levels, the following change(s) were made by NEUTRON test house during the compliance testing.

Please refer to the modifications described.

The above modifications will be implemented in all product models of this equipment.

Applicant Signature: Date: Jan. 14, 2000

Type/Printed Name: Alan Hsu Position: Electronic Chief R&D

NEUTRON EMC LAB.

2.5 Configuration of Tested System

The configuration of tested system is described as the block diagram shown in next page Figure 3.1 and details information of I/O cable an power cord connection are tabulated as Table A and B. The monitor is powered from a floor mounted receptacle (referred to as the wall outlet in the previous described)was tested.

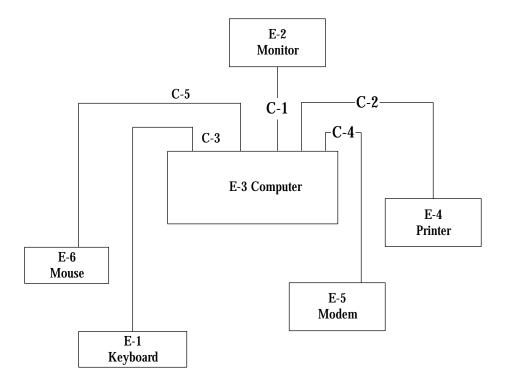
TABLE A - Test Equipment

Item	Equipment	Mfr.	Model/Type No.	I/O Port	FCC ID	Remark
E-1	Keyboard	QTRONIX	SCORPIUS 980TU plus	USB Port	F2Q4NE980TU	EUT
E-2	Monitor	НІТАСНІ	CM753ET	VGA Port	N/A(3)	
E-3	PC	IBM	444		N/A(3)	
E-4	Printer	SII	DPU-414	Printer Port	N/A(3)	
E-5	Modem	ACEEX	DM-1414V	COM Port	N/A(3)	
E-6	Mouse	HP	M-S34	PS/2 Port	DZL211029	

Note:

- (1) Unless otherwise denoted as EUT in; Remark; zolum, device(s) used in tested system is a support equipment.
- (2) Unless otherwise marked as ; °in; Remark; zolum, Neutron consigns the suppor equipment(s) to the tested system.
- (3) The support equipment was passed by Declaration of confirmation.

MEUTDON EMOLAD	
NEUTRON EMC LAB.	

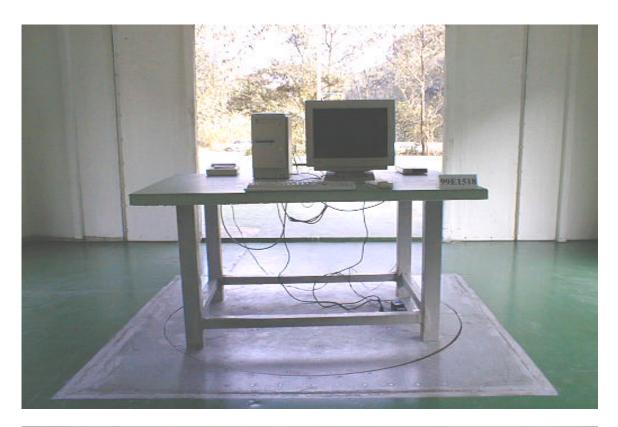

Table B. - Informations Cable Information

Item	I/O Cable	Device Connected	Shielded	Ferrite	Detachable / Permanently	Length	Note
C-1	Video Cable	PC-Monitor	Yes	No	Permanently attached on Monitor	150 cm	
C-2	Centronics Cable	PC-Printer	Yes	No	Part of Printer, Detachable	200 cm	
C-3	Keyboard Cable	PC-EUT	Yes	No	Permanently attached on EUT	200 cm	i °
C-4	RS-232 Cable	PC-Modem	Yes	No	Part of Modem, Detachable	175 cm	
C-5	Mouse Cable	PC-Mouse	Yes	No	Permanently attached on Mouse	200 cm	

Note:

- (1) Unless otherwise marked as i oin; Remark; zolum, Neutron consigns the supporting equipment(s) to the tested system.
- (2) For detachable type I/O cable should be specified the length in cm in; Length; zolumn.

Fig. 2-1 Configuration of Tested System


3. Conducted and Radiated Measurement Photos

3-1 Conducted Measurement Photos

3-2. Radiated Measurement Photos

4. Conducted Emission Datas

4.1 The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Judgement: Passed by -12.68 dB in mode of Neutral terminal 18.14 MHz

Freq.	Terminal	Measured(dBuV)		Limits(dBuV)		Safe Margins	
(MHz)	L/N	QP-Mode	AV-Mode	QP-Mode	AV-Mode	(dBuV)	Note
0.17	L	43.13	*	65.21	55.21	-22.08	(QP)
0.40	L	35.16	*	57.81	47.81	-22.65	(QP)
0.77	L	39.00	*	56.00	46.00	-17.00	(QP)
7.65	L	45.36	*	60.00	50.00	-14.64	(QP)
18.14	L	47.32	*	60.00	50.00	-12.68	(QP)
0.17	N	45.13	*	65.11	55.11	-19.98	(QP)
0.40	N	34.16	*	57.85	47.85	-23.69	(QP)
0.71	N	32.99	*	56.00	46.00	-23.01	(QP)
8.19	N	39.38	*	60.00	50.00	-20.62	(QP)
18.14	N	46.32	*	60.00	50.00	-13.68	(QP)

Remark:

- (1) Reading inwhich marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz; SPA setting in RBW=100KHz,VBW =100KHz, Swp. Time = 0.3 sec./MHz. Reading inwhich marked as AV means measurements by using are Average Mode with instrument setting in RBW=1MHz,VBW=10Hz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in colum of "Note". If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemd to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode colum of Interference Voltage Measured.
- (3) Measuring frequency range from 150KHz to 30MHz.

Review: Andy Chir Test Personnel: Date: Jan.4, 2000

NEU	JTRO	I NC	EMC	LAE	3.
11 - 1	<i>-</i>	<i>-</i>			

5. Radiated Emission Data

5.1 The following data lists the significant emission frequencise, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, as well as the limit. Explanation of the Correction Factor is given in paragraph 7.2.

Judgement: Passed by **-2.22** dB in polarity of **Horizontal 192.61** MHz

Freq.	Ant.	Reading(RA)	Corr.Factor(CF)	Measured(FS)	Limits(QP)	Safe Margins	
(MHz)	H/V	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m) Note	_
161.75	V	39.20	- 13.61	25.59	30.00	- 4.41	
175.35	V	39.40	- 14.06	25.34	30.00	- 4.66	
180.58	Н	41.90	- 14.37	27.53	30.00	- 2.47	
187.42	V	41.20	- 14.95	26.25	30.00	- 3.75	
192.61	Н	43.10	- 15.32	27.78	30.00	- 2.22 QP	
199.48	Н	43.40	- 15.70	27.70	30.00	- 2.30	
200.80	V	42.10	- 15.71	26.39	30.00	- 3.61	
226.51	Н	33.40	- 14.81	18.59	30.00	- 11.41	
228.80	V	36.20	- 14.71	21.49	30.00	- 8.51	
422.28	Н	41.40	- 8.75	32.65	37.00	- 4.35	
443.20	V	38.20	- 7.63	30.57	37.00	- 6.43	
487.05	Н	39.50	- 6.56	32.94	37.00	- 4.06	

Remark; G

- (1) Reading inwhich marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz; &PA setting in RBW=1MHz, VBW =1MHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in colum of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

Review: Andy Chir Test Personnel: Date: Jan.4, 2000

5-2. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength

RA = **Receiver Amplitude**

AF = Antenna Factor (1)

CL = **Cable Attenuation Factor (1)**

AG = Amplifier Gain (1) (2)

Remark:

- (1) The Correction Factor = AF + CL AG, as shown in the data tables' Correction Factor column.
- (2) AG is not available for Neutron's Open Site Facility

Example of Calculation:

Assume a Receiver Reading of 23.7 dBuV is obtained with an Antenna Factor of 7.2 dB and a Cable Factor of 1.1 dB. Then:

1. The Correction Factor will be caculated by

Correction Factor =
$$AF + CL - AG = 7.2 + 1.1 - 0 = 8.3$$
 (dB)

as shown in the data tables' Correction Factor column.

2. The Field Strength will be calculated by

$$FS = RA + Correction Factor = 23.7 + 8.3 = 32 (dBuV/m)$$
.

FS is the value shown in the data tables' Corrected Reading column and RA is the value shown in

the data tables' Receiver Reading column. The 32 dBuV/m value was mathematically converted

to its corresponding level in uV/m as:

$$Log^{-1}$$
; **i**32.0dBuV/m)/20; **j** ×39.8 (uV/m)

5-3. Correction Factor VS Frequency

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)
30.00	11.10	0.90
35.00	10.80	0.50
40.00	11.20	1.00
45.00	11.50	0.80
50.00	11.30	1.00
55.00	10.50	1.30
60.00	9.90	1.00
65.00	8.70	1.50
70.00	7.60	1.20
75.00	6.40	1.40
80.00	6.10	1.30
85.00	7.00	1.40
90.00	8.00	1.70
95.00	10.00	1.50
100.00	11.20	1.90
110.00	12.60	2.00
120.00	13.00	1.80
130.00	12.50	1.80
140.00	12.00	2.00
150.00	12.00	2.20
160.00	13.20	2.40
170.00	14.80	2.50
180.00	16.30	2.50
190.00	17.00	2.50
200.00	17.30	2.40
225.00	10.50	2.70
250.00	11.70	3.10
275.00	12.80	3.70
300.00	14.50	4.00
325.00	14.00	4.50
350.00	14.20	4.50
375.00	14.60	4.60
400.00	15.10	4.80
450.00	16.20	5.40
500.00	17.60	6.50
550.00	17.80	7.00
600.00	18.40	7.10
650.00	19.50	7.10
700.00	20.80	7.20
750.00	20.50	7.50
800.00	21.10	8.00
850.00	22.40	8.60
900.00	23.50	8.90
950.00	24.00	9.70
1000.00	24.80	10.30