

FCC RF Test Report

(BLE)

Report No.: JYTSZ-R12-2501181

Applicant: Voxel Electronics Corporation

Address of Applicant: 2365 Pontiac Road, Auburn Hills, Michigan 48326 - USA

Equipment Under Test (EUT)

Product Name: 7957VHD

Model No.: 7957VHD

Trade Mark: N/A

FCC ID: EZS7957VHD

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 01 Jul., 2025

Date of Test: 02 Jul., to 18 Aug., 2025

Date of Report Issued: 19 Aug., 2025

Test Result: PASS

Project by:

Date: 19 Aug., 2025

Reviewed by:

Date: 19 Aug., 2025

Approved by:

Date: 19 Aug., 2025

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	19 Aug., 2025	<i>Original</i>

2 Contents

	Page
Cover Page	1
1 Version	2
2 Contents	3
3 General Information	4
3.1 Client Information	4
3.2 General Description of E.U.T.	4
3.3 Test Mode and Test Environment.....	5
3.4 Description of Test Auxiliary Equipment	5
3.5 Measurement Uncertainty	5
3.6 Additions to, Deviations, or Exclusions from the Method.....	5
3.7 Laboratory Facility	6
3.8 Laboratory Location.....	6
3.9 Test Instruments List	6
4 Measurement Setup and Procedure	8
4.1 Test Channel.....	8
4.2 Test Setup	8
4.3 Test Procedure.....	11
5 Test Results.....	12
5.1 Summary	12
5.1.1 Clause and Data Summary.....	12
5.1.2 Test Limit.....	13
5.2 Antenna requirement.....	14
5.3 AC Power Line Conducted Emission	15
5.4 Emissions in Restricted Frequency Bands.....	17
5.5 Emissions in Non-restricted Frequency Bands	25

3 General Information

3.1 Client Information

Applicant:	Voxx Electronics Corporation
Address:	2365 Pontiac Road, Auburn Hills, Michigan 48326 - USA
Manufacturer:	Nutek Corporation
Address:	no. 167, Lane 235, Bauchiau Rd, Xindian District, New Taipei City 23145, Taiwan
Factory:	Voxx Automotive Corporation
Address:	2351 J. Lawson Blvd, Orlando, FL 32824 - USA

3.2 General Description of E.U.T.

Product Name:	7957VHD
Model No.:	7957VHD
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY), 2 Mbps (LE 2M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	3.77 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.7V, 200mAh
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Test Mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation
Remark:	
1. For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) and Lowest channel was worse case mode. The report only reflects the test data of worst mode. 2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.	
Operating Environment:	
Temperature:	15°C ~ 35°C
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	Nominal: 3.70Vdc, Extreme: Low 3.30Vdc, High 4.35Vdc
Test Engineer:	Hopper Li (Conducted measurement) Robin.Gu (Radiated measurement)

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Occupied Channel Bandwidth	0.250 MHz
RF output power, conducted	0.75dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	2.86 dB
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.0 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.4 dB
Radiated Emission (9kHz ~ 30MHz) (3m SAC)	±3.3 dB
Radiated Emission (30MHz ~ 200MHz) (3m SAC)	±4.6 dB
Radiated Emission (200MHz ~ 1000MHz) (3m SAC)	±5.8 dB
Radiated Emission (1GHz ~ 6GHz) (3m SAC)	±4.5 dB
Radiated Emission (6GHz ~ 18GHz) (3m SAC)	4.7 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB
Radiated Emission (1GHz ~ 18GHz) (3m FAR)	5.15 dB
Radiated Emission (18GHz ~ 40GHz) (3m FAR)	5.30 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● **FCC - Designation No.: CN1211**

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● **ISED – CAB identifier.: CN0021**

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● **CNAS - Registration No.: CNAS L15527**

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

● **A2LA - Registration No.: 4346.01**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <https://portal.a2la.org/scopepdf/4346-01.pdf>

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: <http://jyt.lets.com>

3.9 Test Instruments List

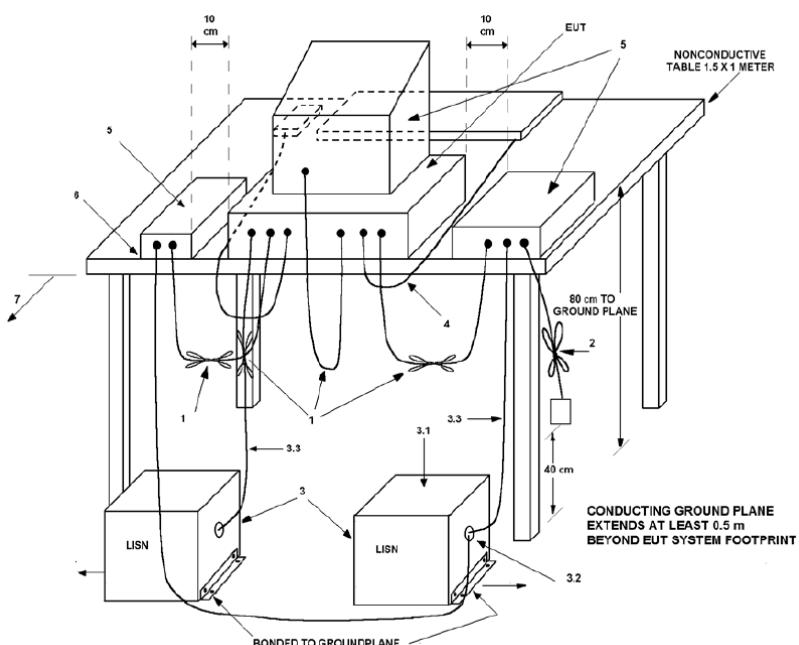
Radiated Emission(3m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2026
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	01-03-2025	01-02-2026
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	01-03-2025	01-02-2026
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	01-03-2025	01-02-2026
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	12-25-2024	12-24-2025
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	12-16-2024	12-15-2025
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	12-16-2024	12-15-2025
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	12-16-2024	12-15-2025
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	12-16-2024	12-15-2025
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	12-16-2024	12-15-2025
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	09-09-2024	09-08-2025
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-15-2025	01-14-2026
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-15-2025	01-14-2026
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-15-2025	01-14-2026
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A	
Test Software	Tonscend	TS+	Version: 3.0.0.1		

Radiated Emission(3m FAR):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m FAR	YUNYI	9m*6m*6m	WXJ097	06-15-2023	06-14-2028
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ097-2	04-24-2025	04-23-2026
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-01-2024	06-30-2027
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ097-3	05-23-2025	05-22-2026
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	12-25-2024	12-24-2025
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	12-25-2024	12-24-2025
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	12-25-2024	12-24-2025
Pre-amplifier (30MHz ~ 1GHz)	YUNYI	PAM-310N	WXJ097-5	04-21-2025	04-20-2026
Pre-amplifier (1GHz ~ 18GHz)	YUNYI	PAM-118N	WXJ097-6	04-21-2025	04-20-2026
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	12-16-2024	12-15-2025
EMI Test Receiver	Rohde & Schwarz	ESCI3	WXJ003	12-16-2024	12-15-2025
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	12-16-2024	12-15-2025
Spectrum Analyzer	KEYSIGHT	N9020B	WXJ081-1	05-08-2025	05-07-2026
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-13M	WXG097-1	07-30-2024 07-28-2025	07-29-2025 07-27-2026
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG097-2	07-30-2024 07-28-2025	07-29-2025 07-27-2026
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG097-3	07-30-2024 07-28-2025	07-29-2025 07-27-2026
High Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A	
Low Band Reject Filter Group	Tonscend	JS0806-F	WXJ097-4	N/A	
Test Software	Tonscend	TS+	Version: 5.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	05-08-2025	05-07-2026
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	12-17-2024	12-16-2025
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	12-17-2024	12-16-2025
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	01-15-2025	01-14-2026
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A	
Test Software	AUDIX	E3	Version: 6.110919b		

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	09-10-2024	09-09-2025
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	12-17-2024	12-16-2026
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	09-10-2024	09-09-2025
DC Power Supply	Keysight	E3642A	WXJ025-2	N/A	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0		

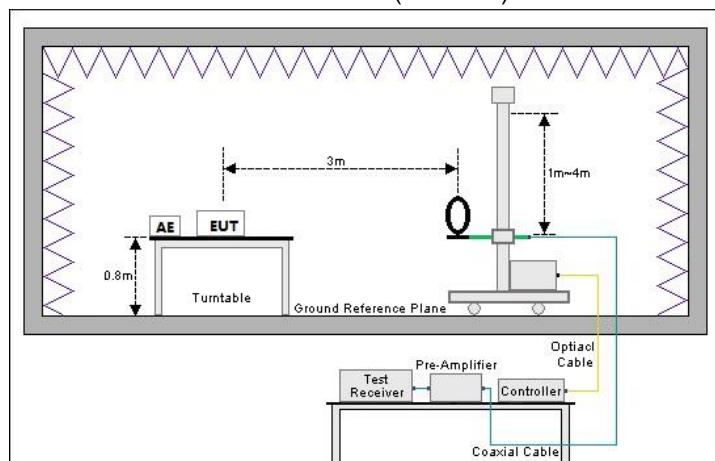
4 Measurement Setup and Procedure

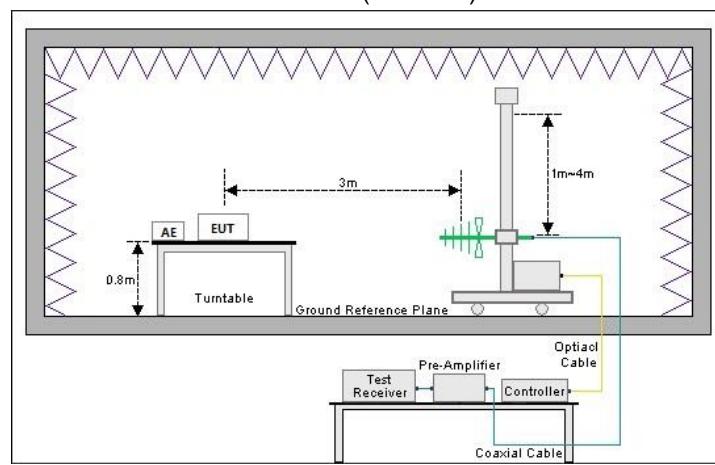

4.1 Test Channel

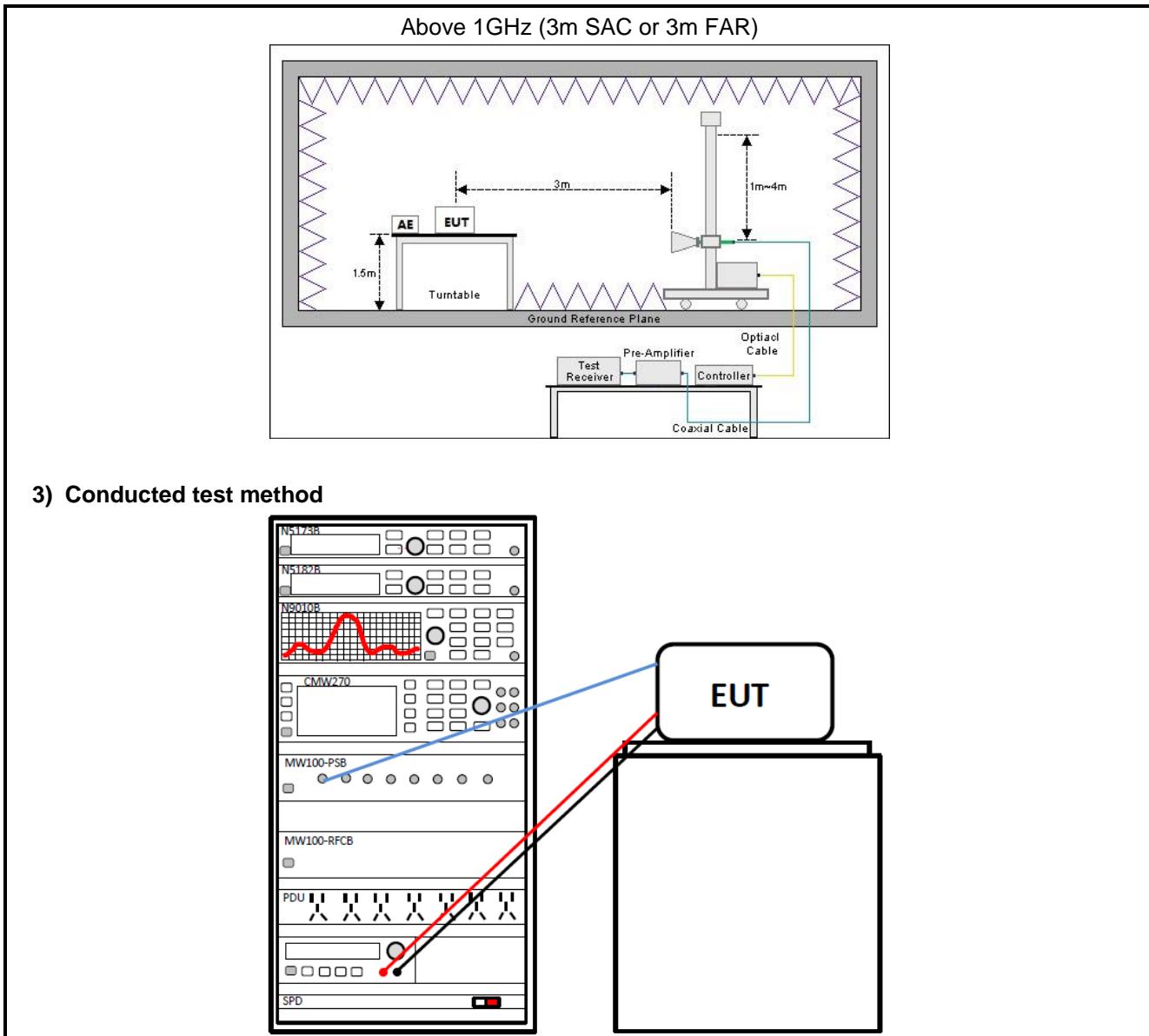
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

4.2 Test Setup


1) Conducted emission measurement:


Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.


2) Radiated emission measurement:

Below 30MHz (3m SAC)

Below 1GHz (3m SAC)

4.3 Test Procedure

Test method	Test step
Conducted emission	<ol style="list-style-type: none"> 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	<p>For below 30MHz:</p> <ol style="list-style-type: none"> 1. The EUT was placed on the table top of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. 2. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. <p>For below 1GHz:</p> <ol style="list-style-type: none"> 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. 2. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. <p>For above 1GHz:</p> <ol style="list-style-type: none"> 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. 2. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	<ol style="list-style-type: none"> 1. The BLE antenna port of EUT was connected to the test port of the test system through an RF cable. 2. The EUT is keeping in continuous transmission mode and tested in all modulation modes. 3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test Method	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	/	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	ANSI C63.10 clause 6.2	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	ANSI C63.10 clause 11.9.1.2 Method PKPM1	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	ANSI C63.10 clause 11.8.1, ANSI C63.10 clause 6.9.3	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY	Pass
Power Spectral Density	15.247 (e)	ANSI C63.10 clause 11.10.2	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	ANSI C63.10 clause 6.10.4	Appendix A – BLE 1M PHY Appendix B – BLE 2M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	ANSI C63.10 clause 6.10.5, 11.12.1 and 11.12.2.5.2	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	ANSI C63.10 clause 6.3, 6.5, 6.6 and 11.12.2.5.2	See Section 5.5	Pass
Remark:				
1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: Not Applicable. 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).				
Test Method:	ANSI C63.10-2020 KDB 558074 D01 15.247 Meas Guidance v05r02			

5.1.2 Test Limit

Test items	Limit																																	
	Frequency (MHz)	Limit (dB μ V)																																
AC Power Line Conducted Emission		Quasi-Peak	Average																															
0.15 – 0.5	66 to 56 Note 1	56 to 46 Note 1																																
0.5 – 5	56	46																																
Conducted Output Power	5 – 30	60	50																															
6dB Emission Bandwidth	Note 1: The limit level in dB μ V decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.																																	
99% Occupied Bandwidth	The minimum 6 dB bandwidth shall be at least 500 kHz.																																	
Power Spectral Density	N/A																																	
Band-edge Emission	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).																																	
Conduction Spurious Emission																																		
Emissions in Restricted Frequency Bands																																		
Emissions in Non-restricted Frequency Bands	<table border="1"> <thead> <tr> <th rowspan="2">Frequency (MHz)</th> <th colspan="2">Limit (dBμV/m)</th> <th rowspan="2">Detector</th> </tr> <tr> <th>@ 3m</th> <th>@ 10m</th> </tr> </thead> <tbody> <tr> <td>30 – 88</td> <td>40.0</td> <td>30.0</td> <td>Quasi-peak</td> </tr> <tr> <td>88 – 216</td> <td>43.5</td> <td>33.5</td> <td>Quasi-peak</td> </tr> <tr> <td>216 – 960</td> <td>46.0</td> <td>36.0</td> <td>Quasi-peak</td> </tr> <tr> <td>960 – 1000</td> <td>54.0</td> <td>44.0</td> <td>Quasi-peak</td> </tr> </tbody> </table> <p>Note: The more stringent limit applies at transition frequencies.</p> <table border="1"> <thead> <tr> <th rowspan="2">Frequency</th> <th colspan="2">Limit (dBμV/m) @ 3m</th> </tr> <tr> <th>Average</th> <th>Peake</th> </tr> </thead> <tbody> <tr> <td>Above 1 GHz</td> <td>54.0</td> <td>74.0</td> </tr> </tbody> </table> <p>Note: The measurement bandwidth shall be 1 MHz or greater.</p>				Frequency (MHz)	Limit (dB μ V/m)		Detector	@ 3m	@ 10m	30 – 88	40.0	30.0	Quasi-peak	88 – 216	43.5	33.5	Quasi-peak	216 – 960	46.0	36.0	Quasi-peak	960 – 1000	54.0	44.0	Quasi-peak	Frequency	Limit (dB μ V/m) @ 3m		Average	Peake	Above 1 GHz	54.0	74.0
Frequency (MHz)	Limit (dB μ V/m)		Detector																															
	@ 3m	@ 10m																																
30 – 88	40.0	30.0	Quasi-peak																															
88 – 216	43.5	33.5	Quasi-peak																															
216 – 960	46.0	36.0	Quasi-peak																															
960 – 1000	54.0	44.0	Quasi-peak																															
Frequency	Limit (dB μ V/m) @ 3m																																	
	Average	Peake																																
Above 1 GHz	54.0	74.0																																

5.2 Antenna requirement

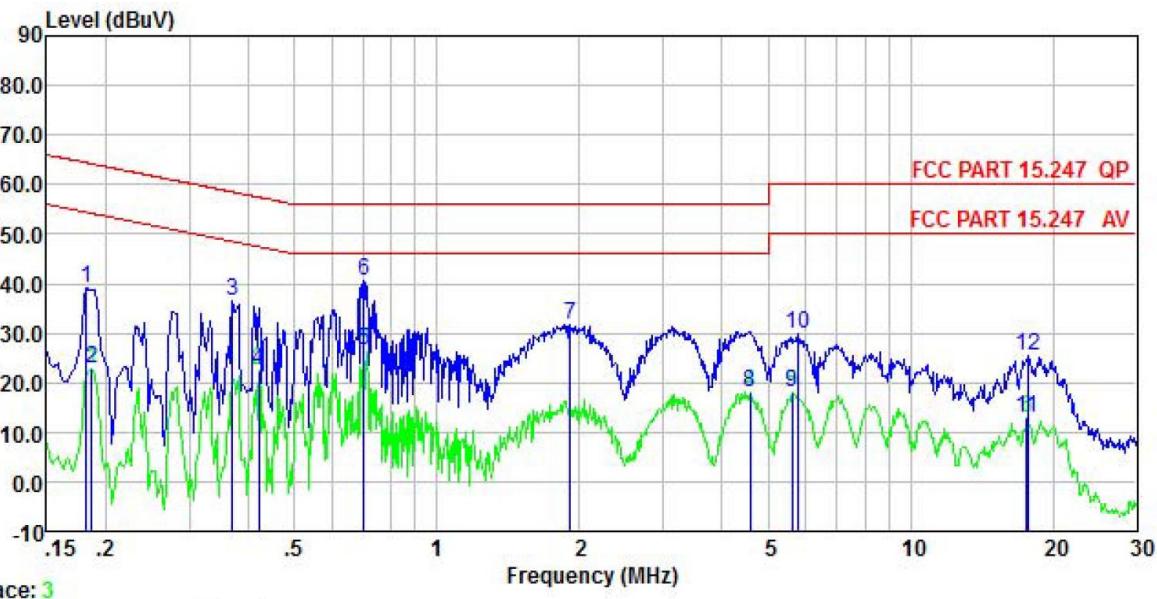
Standard requirement:	FCC Part 15 C Section 15.203 /247(b)(4)
-----------------------	---

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

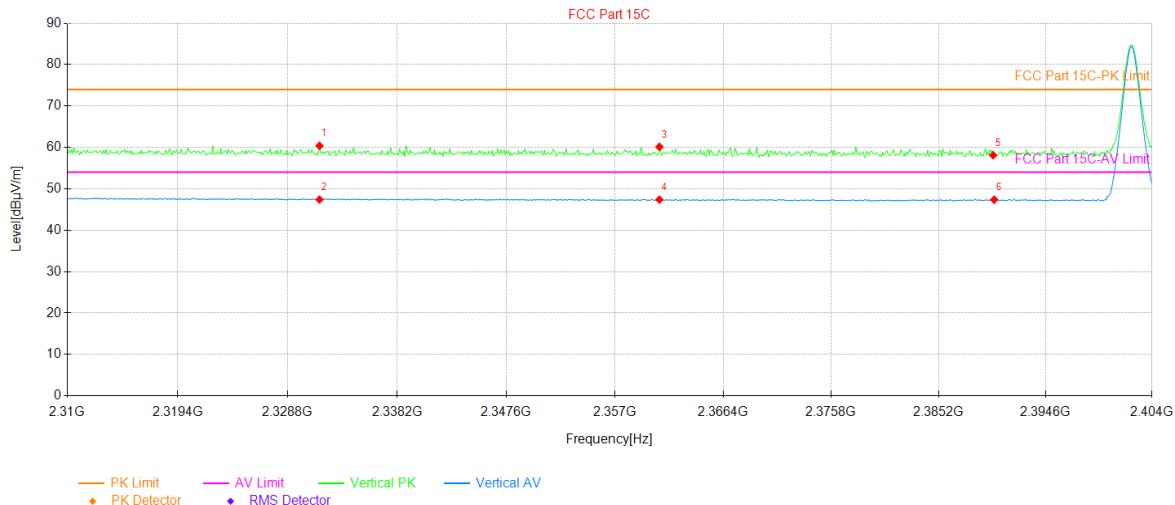

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.77 dBi. See product internal photos for details.

5.3 AC Power Line Conducted Emission

Product name:	7957VHD				Product model:	7957VHD																																																																																																																																																													
Test by:	Kiran Zeng				Test mode:	BLE Tx (LE 1M PHY)																																																																																																																																																													
Test frequency:	150 kHz ~ 30 MHz				Phase:	Line																																																																																																																																																													
Test voltage:	AC 120 V/60 Hz																																																																																																																																																																		
<table border="1"> <thead> <tr> <th></th> <th>Read Freq</th> <th>Level</th> <th>LISN Factor</th> <th>Aux Factor</th> <th>Aux2 Factor</th> <th>Cable Loss</th> <th>Level</th> <th>Limit Line</th> <th>Over Limit</th> <th>Remark</th> </tr> <tr> <th></th> <th>MHz</th> <th>dBuV</th> <th>dB</th> <th>dB</th> <th>dB</th> <th>dB</th> <th>dBuV</th> <th>dBuV</th> <th>dB</th> <th></th> </tr> </thead> <tbody> <tr> <td>1</td> <td>0.186</td> <td>14.34</td> <td>0.10</td> <td>0.00</td> <td>9.88</td> <td>0.00</td> <td>24.32</td> <td>54.20</td> <td>-29.88</td> <td>Average</td> </tr> <tr> <td>2</td> <td>0.186</td> <td>30.24</td> <td>0.10</td> <td>0.00</td> <td>9.88</td> <td>0.00</td> <td>40.22</td> <td>64.20</td> <td>-23.98</td> <td>QP</td> </tr> <tr> <td>3</td> <td>0.369</td> <td>28.64</td> <td>0.10</td> <td>0.00</td> <td>9.88</td> <td>0.00</td> <td>38.62</td> <td>58.52</td> <td>-19.90</td> <td>QP</td> </tr> <tr> <td>4</td> <td>0.373</td> <td>16.12</td> <td>0.10</td> <td>0.00</td> <td>9.88</td> <td>0.00</td> <td>26.10</td> <td>48.43</td> <td>-22.33</td> <td>Average</td> </tr> <tr> <td>5</td> <td>0.701</td> <td>23.84</td> <td>0.10</td> <td>0.00</td> <td>9.88</td> <td>0.00</td> <td>33.82</td> <td>46.00</td> <td>-12.18</td> <td>Average</td> </tr> <tr> <td>6</td> <td>0.705</td> <td>36.51</td> <td>0.10</td> <td>0.00</td> <td>9.88</td> <td>0.00</td> <td>46.49</td> <td>56.00</td> <td>-9.51</td> <td>QP</td> </tr> <tr> <td>7</td> <td>1.878</td> <td>27.71</td> <td>0.19</td> <td>0.00</td> <td>9.88</td> <td>0.00</td> <td>37.78</td> <td>56.00</td> <td>-18.22</td> <td>QP</td> </tr> <tr> <td>8</td> <td>4.501</td> <td>14.09</td> <td>0.20</td> <td>0.00</td> <td>9.89</td> <td>0.00</td> <td>24.18</td> <td>46.00</td> <td>-21.82</td> <td>Average</td> </tr> <tr> <td>9</td> <td>5.713</td> <td>14.58</td> <td>0.28</td> <td>0.00</td> <td>9.90</td> <td>0.00</td> <td>24.76</td> <td>50.00</td> <td>-25.24</td> <td>Average</td> </tr> <tr> <td>10</td> <td>5.744</td> <td>26.71</td> <td>0.28</td> <td>0.00</td> <td>9.90</td> <td>0.00</td> <td>36.89</td> <td>60.00</td> <td>-23.11</td> <td>QP</td> </tr> <tr> <td>11</td> <td>17.568</td> <td>6.50</td> <td>0.97</td> <td>0.00</td> <td>9.95</td> <td>0.00</td> <td>17.42</td> <td>50.00</td> <td>-32.58</td> <td>Average</td> </tr> <tr> <td>12</td> <td>18.622</td> <td>18.24</td> <td>1.07</td> <td>0.00</td> <td>9.95</td> <td>0.00</td> <td>29.26</td> <td>60.00</td> <td>-30.74</td> <td>QP</td> </tr> </tbody> </table>											Read Freq	Level	LISN Factor	Aux Factor	Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark		MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB		1	0.186	14.34	0.10	0.00	9.88	0.00	24.32	54.20	-29.88	Average	2	0.186	30.24	0.10	0.00	9.88	0.00	40.22	64.20	-23.98	QP	3	0.369	28.64	0.10	0.00	9.88	0.00	38.62	58.52	-19.90	QP	4	0.373	16.12	0.10	0.00	9.88	0.00	26.10	48.43	-22.33	Average	5	0.701	23.84	0.10	0.00	9.88	0.00	33.82	46.00	-12.18	Average	6	0.705	36.51	0.10	0.00	9.88	0.00	46.49	56.00	-9.51	QP	7	1.878	27.71	0.19	0.00	9.88	0.00	37.78	56.00	-18.22	QP	8	4.501	14.09	0.20	0.00	9.89	0.00	24.18	46.00	-21.82	Average	9	5.713	14.58	0.28	0.00	9.90	0.00	24.76	50.00	-25.24	Average	10	5.744	26.71	0.28	0.00	9.90	0.00	36.89	60.00	-23.11	QP	11	17.568	6.50	0.97	0.00	9.95	0.00	17.42	50.00	-32.58	Average	12	18.622	18.24	1.07	0.00	9.95	0.00	29.26	60.00	-30.74	QP
	Read Freq	Level	LISN Factor	Aux Factor	Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark																																																																																																																																																									
	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB																																																																																																																																																										
1	0.186	14.34	0.10	0.00	9.88	0.00	24.32	54.20	-29.88	Average																																																																																																																																																									
2	0.186	30.24	0.10	0.00	9.88	0.00	40.22	64.20	-23.98	QP																																																																																																																																																									
3	0.369	28.64	0.10	0.00	9.88	0.00	38.62	58.52	-19.90	QP																																																																																																																																																									
4	0.373	16.12	0.10	0.00	9.88	0.00	26.10	48.43	-22.33	Average																																																																																																																																																									
5	0.701	23.84	0.10	0.00	9.88	0.00	33.82	46.00	-12.18	Average																																																																																																																																																									
6	0.705	36.51	0.10	0.00	9.88	0.00	46.49	56.00	-9.51	QP																																																																																																																																																									
7	1.878	27.71	0.19	0.00	9.88	0.00	37.78	56.00	-18.22	QP																																																																																																																																																									
8	4.501	14.09	0.20	0.00	9.89	0.00	24.18	46.00	-21.82	Average																																																																																																																																																									
9	5.713	14.58	0.28	0.00	9.90	0.00	24.76	50.00	-25.24	Average																																																																																																																																																									
10	5.744	26.71	0.28	0.00	9.90	0.00	36.89	60.00	-23.11	QP																																																																																																																																																									
11	17.568	6.50	0.97	0.00	9.95	0.00	17.42	50.00	-32.58	Average																																																																																																																																																									
12	18.622	18.24	1.07	0.00	9.95	0.00	29.26	60.00	-30.74	QP																																																																																																																																																									
Remark: 1. Level = Read level + LISN Factor + Cable Loss.																																																																																																																																																																			

Product name:	7957VHD	Product model:	7957VHD
Test by:	Kiran Zeng	Test mode:	BLE Tx (LE 1M PHY)
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

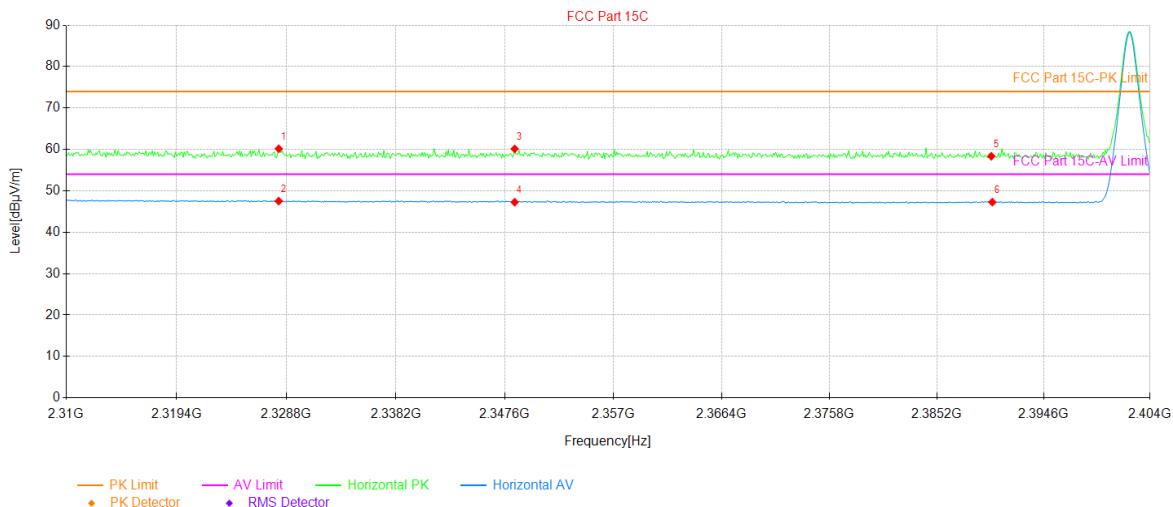

Freq	Read	LISN	Aux	Aux2	Cable	Limit	Line	Over	Remark
	Freq	Level	Factor	Factor	Factor				
MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB	
1	0.182	28.99	0.10	0.00	9.88	0.00	38.97	64.42	-25.45 QP
2	0.186	12.84	0.10	0.00	9.88	0.00	22.82	54.20	-31.38 Average
3	0.369	26.50	0.10	0.00	9.88	0.00	36.48	58.52	-22.04 QP
4	0.421	12.62	0.10	0.00	9.88	0.00	22.60	47.42	-24.82 Average
5	0.701	16.64	0.10	0.00	9.88	0.00	26.62	46.00	-19.38 Average
6	0.701	30.55	0.10	0.00	9.88	0.00	40.53	56.00	-15.47 QP
7	1.908	21.60	0.19	0.00	9.88	0.00	31.67	56.00	-24.33 QP
8	4.574	7.91	0.26	0.00	9.89	0.00	18.06	46.00	-27.94 Average
9	5.623	7.64	0.34	0.00	9.90	0.00	17.88	50.00	-32.12 Average
10	5.774	19.65	0.34	0.00	9.90	0.00	29.89	60.00	-30.11 QP
11	17.568	1.76	1.03	0.00	9.95	0.00	12.74	50.00	-37.26 Average
12	17.661	14.62	1.04	0.00	9.95	0.00	25.61	60.00	-34.39 QP

Remark:

1. Level = Read level + LISN Factor + Cable Loss.

5.4 Emissions in Restricted Frequency Bands

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		

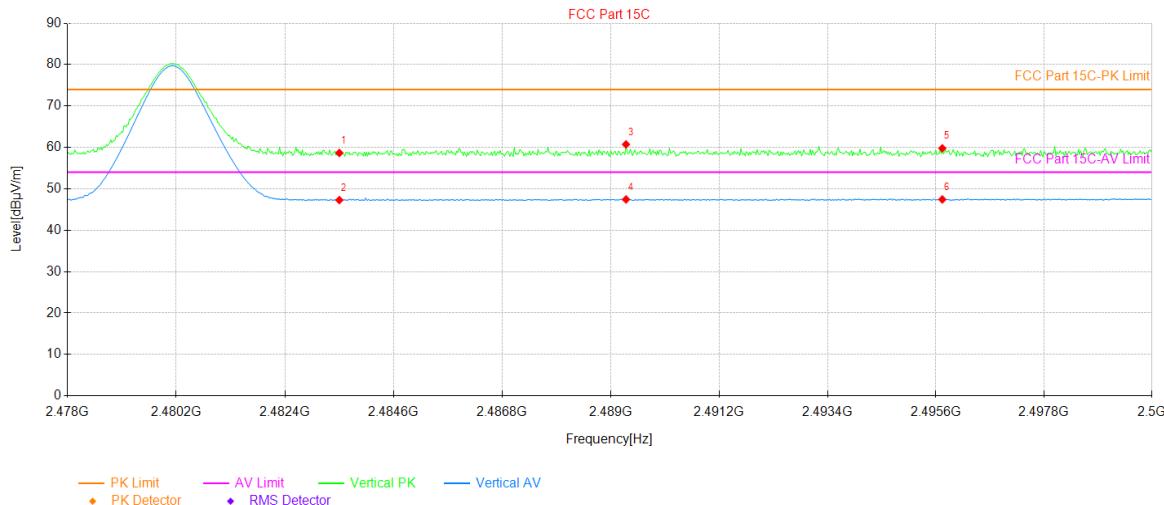

Suspected Data List

NO.	Freq. [MHz]	Reading [dB μ V]	Factor [dB/m]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2331.53	24.37	36.01	60.38	74.00	13.62	348	PK	PASS	Vertical
2	2331.53	11.38	36.01	47.39	54.00	6.61	35	AV	PASS	Vertical
3	2360.85	24.05	36.10	60.15	74.00	13.85	344	PK	PASS	Vertical
4	2360.85	11.29	36.10	47.39	54.00	6.61	280	AV	PASS	Vertical
5	2390.00	21.92	36.19	58.11	74.00	15.89	302	PK	PASS	Vertical
6	2390.09	11.19	36.19	47.38	54.00	6.62	291	AV	PASS	Vertical

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		

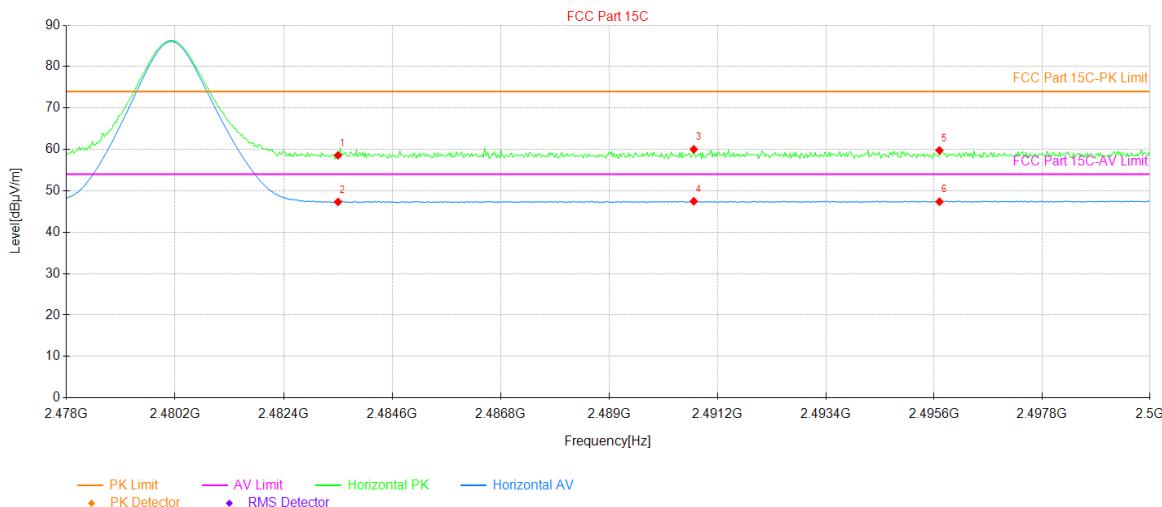

Suspected Data List

NO.	Freq. [MHz]	Reading [dBμV]	Factor [dB/m]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2328.14	24.15	36.01	60.16	74.00	13.84	76	PK	PASS	Horizontal
2	2328.14	11.51	36.01	47.52	54.00	6.48	287	AV	PASS	Horizontal
3	2348.45	24.06	36.07	60.13	74.00	13.87	149	PK	PASS	Horizontal
4	2348.45	11.18	36.07	47.25	54.00	6.75	56	AV	PASS	Horizontal
5	2390.00	22.16	36.19	58.35	74.00	15.65	234	PK	PASS	Horizontal
6	2390.09	11.08	36.19	47.27	54.00	6.73	88	AV	PASS	Horizontal

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		

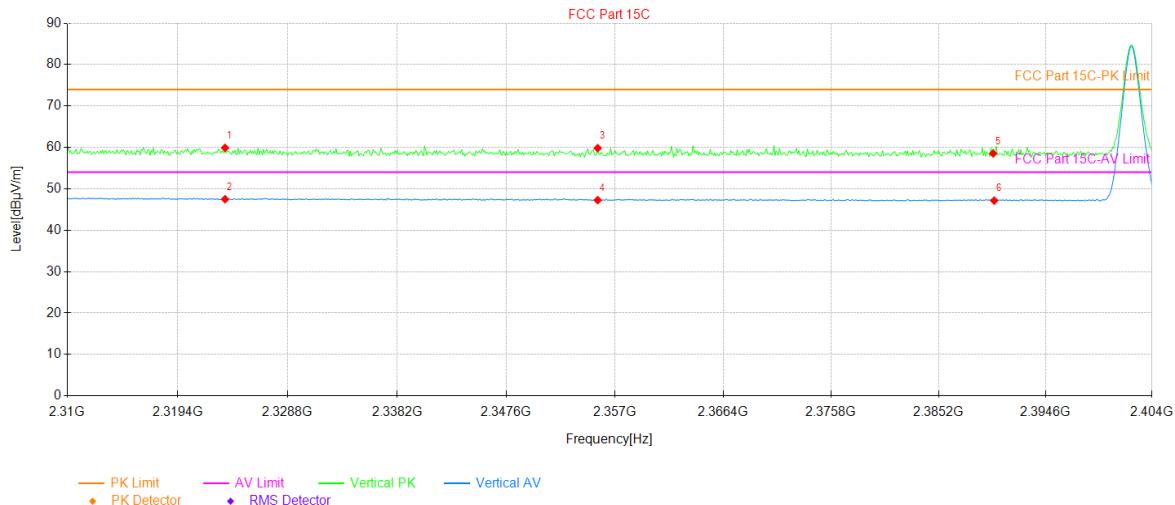


Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2483.50	22.43	36.24	58.67	74.00	15.33	205	PK	PASS	Vertical
2	2483.50	11.04	36.24	47.28	54.00	6.72	8	AV	PASS	Vertical
3	2489.31	24.44	36.29	60.73	74.00	13.27	152	PK	PASS	Vertical
4	2489.31	11.16	36.29	47.45	54.00	6.55	99	AV	PASS	Vertical
5	2495.73	23.44	36.34	59.78	74.00	14.22	197	PK	PASS	Vertical
6	2495.73	11.10	36.34	47.44	54.00	6.56	129	AV	PASS	Vertical

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 1M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		

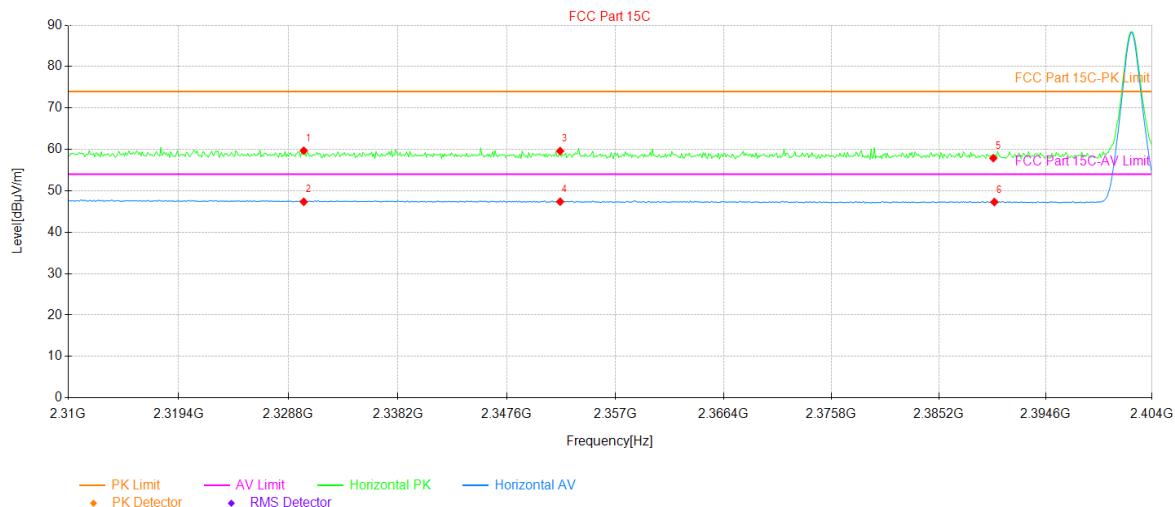

Suspected Data List

NO.	Freq. [MHz]	Reading [dBμV]	Factor [dB/m]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2483.50	22.33	36.24	58.57	74.00	15.43	77	PK	PASS	Horizontal
2	2483.50	11.08	36.24	47.32	54.00	6.68	245	AV	PASS	Horizontal
3	2490.72	23.72	36.30	60.02	74.00	13.98	302	PK	PASS	Horizontal
4	2490.72	11.18	36.30	47.48	54.00	6.52	146	AV	PASS	Horizontal
5	2495.71	23.43	36.34	59.77	74.00	14.23	150	PK	PASS	Horizontal
6	2495.71	11.03	36.34	47.37	54.00	6.63	351	AV	PASS	Horizontal

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		

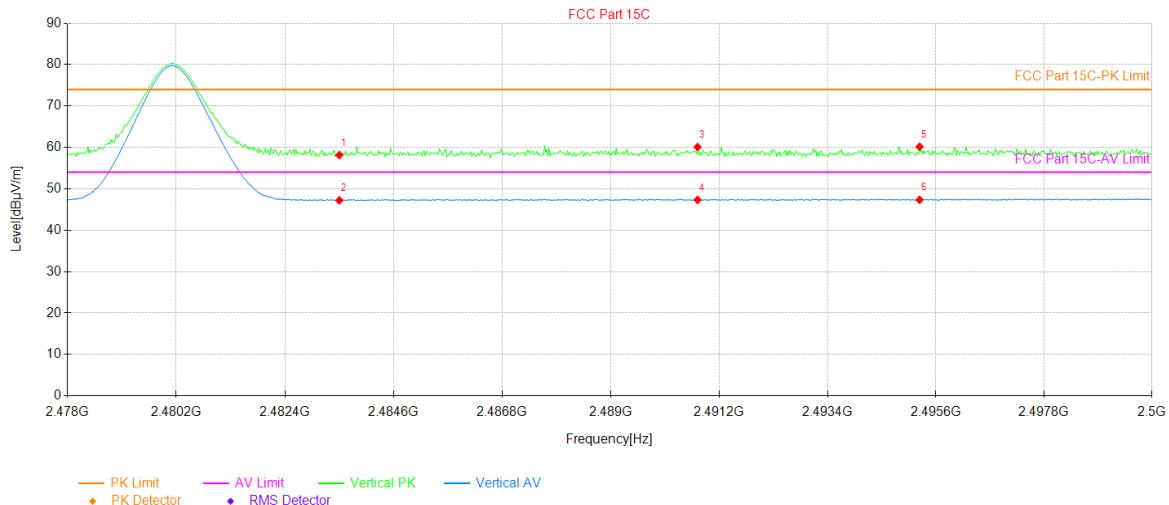


Suspected Data List										
NO.	Freq. [MHz]	Reading [dB μ V]	Factor [dB/m]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2323.44	23.87	36.02	59.89	74.00	14.11	22	PK	PASS	Vertical
2	2323.44	11.48	36.02	47.50	54.00	6.50	165	AV	PASS	Vertical
3	2355.50	23.72	36.09	59.81	74.00	14.19	11	PK	PASS	Vertical
4	2355.50	11.18	36.09	47.27	54.00	6.73	52	AV	PASS	Vertical
5	2390.00	22.35	36.19	58.54	74.00	15.46	358	PK	PASS	Vertical
6	2390.09	10.96	36.19	47.15	54.00	6.85	190	AV	PASS	Vertical

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		

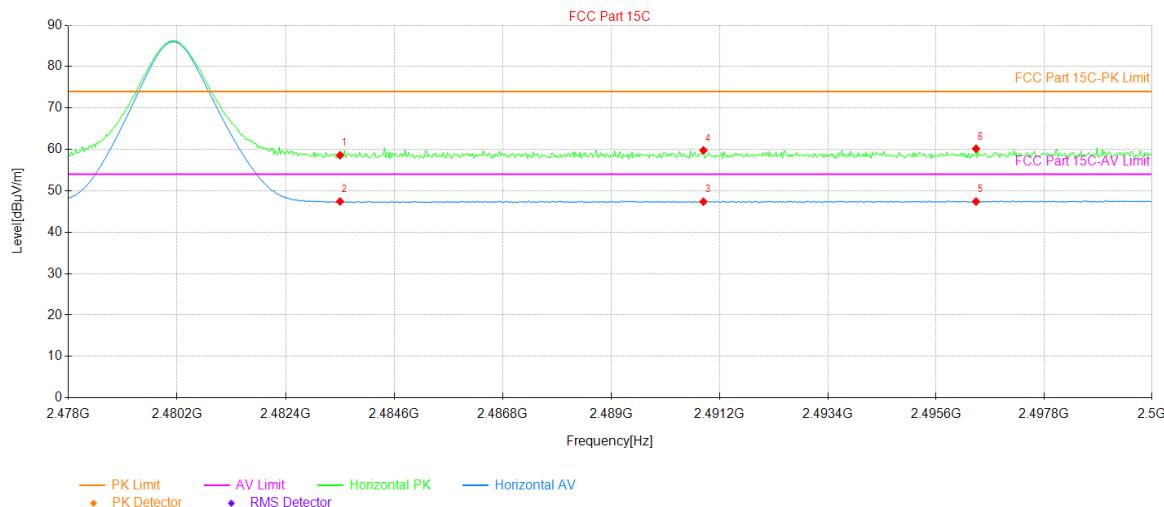

Suspected Data List

NO.	Freq. [MHz]	Reading [dBμV]	Factor [dB/m]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2330.12	23.68	36.01	59.69	74.00	14.31	198	PK	PASS	Horizontal
2	2330.12	11.34	36.01	47.35	54.00	6.65	171	AV	PASS	Horizontal
3	2352.21	23.53	36.08	59.61	74.00	14.39	68	PK	PASS	Horizontal
4	2352.21	11.30	36.08	47.38	54.00	6.62	323	AV	PASS	Horizontal
5	2390.00	21.70	36.19	57.89	74.00	16.11	331	PK	PASS	Horizontal
6	2390.09	11.11	36.19	47.30	54.00	6.70	262	AV	PASS	Horizontal

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3.7V		



Suspected Data List										
NO.	Freq. [MHz]	Reading [dBμV]	Factor [dB/m]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2483.50	21.91	36.24	58.15	74.00	15.85	74	PK	PASS	Vertical
2	2483.50	10.98	36.24	47.22	54.00	6.78	307	AV	PASS	Vertical
3	2490.76	23.80	36.30	60.10	74.00	13.90	269	PK	PASS	Vertical
4	2490.76	11.02	36.30	47.32	54.00	6.68	66	AV	PASS	Vertical
5	2495.27	23.83	36.34	60.17	74.00	13.83	135	PK	PASS	Vertical
6	2495.27	11.01	36.34	47.35	54.00	6.65	303	AV	PASS	Vertical

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

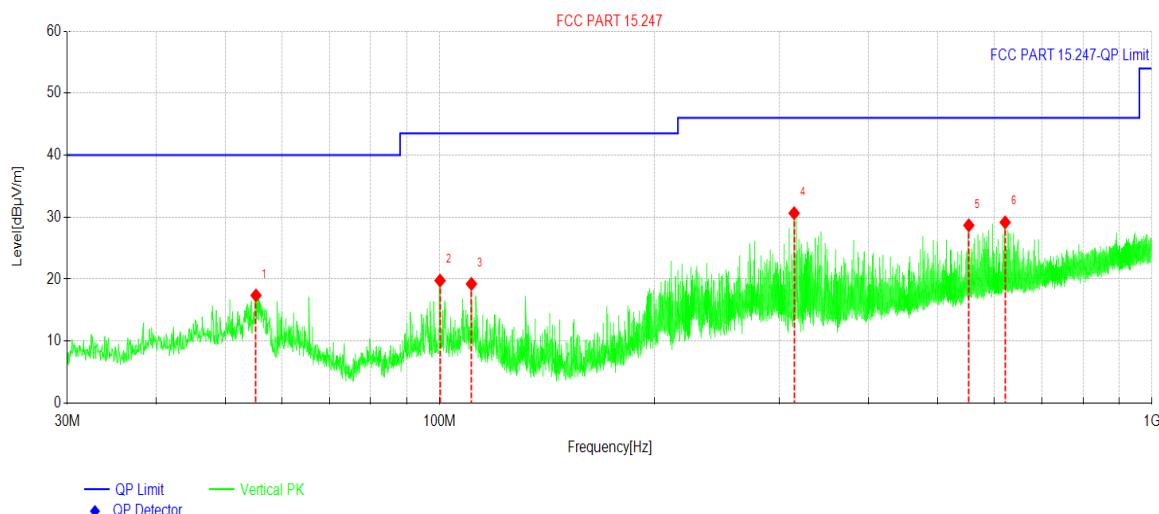
Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Robin Gu	Test mode:	BLE Tx (LE 2M PHY)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3.7V		

Suspected Data List

NO.	Freq. [MHz]	Reading [dB μ V]	Factor [dB/m]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2483.50	22.34	36.24	58.58	74.00	15.42	229	PK	PASS	Horizontal
2	2483.50	11.19	36.24	47.43	54.00	6.57	99	AV	PASS	Horizontal
3	2490.87	11.06	36.30	47.36	54.00	6.64	156	AV	PASS	Horizontal
4	2490.87	23.47	36.30	59.77	74.00	14.23	50	PK	PASS	Horizontal
5	2496.41	11.05	36.35	47.40	54.00	6.60	210	AV	PASS	Horizontal
6	2496.41	23.82	36.35	60.17	74.00	13.83	84	PK	PASS	Horizontal

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

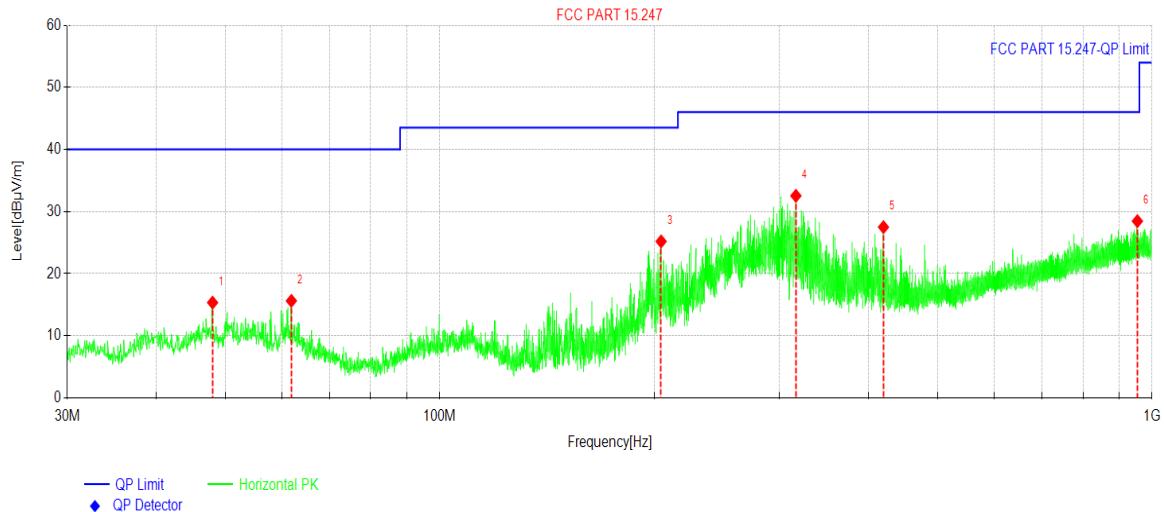

5.5 Emissions in Non-restricted Frequency Bands

Below 30MHz:

Test Frequency from 9kHz to 30MHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

Below 1GHz:

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Kiran Zeng	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 3.7V		


Suspected Data List

NO.	Freq. [MHz]	Reading[dBμV/m]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Trace	Polarity
1	55.2213	30.64	-13.26	17.38	40.00	22.62	PK	Vertical
2	100.1345	34.30	-14.53	19.77	43.50	23.73	PK	Vertical
3	110.8050	33.77	-14.54	19.23	43.50	24.27	PK	Vertical
4	314.5152	42.69	-12.04	30.65	46.00	15.35	PK	Vertical
5	553.1472	34.88	-6.20	28.68	46.00	17.32	PK	Vertical
6	622.1176	33.50	-4.34	29.16	46.00	16.84	PK	Vertical

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Product Name:	7957VHD	Product Model:	7957VHD
Test By:	Kiran Zeng	Test mode:	BLE Tx (LE 1M PHY)
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	DC 3.7V		

Suspected Data List

NO.	Freq. [MHz]	Reading[dB μ V/m]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Trace	Polarity
1	47.9944	28.00	-12.66	15.34	40.00	24.66	PK	Horizontal
2	61.9146	29.98	-14.35	15.63	40.00	24.37	PK	Horizontal
3	204.6087	39.67	-14.48	25.19	43.50	18.31	PK	Horizontal
4	316.2613	44.49	-11.95	32.54	46.00	13.46	PK	Horizontal
5	419.8140	36.44	-8.94	27.50	46.00	18.50	PK	Horizontal
6	953.9227	27.33	1.13	28.46	46.00	17.54	PK	Horizontal

Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

Above 1GHz:

BLE Tx (LE 1M PHY)						
Test channel: Lowest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4804.00	62.22	-7.98	54.24	74.00	19.76	Vertical
4804.00	63.95	-7.98	55.97	74.00	18.03	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4804.00	57.31	-7.98	49.33	54.00	4.67	Vertical
4804.00	59.42	-7.98	51.44	54.00	2.56	Horizontal
Test channel: Middle channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4884.00	62.43	-7.46	54.97	74.00	19.03	Vertical
4884.00	63.64	-7.46	56.18	74.00	17.82	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4884.00	57.6	-7.46	50.14	54.00	3.86	Vertical
4884.00	59.29	-7.46	51.83	54.00	2.17	Horizontal
Test channel: Highest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4960.00	62.46	-7.00	55.46	74.00	18.54	Vertical
4960.00	63.54	-7.00	56.54	74.00	17.46	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4960.00	57.77	-7.00	50.77	54.00	3.23	Vertical
4960.00	59.39	-7.00	52.39	54.00	1.61	Horizontal

Remark:

1. Level = Reading + Factor.
2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

BLE Tx (LE 2M PHY)						
Test channel: Lowest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4804.00	62.19	-7.98	54.21	74.00	19.79	Vertical
4804.00	64.35	-7.98	56.37	74.00	17.63	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4804.00	57.04	-7.98	49.06	54.00	4.94	Vertical
4804.00	59.03	-7.98	51.05	54.00	2.95	Horizontal
Test channel: Middle channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4884.00	62.31	-7.46	54.85	74.00	19.15	Vertical
4884.00	63.67	-7.46	56.21	74.00	17.79	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4884.00	57.35	-7.46	49.89	54.00	4.11	Vertical
4884.00	59.02	-7.46	51.56	54.00	2.44	Horizontal
Test channel: Highest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4960.00	62.02	-7.00	55.02	74.00	18.98	Vertical
4960.00	63.82	-7.00	56.82	74.00	17.18	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dB μ V)	Factor (dB)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Polarization
4960.00	57.26	-7.00	50.26	54.00	3.74	Vertical
4960.00	59.81	-7.00	52.81	54.00	1.19	Horizontal

Remark:

1. Level = Reading + Factor.
2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----