

REGULATORY COMPLIANCE REPORT

TITLE: FCC & IC Test Report for 15.247 & RSS-210 Frequency Hopping Device
100T COMMUNICATION MODULE-CATHODIC PROTECTION

AUTHOR: Mark Kvamme

REV	CCO	DESCRIPTION OF CHANGE	DATE	APPROVALS	
001		INITIAL RELEASE		Engineering	
				Regulatory	

REVISION HISTORY

a		initial upload	07dec12	Engineering	
				Regulatory	
b		update RBW	03jan13	Engineering	
				Regulatory	
				Engineering	
				Regulatory	

NOTICE OF PROPRIETARY INFORMATION

Information contained herein is proprietary and is property of ITRON, Inc. where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer it shall be used solely for the purposes of inspection, installation or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted for this company. The information shall not be used or disclosed by the recipient for any other purpose, whatsoever.

Test Data Summary

FCC 15.247 / IC RSS-210; Frequency Hopping Transmitter; 100TCP
100T COMMUNICATION MODULE-CATHODIC PROTECTION, 903MHz – 926.85 MHz for EUT
 FCC ID/ IC: EWQ100TCP/ 864D-100TCP IC Device Models : CP
 OATS Registration Number: FCC 90716, IC 864D-1

Rule	Description	Spec Limit	Max. Reading	Pass/ Fail
Parts 1.1310 & 2.1091(mobile) or 2.1093 (portable) / RSS-102 Sec 4.2	Limits for Maximum Permissible Exposure (MPE)	formula	0.169 mW / cm ² @ 20 cm 1.69 W/M ² @ 0.2 M	Pass

Rule versions: FCC Part 1; FCC Part 2; FCC Part 15, RSS-102 Issue 4 (03-2010); RSS-210 Issue 8 (12-2010); RSS-Gen Issue 3 (12-2010).

Reference docs: ANSI C63.4-2003; DA 00-705 (03-30-2000); OET65 (08-1997); OET65C (06-2001); IEEE C95.3-2002.

Cognizant Personnel	
<u>Name</u> Mark Kvamme	<u>Title</u> Test Technician
<u>Name</u> Jay Holcomb	<u>Title</u> Regulatory Manager
<u>Name</u> Johann De Jager	<u>Title</u> Project Lead

CONDITIONS DURING TESTING

No Modifications to the EUT were necessary during the testing.

FCC 15.31(m) – IC _n/a_; **Number of Channels**

This device was tested on three channels.

ANSI C63.4 - Temperature and Humidity During Testing

The temperature during testing was within +10° C and +40° C.

The Relative humidity was between 10% and 90%.

RSS-Gen 4.3: Tests shall be performed at ambient temperature

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

Itron declares that the EUT tested was representative of a production unit.

EQUIPMENT UNDER TEST**EUT Module**

Manuf: Itron, Inc.
 Itron Model: 100TCP
 Itron p/n: TEL-1000-003
 Serial Number(s) 1129328690,1129328697,1129328699
 Power source Fresh Batteries were used

Plot Information

In the zero span measurements, the line in the display is the trigger level.

Peripheral Devices

None

1.1310 & 2.1091(mobile) or 2.1093(portable) / RSS-102 Sec 4.2-Canada Safety Code 6; Table 5

Maximum Permissible Exposure (MPE)

Radiofrequency radiation exposure limits. - The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

1.1307 (b) In addition to the actions listed in paragraph (a) of this section, Commission actions granting construction permits, licenses to transmit or renewals thereof, equipment authorizations or modifications in existing facilities, require the preparation of an Environmental Assessment (EA) if the particular facility, operation or transmitter would cause human exposure to levels of radiofrequency radiation in excess of the limits in §§1.1310 and 2.1093 of this chapter.

Power level	1129328690 Field strength (dBuV/m)	EIRP (dbm)	1129328697 conducted power (dbm)	conducted power (watts)	antenna gain (dbi)	antenna gain numeric
3	123.29	29.29	22.47	0.177	6.82	4.81
2	121.27	27.27	21.78	0.151	5.49	3.54
1	108.82	14.82	9.00	0.008	5.82	3.82

Determine the maximum power density for the general / uncontrolled population minimum separation distance of 20 cm. ($f_{MHz} / 1500 \text{ mW/cm}^2 = f_{MHz} / 150 \text{ W/M}^2$)

The power density is calculated as:

$$P_d = \text{power density in } \text{mW/cm}^2$$

$$P_t = \text{transmit power in milliwatts}$$

$$P_d = \frac{P_t \times G}{4 \times \pi \times r^2}$$

$$G = \text{numeric antenna gain}$$

$$r = \text{distance between body and transmitter in centimeters.}$$

$$\text{FCC Limits: } 926.8\text{MHz} / 1500 = 0.618 \text{ mW / cm}^2 @ 20\text{cm}$$

$$\text{IC Limits: } 926.8\text{MHz} / 150 = 6.18 \text{ W / M}^2 (@ 0.2\text{M})$$

Power level 3

$$\text{Max antenna gain} = 6.82 \text{ dBi} = 4.81 \text{ numeric}$$

$$\text{Max TX power} = 22.47 \text{ dBm} = 177 \text{ milliwatts}$$

$$\text{results: } P_D = (177 \times 4.81) / (4 \times \pi \times 20\text{cm}^2) = 0.169 \text{ mW / cm}^2 @ 20 \text{ cm} \\ W/\text{m}^2 = 10 \text{ times mW/cm}^2 = 1.69 \text{ W/M}^2 @ 0.2 \text{ M}$$

Power level 2

$$\text{Max antenna gain} = 5.49 \text{ dBi} = 3.54 \text{ numeric}$$

$$\text{Max TX power} = 21.78 \text{ dBm} = 151 \text{ milliwatts}$$

$$\text{results: } P_D = (151 \times 3.54) / (4 \times \pi \times 20\text{cm}^2) = 0.106 \text{ mW / cm}^2 @ 20 \text{ cm} \\ W/\text{m}^2 = 10 \text{ times mW/cm}^2 = 1.06 \text{ W/M}^2 @ 0.2 \text{ M}$$

Power level 1

$$\text{Max antenna gain} = 5.82 \text{ dBi} = 3.82 \text{ numeric}$$

$$\text{Max TX power} = 9.00 \text{ dBm} = 8 \text{ milliwatts}$$

$$\text{results: } P_D = (8 \times 3.82) / (4 \times \pi \times 20\text{cm}^2) = 0.006 \text{ mW / cm}^2 @ 20 \text{ cm} \\ W/\text{m}^2 = 10 \text{ times mW/cm}^2 = 0.06 \text{ W/M}^2 @ 0.2 \text{ M}$$