

October 27, 1998

Federal Communications Commission  
Equipment Authorization Division  
7435 Oakland Mills Road  
Columbia, MD 21046

Subject: Maximum Permissible Exposure calculations for **FCC ID: EV9WNIP2458C**

To whom it may concern,

Wireless is submitting a low power transmitter for the WaveNet IP System. The unit has a low power frequency hopping spread spectrum radio operating in the 2480 - 2483.5 MHz range with a radiated output power of 33.8 W.

Assuming a worst case of no duty cycle.

For an Isotropic radiator the surface area of a sphere can be used to determine the area over which the transmitter energy is radiated.

$$\text{Surface area of a sphere} = 4\pi r^2$$

In the case where there is antenna gain, the worst case energy density is increased by the antenna gain. The exposure level can be calculated as follows for the antenna gain:

$$\text{MPE distance} = (\text{output power} * \text{duty cycle} * 10 * (\text{antenna gain} / 10)) / (4\pi * \text{Exposure Limit (mW/cm}^2\text{)})^{1/2}$$

#### **EV9WNIP2458C MPE distance**

|                           |                                                   |
|---------------------------|---------------------------------------------------|
| DB906S 8 dBi Omni Antenna | $= (240 \text{ mW} * 1 * 6.3/4 * 3.14 * 1)^{1/2}$ |
|                           | $= 10.9 \text{ cm}$                               |
|                           | $= 4.3 \text{ in}$                                |

|                         |                                                    |
|-------------------------|----------------------------------------------------|
| DB977H 90 Panel Antenna | $= (240 \text{ mW} * 1 * 39.8/4 * 3.14 * 1)^{1/2}$ |
|                         | $= 27.56 \text{ cm}$                               |
|                         | $= 10.8 \text{ in}$                                |

|                           |                                                    |
|---------------------------|----------------------------------------------------|
| SP1-2/5 Dual Band Antenna | $= (240 \text{ mW} * 1 * 25.1/4 * 3.14 * 1)^{1/2}$ |
|                           | $= 21.9 \text{ cm}$                                |
|                           | $= 8.6 \text{ in}$                                 |

|                            |                                                     |
|----------------------------|-----------------------------------------------------|
| SP2I-2/5 Dual Band Antenna | $= (240 \text{ mW} * 1 * 125.8/4 * 3.14 * 1)^{1/2}$ |
|                            | $= 49.0 \text{ cm}$                                 |
|                            | $= 19.3 \text{ in}$                                 |

If you have any questions please do not hesitate to call me.

Sincerely,

Chris Byleckie  
Technical Director  
Electronic Compliance Laboratories