

Compliance Testing, LLC
Previously Flom Test Lab
EMI, EMC, RF Testing Experts Since 1963

toll-free: (866) 311-3268
fax: (480) 926-3598
<http://www.ComplianceTesting.com>
info@ComplianceTesting.com

Test Report

Prepared for: Bird Technologies

Model: 3-26076-XX

Description: Public Safety Class B Signal Booster

Serial Number: N/A

FCC ID: EZZ26076

To

FCC Part 1.1310

Date of Issue: October 28, 2016

On the behalf of the applicant:

Bird Technologies
30303 Aurora Road
Cleveland, OH 44139

Attention of:

Tim O'Brien, Technical Product Manager
Ph: (440)519-2194
Email: tobrien@bird-technologies.com

Prepared By
Compliance Testing, LLC
1724 S. Nevada Way
Mesa, AZ 85204
(480) 926-3100 phone / (480) 926-3598 fax
www.compliancetesting.com
Project No: p1680008

Alex Macon
Project Test Engineer

This report may not be reproduced, except in full, without written permission from Compliance Testing
All results contained herein relate only to the sample tested

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	September 23, 2016	Alex Macon	Original Document

ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009)

The tests results contained within this test report all fall within our scope of accreditation, unless below

Please refer to <http://www.compliancetesting.com/labscope.html> for current scope of accreditation.

Testing Certificate Number: **2152.01**

FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A

EUT Description

Model: 3-26076-XX

Description: Public Safety Class B Signal Booster

Firmware: N/A

Software: N/A

Serial Number: N/A

Additional Information:

The EUT is classified as a Part 90 PS **Class B** industrial signal booster.

The EUT is a Bi-directional Amplifier that operates in the Frequency ranges listed in Table 1.

System Power is 120 VAC @ 60 Hz. The device also has a selection for battery backup at 24 VDC

The emission designators listed in Table 1 are representative emission designators used by transmitters whose signal is amplified by this booster.

Frequency (MHz)	Emission Designators
450 - 512	F3E, G1D, G1E, W7W, F2D

Average Power calculations

Average Power = Peak Power * duty-cycle%

Tuned Frequency (MHz)	Conducted Peak Output Power (mW)	Duty Cycle (%)	Average Power (mW)
460	3320	100	3320mW

All calculations below are with a 0dBi antenna in mind.

20% is added to the highest power in the calculations below.

MPE Evaluation

This is a fixed device used in Uncontrolled Exposure environment.

Limits Uncontrolled Exposure

47 CFR 1.1310

Table 1, (B)

0.3-1.234 MHz:	Limit [mW/cm ²] = 100
1.34-30 MHz:	Limit [mW/cm ²] = (180/f ²)
30-300 MHz:	Limit [mW/cm ²] = 0.2
300-1500 MHz:	Limit [mW/cm ²] = f/1500
1500-100,000 MHz	Limit [mW/cm ²] = 1.0

Test Data

Test Frequency, MHz	450
Power, Conducted, mW (P)	3984
Antenna Gain Isotropic	0dBi
Antenna Gain Numeric (G)	1
Distance (R)	20 cm

$S = \frac{P * G}{4\pi r^2}$
Power Density (S) mw/cm ²

0.793

Power Density (S) = 0.793
Limit =(from above table) = 0.30

The power density is over the limit so the minimum safe distance was calculated

formula R=√(PG/4πL)	Distance (R) (cm)	Power (mW)	Numeric Gain (G)	Limit (mW/cm)
	32.51653181	3984	1	0.3

The minimum safe distance is 32.5 cm

END OF TEST REPORT