CFR Title 47 Parts 15.247 certification

FCC ID: EV9WAL2-4S1-01

EMITEST REPORT

on

Access Link

California Amplifier 21dBi Parabolic Antenna California Amplifier 24dBi Parabolic Antenna Gabriel 26 dBi Parabolic Antenna Gabriel 21 dBi Parabolic Antenna Gabriel 17 dBi Panel Antenna Cushcraft 7 dBi Panel Antenna Andrew 24 dBi Parabolic Antenna COMSAT RSI 21 dBi Parabolic Antenna

Prepared For

Mul tipoint Networks 19 Davis Drive Bel mont, CA 94002-3001 TEL: (650)595-3300 FAX: (650)595-4907

Prepared by

El ectronic Compliance Laboratories, Inc. 1249 Birchwood Drive Sunnyval e, CA 94089 408/747-1490

Test Report Number: A801005

Date of Test: April 14,15, and 18, 1998

If this document is reproduced, it must be reproduced in its entirety.

Table of Contents

1.0 Certification of Compliance	3
2.0 General Information	4
3.0 Test Facility	5
4.0 Test equipment	5
5.0 Data Reporting Format	
6.0 Detector Functions	
7.0 Frequency Range of Investigation	6
8.0 FCC Class Types	
9.0 FCC Limits	
9.1 Conducted Emission Limits	8
9.2 Radiated Emission Limits	8
10.0 Test Methods	9
10.1 Line Conducted Emissions Test Procedure	9
10.2 Line Conducted Emissions Test Example	9
10.3 Radiated Emissions Test Procedure	10
10.4 Radiated Emissions Test Example	10
11.0 Labeling Requirements	
12.0 Summary of Measurements	12
APPENDIX A Spread Spectrum Plots	16
APPENDIX B Restricted Band Data	
APPENDIX C Radiated Emissions	
APPENDIX D Antenna and Antenna Connector Drawings	
APPENDIX E Set-up Photos	
APPDENIX F Direct Sequence Measurement Techniques	57
APPENDIX G Processing Gain	61

1.0 Certification of Compliance

Description: Access Link The EUT consists of the following: Access Link 1 x DS1 Terminal unit (TU) RG-8 Type N coaxial cable TU to antenna jumper California Amplifier 21dBi QLP Parabolic Antenna P/N 130093 California Amplifier 24dBi QLP Parabolic Antenna P/N 130094 Gabriel 26 dBi Grid Parabolic Antenna P/N GHF4-23A Gabriel 21 dBi Solid Parabolic Antenna P/N RFF2-23BSE Gabriel 17 dBi Panel Antenna P/N SSFP23-17 Cushcraft 7 dBi Panel Antenna P/N S2307 Andrew 24 dBi Grid Parabolic Antenna P/N KPR3F-23 COMSAT RSI 21 dBi Solid Parabolic Antenna P/N P-24A24N-1 **Model Number:** 1 x DS1 2.4 GHz **Serial Number:** 00001 Applicant: Mutlipoint Networks Type of Test: FCC-15, Class B (Certification) part 15.247; Date of Test: April 14, 15 and 18, 1998 Tested By: Suresh Kondapalli The above equipment was tested by Electronic Compliance Laboratories, Inc. and found to be in compliance with the requirements set forth in the FCC Rules and Regulations, Part 15, Subpart C (15.203, 15.205, 15.207, 15.209, 15.247). The equipment, in the configuration described in this report, shows that the maximum emission levels emanating from this equipment are within the compliance requirements.

Chris Byleckie Date
Technical Director

2.0 General Information

Applicant: Mutlipoint Networks

19 Davis Drive.

Belmont, CA 94002-3001

Contact Person:

Equipment Under Test:

Model Number:

Bob Czerwinski

Access Link

1 x DS1 2.4 GHz

Serial Number: 00001

FCC ID#: WEGWAL2-4S1-01

Report Number: A801005

Date of Test:April 14,15 and 18, 1998Manufacturer:Mutlipoint Networks

Type of Test: FCC part 15, Subpart C, (15.203, 15.205, 15.209, 15.247), Class

A Digital Device.

Frequency Range: 30 MHz to 1000 MHz - Radiated Emissions, Class A

2400 MHz to 2483.5 MHz - part 15.247

Up to the 10th harmonic of the fundamental (24.835 GHz) part

15.35(a)

Summary

Pass/Fail: Passed

15.209 Radiated Emissions:

The Access Link meet all the requirements for Part 15.209 Class A limit. See

Appendix D for Data Sheet and plots.

15.247 Operation within the 2400 - 2483.5 MHz band:

The Access Link met all the requirements for 15.247. See attached data and plots in Appendix A and Appendix B.

3.0 Test Facility

Name: Electronic Compliance Laboratories

Location: 1249 Birchwood Drive

Sunnyvale, CA 94089

Site Filing: A site description is on file at the Federal Communications Commission

P.O. Box 429

Columbia, MD 21045

Types of Sites: Open Field Radiated and Indoor (Screen Room).

Line Conducted: All sites are constructed and calibrated to meet

ANSI C63.4-1994 requirements.

Test facility is recognized by the National Voluntary Laboratory Accreditation Program for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations.

NVLAP Code: 20089 effective through: March 31, 1998

4.0 Test Equipment

The following list contains equipment used at EC Laboratories, Inc. for compliance testing. The equipment conforms to the American National Standard Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1000 MHz.

Description	Manufacturer	S/N	Model No.	Cal. Due Date
EMI Receiver	HP	3325A00137	8456A	5/3/98
Pre-amp	HP	313A06829	8447F	5/10/98
Pre-amp	HP	3008A00527	8449B	4/5/99
LISN	EM	2532	ANS-25/2	6/12/98
Spectrum Analyzer	HP	3137A01183	8563A	5/22/98
Plotter	HP	2644V00365	7470A	N/A
Power Meter	HP	2342A07307	435B	4/4/99
Power Sensor	HP	N/A	8482A	4/12/99
Biconical Antenna	EM	677	EM-6912	3/3/99
Log-Periodic Antenna	EM	858	EM-6950	4/18/99
Horn Antenna	EM	6231	RGA-60	6/6/98
1.2 - 4GHz Filter	FSY	001	HM1160-11SS	3/25/99
4 - 10 GHz Filter	FSY	001	HM2950-15SS	3/25/99
10 - 18 GHz Filter	FSY	001	HP8601-7SS	3/25/99

HP = Hewlett Packard EM = Electro Metrics

The antenna used at the time the data was taken is indicated on each data page. The antenna height and polarization are also noted on the data pages.

The calibration of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

5.0 Data Reporting Format

The measurement results are expressed in accordance with FCC Part-15, Subpart B Class B limits, where applicable, are presented in tabular or graphical form.

6.0 Detector Functions

On any frequency or frequencies below or equal to 1000 MHz, the limits shown below are based on measuring equipment employing a CISPR quasi-peak detector function and related measurement bandwidths.

On any frequency or frequencies above 1000 MHz, the radiated limits shown below are based on the use of measuring equipment employing an average detector function.

EC Laboratories uses the Peak detection mode for normal testing and initial screening of the Access Link. The Peak detection mode will produce a measurement value that is always greater than, or equal to, the quasi-peak or average detection mode.

Whenever the measurement value is 6 dB below the applicable limit or greater, the appropriate detector function will be employed and recorded.

7.0 Frequency Range of Investigation

The spectrum was investigated up to the frequency specified in the following table according to the highest clock frequency generated in the device.

Highest Frequency Used (Clock) Upper Limit of Range Measured

Below 1.705 MHz
1.705 to 108 MHz
1000 MHz
108 to 500 MHz
500 to 1000 MHz
Above 1000 MHz
5th Harmonic or 40 GHz
(Whichever is Lower)

8.0 FCC Class Types

Class A Digital Device

A digital device that is marketed for use in a commercial, industrial or business environment, exclusive of a device which is marketed for use by the general public or is intended to be used in the home.

Class B Digital Device

A digital device that is marketed for use in a residential environment notwithstanding use in a commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as a Class B device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a devices a Class B digital device, regardless of its intended use.

(Code of Federal Regulations, 47, Part 15, Subpart A, Sect. H&I)

(CFR 47, Parts 0 TO 19, Revised as of October 1,1990)

9.0 FCC Limits

9.1 Conducted Emission Limits

For a digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back into the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed the limits in the following table for the appropriate class. Compliance shall be based on the measurement of the Radio Frequency voltage between each power line and ground at the power terminals. The lower limit applies at the band edges.

Frequency	Class A Limit	Class A Limit	Class B Limit	Class B Limit
(MHz)	(µV)	(dBµV)	(µV)	(dBµV)
0.45 to 1.705	1000	60.0	250	48.0
1.705 to 30.0	3000	69.5	250	48.0

9.2 Radiated Emission Limits

The field strength of radiated emissions for a Class A Digital Device, when measured at a distance of 10 meters, shall not exceed the limits given in the table below. The lower limit applies at the band edge.

The field strength of radiated emissions for a Class B Digital Device, when measured at a distance of 3 meters, shall not exceed the limits given in the table below. The lower limit applies at the band edge.

Frequency (MHz)	Class A (3m) Limit (µV/m)	Class A (3m) Limit (dBµV/m)	Class A (10m) Limit (µV/m)	Class A (10m) Limit (dBµV/m)	Class B (3m) Limit (µV/m)	Class B (3m) Limit (dBµV/m)
20.00	200	40.0	00	20.4	400	40.0
30-88	300	49.6	90	39.1	100	40.0
88-216	500	54.0	150	43.5	150	43.5
216-960	700	56.0	210	46.4	200	46.0
Above 960	1000	60.0	300	49.5	500	54.0

10.0 Test Methods

10.1 Line Conducted Emissions Test Procedure

- 1. EUT and any other equipment and cables were placed on a wood table one meter above a ground screen.
- 2. The EUT's Input Power line cord was connected to a Line Impedance Stabilization Network (LISN) under the table.
- 3. All other (Non-EUT) equipment received power from a separate AC Power Source. The LISN assembly has two monitoring points: Line 1 (AC-Hot) and Line 2 (AC-Neutral). Each monitoring point was scanned by the measuring equipment (the other point was terminated in 50 ohms) over the frequency range of 450 kHz to 30 MHz for conducted emissions.
- 4. When an emission is found, the following takes place:
 - a. The emission levels are maximized by equipment/cable placement.
 - b. Frequency and emission level data are entered into computer in dBm.
 - c. The monitoring point (Line 1 or 2) is entered into the computer.
 - d. The computer converts dBm to micro volts and uses a look-up table to find cable losses (in dB) at that frequency, calculates a corrected emission level, and compares the corrected emission level to the appropriate limit. The data is then printed out in tabular form.

An example of the printout and definitions follows below.

10.2 Line Conducted Emissions Test Example

	Site	FCC	Limit	EUT Le	vel (L1)
Freq.	Reading	Α	В	Α	В
(MHz)	(dBµV)	(dB	μV)	(d	B)
1.85	-57	69.5 48.0 -4.5		+17	

Freq. = Frequency of emission in MHz

Reading dBµV = Reading at Spectrum Analyzer (Uncorrected)

FCC Limit A/B = Conducted Emission level limit in $dB\mu V$ EUT Level A* = Emission relative to the FCC Class A Limit EUT Level B* = Emission relative to the FCC Class B Limit

Note = L1 is AC-Hot, L2 is AC-Neutral

QP is a Quasi-Peak value AV is an average value

^{*}A negative value indicates that the emission is below (or meets) the limit and a positive value indicates that the emission is above (or exceeds) the limit.

10.3 Radiated Emissions Test Procedure

- 1. EUT and any other equipment and cables used with the EUT were placed on a wood table one-meter above a ground screen.
- 2. The EUT receives the normal AC Power at the base of the table.
- 3. All equipment and cables are placed in a manner which tends to maximize their emission characteristics in a typical application.
- 4. The table was rotated 360 degrees to determine the maximum radial emissions.
- 5. The antenna was varied in height between 1 meter and 4 meters above the ground plane to determine the maximum emissions. Various antennas are used during the test in both the vertical and horizontal polarization.
- 6. The Spectrum Analyzer is scanned from 30 MHz to 1000 MHz for emissions. The applicable spectrum analyzer settings are:
 - a. Resolution Bandwidth = 100 kHz,
 - b. Normal Detector Mode = Peak (The Quasi-Peak is used when the emissions are near, or over the limit).
- 7. When an emission is found and maximized, the following actions are performed:
 - a. The emission frequency is entered into the computer.
 - b. The emission level is read from the spectrum analyzer in dBm and entered into the computer.
 - c. The antenna polarization is entered into the computer.
 - d. The computer converts the level in dBm to dB μ V and uses lookup tables to determine the coax cable loss, antenna factor, and pre-amp gain. A site correction factor is calculated for that particular frequency, and the data is printed out in tabular form.

10.4 Radiated Test Example

	Site	FCC	Limit	EUT Le	vel (QP)
Freq.	Reading	Α	В	Α	В
(MHz)	(dBµV)	(dB	μV)	(d	B)
65.4	-58	39.1	40.0	-4.6	-5.5

Freq. = Frequency of emission in MHz.

Reading dBµV = Reading at Spectrum Analyzer (Uncorrected)

FCC Limit A/B = Limit in dB μ V as stated in Part-15, Subpart B EUT Level A* = Emission level relative to the FCC Class A limit

EUT Level B* = Emission level relative to the FCC Class B limit.

Note = V/H is the antenna polarization (Vertical or Horizontal)

PK indicates a Peak Value

QP indicates the Quasi-Peak value.

^{*}A negative value indicates that the emission is below (or meets) the limit and a positive value indicates that the emission is above (or exceeds) the limit.

11.0 Labeling Requirements

Product Label:

A Class A Digital Device subject to Certification by the FCC shall bear the following statement in a conspicuous location on the device.

(Name of Grantee) FCC ID:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label is to be located in a "conspicuous location". This is any location readily visible to the user of the device without the use of tools.

The label is to be permanently attached to the equipment in such a manner that the label can normally be expected to remain fastened and legible during the equipment's expected useful life.

Where the device is constructed in two or more sections connected by wires and marketed together, the statement specified in this section is required to be affixed only to the main control unit.

When the device is so small or for such use that it is not practicable to place the statement specified above on it, this required information shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier must be displayed on the device.

Users Manual Statement:

For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the user's operation manual.

NOTE: This equipment has been tested and found to comply with the limits for Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense:

Sample Label Drawing and Label location drawing are in Appendix E.

12.0 Summary of Measurements

Summary of Measurements for a Spread-Spectrum System, 2400-2483.5 MHz

CFR Title 47, Part 15.247

Manufacturer: Mutlipoint Networks

19 Davis Drive.

Belmont, CA 94002-3001

Contact: Bob Czerwinski FCC ID: WEGWAL2-4S1-01

Test Report Number: A801005

The Wireless Access Link provides the capability to send and receive voice, data, and video via a direct sequence spread spectrum (DSSS) radio operating in the 2400 - 2483.5 MHz ISM band.

15.247 for Direct Sequence Systems

15.247 (a) (2) 6 dB Bandwidth

The Access Link card uses 2 channels, 2417 and 2466.5 MHz. The minimum 6 dB bandwidth of each channel is at least 500 kHz. **Plots labeled "Bandwidth" are shown in Appendix A.**

15.247 (b) Maximum Peak Output Power

The Access Link was placed in continuous transmit mode and tested at 2417 and 2466.5 MHz. Table 1 shows the maximum peak power of the transmitter at these three frequencies, respectively. The highest level (at 2466.5 MHz) is at +18.86 dBm, or 76.9milliwatts. Maximum permitted is 1.0 watts, or +30 dBm. The Access Link output was connected to a Spectrum Analyzer through a 30dB pad.

Frequency, MHz	Reading, dBm	Pad & Cable Loss, dB	Corrected Reading, dBm / mW		
2417.0	-2.50	20.4	17.90 dBm / 61.6 mW		
2466.5	-1.50	20.4	18.86 dBm / 76.9 mW		

Table 1. Summary of Access Link Output Power(Conducted)

The Access Link was tested with 8 different antennas. The maximum EIRP (Equivalent Isotropically Radiated Power) for each antenna is:

California Amplifier 21dBi QLP Parabolic Antenna

Power = 18.86 dBm (peak reading) + 21 dBi (ant. gain) = +39.86 dBm / 9.68 W EIRP

California Amplifier 24dBi QLP Parabolic Antenna

Power = 18.86 dBm (peak reading) + 24 dBi (ant. gain) = +42.86 dBm / 19.3 W EIRP

Gabriel 26 dBi Grid Parabolic Antenna

Power = 18.86 dBm (peak reading) + 26 dBi (ant. gain) = +44.86 dBm / 30.6 W EIRP

Gabriel 21 dBi Solid Parabolic Antenna

Power = 18.86 dBm (peak reading) + 21 dBi (ant. gain) = +39.86 dBm / 9.68 W EIRP

Gabriel 17 dBi Panel Antenna

Power = 18.86 dBm (peak reading) + 17 dBi (ant. gain) = +35.86 dBm / 3.85 W EIRP

Cushcraft 7 dBi Panel Antenna

Power = 18.86 dBm (peak reading) + 7 dBi (ant. gain) = +25.86 dBm / 385 mW EIRP

Andrew 24 dBi Grid Parabolic Antenna

Power = 18.86 dBm (peak reading) + 24 dBi (ant. gain) = +42.86 dBm / 19.3 W EIRP

COMSAT RSI 21 dBi Solid Parabolic Antenna

Power = 18.86 dBm (peak reading) + 21 dBi (ant. gain) = +39.86 dBm / 9.68 W EIRP

Manufacturers antenna drawings are in Appendix F.

15.247 (c) Out Of Band Emissions (Not Falling within Restricted Bands)

The Access Link was placed in transmit mode at the low (2417 MHz) and the high (2466.5 MHz) channels. The spectrum analyzer was placed in the MAX HOLD mode. Out of Band emissions were investigated and found to be better than 20 dB (in power) below the highest inband emission. In addition, out of band emissions (radiated) were below the limits specified in 15.209. **See Plots in Appendix A.**

Plot Title	Frequency Range of Plot, MHz	Purpose of Plot
Out Of Band Emissions Lower Edge	2400 - 2440	Show Emissions are down by 20 dB
Out Of band Emissions Upper Edge	2440 - 2483.5	Show Emissions are down by 20 dB
Out Of band Emissions 2417 MHz	0 - 1000 1000 - 2750 2750 - 26,500	Show Emissions are down by 20 dB
Out Of band Emissions 2466.5 MHz	0 - 1000 1000 - 2750 2750 - 26,500	Show Emissions are down by 20 dB

15.247 (d). Transmitted Power Density

The Access Link exhibits a transmitted power density of less than +8 dBm in any 3 kHz bandwidth over any one second interval. This test was performed in accordance with the guidelines set forth in "Guidance on Measurements for Direct Sequence Spread Spectrum Systems", as published by Federal Communication, Authorization and Evaluation Division. Please refer to a copy of this document in Appendix J.

The Access Link was connected to the Spectrum Analyzer via a short length of test cable (4 inches RG214). The detector in the Spectrum Analyzer was set to Peak mode, the resolution and video bandwidths were set to 3 kHz, and the sweep time was set per the following relation:

Sweep Time (seconds) = <u>Spectrum Analyzer Span in Hertz</u> Resolution Bandwidth, Hertz

For this case, We have a sweep time of 250kHz/3kHZ = **83.3 seconds.** Note that the peak level of the Access Link's Spectral Mask was selected prior to reducing the span to 250 kHz. In this manner, the maximum level was observed and selected for this test. **Table 2** below summarizes the results, **Plots labeled "Spectral Power Density" are in Appendix A.**

Frequency, MHz	Reading dBm
2417.0	8.00
2466.5.0	7.00

note; FCC LIMIT< than + 8 dBm

Table 2. Summary of Spectral Power Density measurements for the Access Link

15.247 (e) Processing Gain

The Minimum Processing Gain (PG) for the Access Link unit is greater than 12 dB. This meets the minimum requirements of 10.0 dB. Please refer to Appendix A for additional measurements on Processing Gain performed by Proxim involving the comparison of signal to noise ratios at the receiver output, with and without the system spreading code turned on. **See Appendix K.**

15.209 RADIATED EMISSIONS

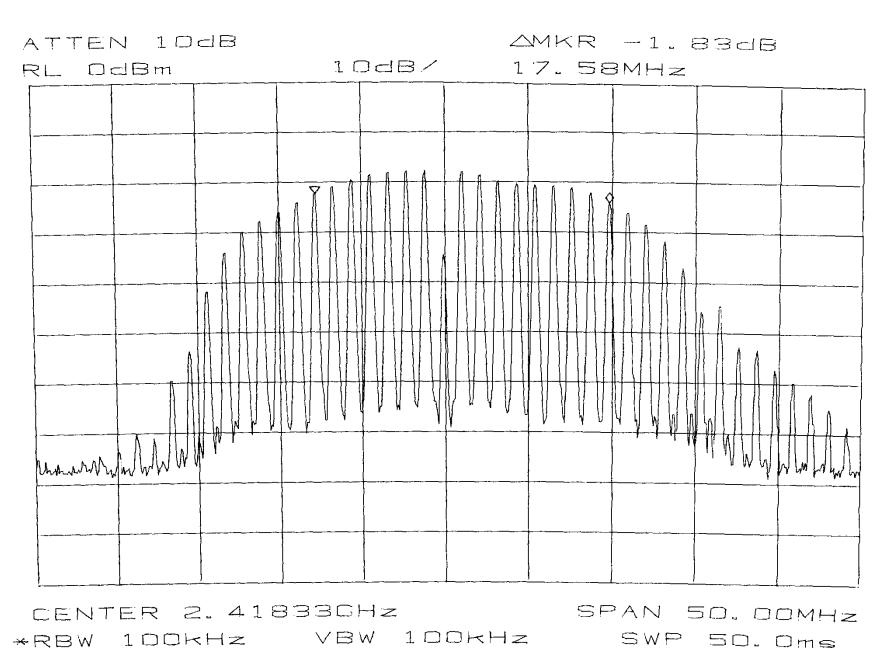
The attached table shows that the Class A radiated limits from 30 - 1000 MHz are not exceeded by the Access Link. The Access Link was operating normally with a combination of transmission and reception. The Access Link was placed near one edge of a wooden table resting on a turntable. The wooden table was approximately 1 meter above the groundplane of the 3 meter test site. The search antennas were located at 3 meters. Measurements were made in accordance with ANSI C63.4-1994. **Test Data is in Appendix C**.

15.207 AC LINE CONDUCTED EMISSIONS

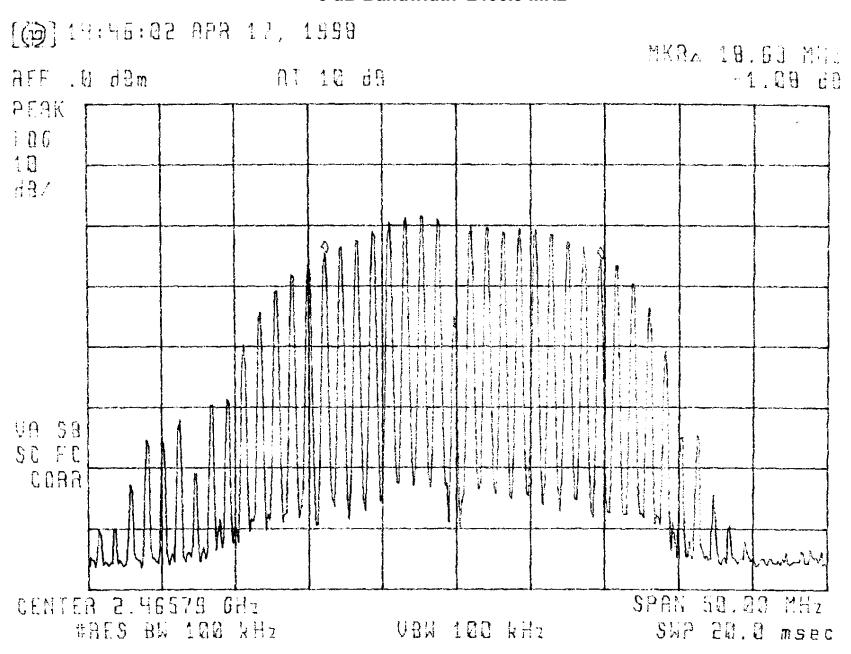
The Access Link RF line conducted levels for emissions in the 0.45 - 30 MHz band must not exceed 250 μ V when measured with a LISN. Attached graphs and tabular data show that emissions are below the 250 μ V (48 dB μ V) maximum allowed level. **Test Data is in Appendix D**

15.205 Restricted Bands - Emissions Within Restricted Bands

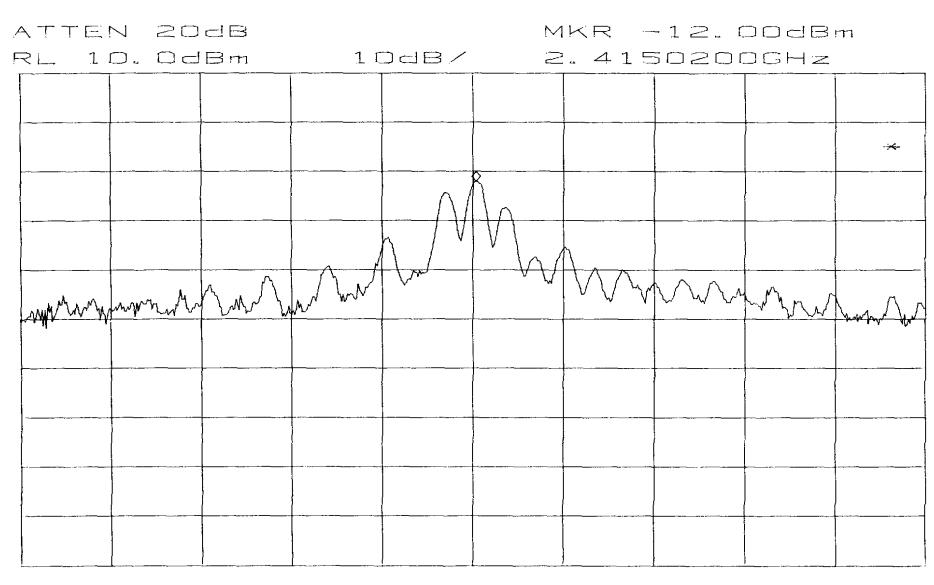
The Access Link was placed on a wooden table resting on a turntable. The wooden table was approximately 1 meter above the ground plane of the 3 meter portion of the 10 meter OATS test site.


The search antenna was located 3 meters from the Access Link. With the Access Link in the TRANSMIT mode and transmitting continuously, with the spectrum analyzer in the MAX HOLD mode, the turntable was rotated and the search antenna was raised and lowered in a attempt to maximize the received radiated emissions level. The Access Link was set in the continuous transmit mode at the low (2417 MHz)and the high (2466.5 MHz) channels. The attached chart entitled "FCC Radiated Data Sheet" shows that emissions falling into restricted bands are below the limit of 54 dB_u V/m. Peak measurements were made using 12BW=VBW=1MHz. Avg. measurements were made with AY RBW= 1MHz and VBW=10Hz. **Data Sheets are in Appendix B**

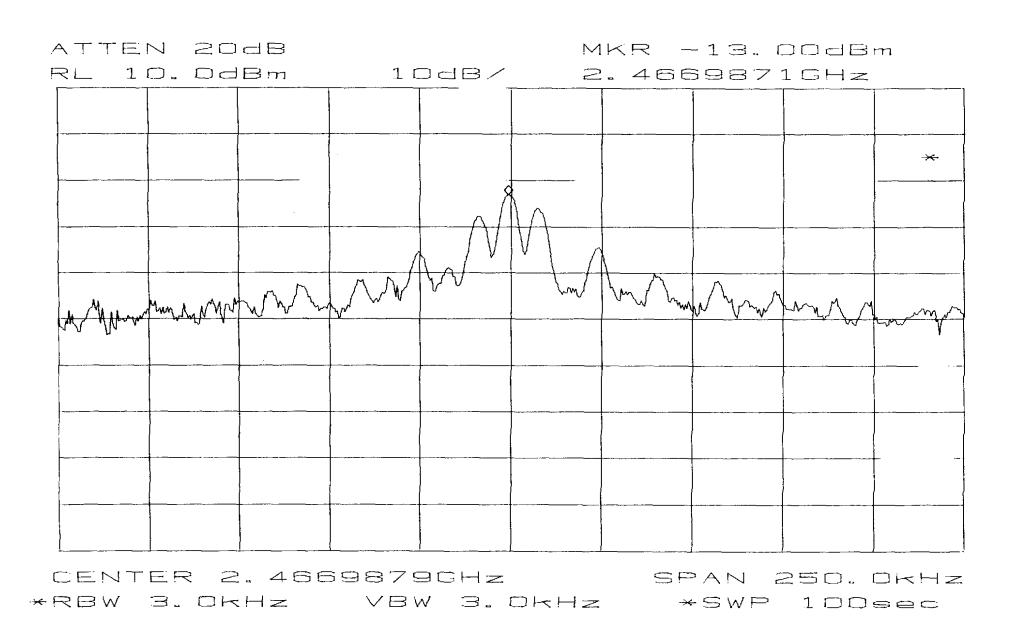
15.203 Antenna Connector

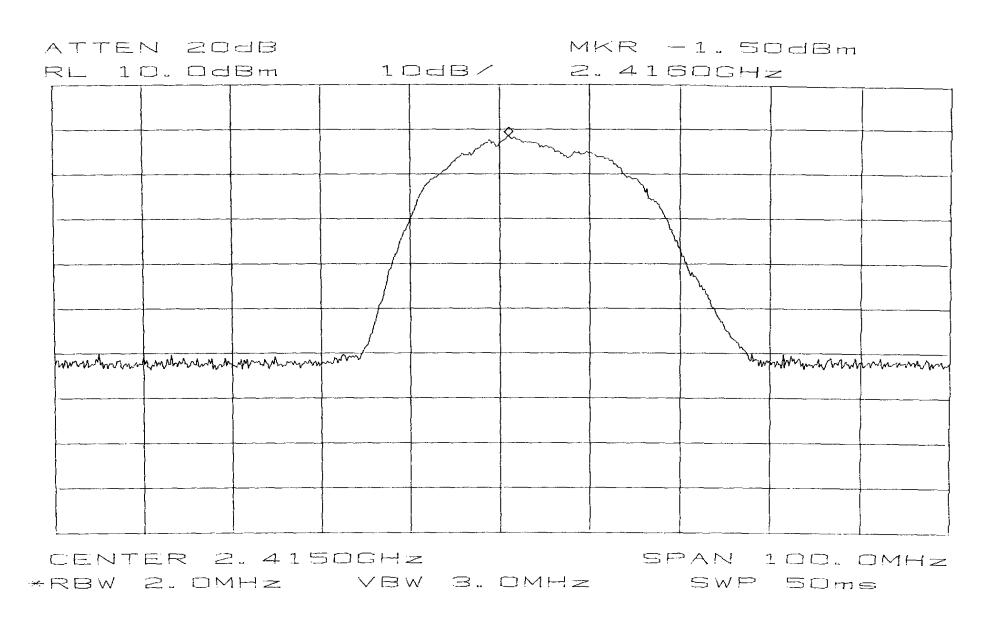

The Access Link uses a standard N connector to provide coupling from the intentional radiator to the antenna. This product is only installed by trained personnel and is exempt from the unique connector requirement.

APPENDIX A Spread Spectrum Plots

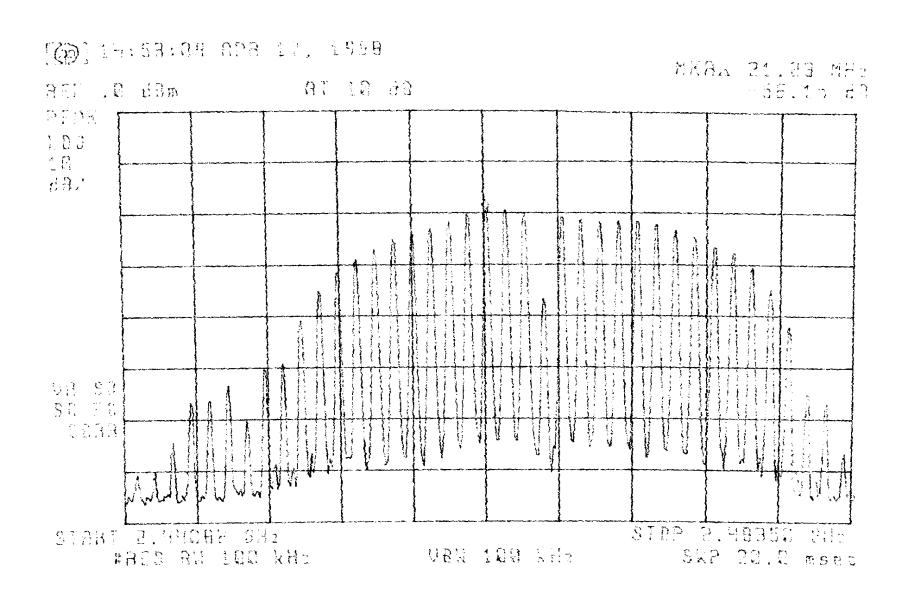

6dB Bandwidth 2417 MHz

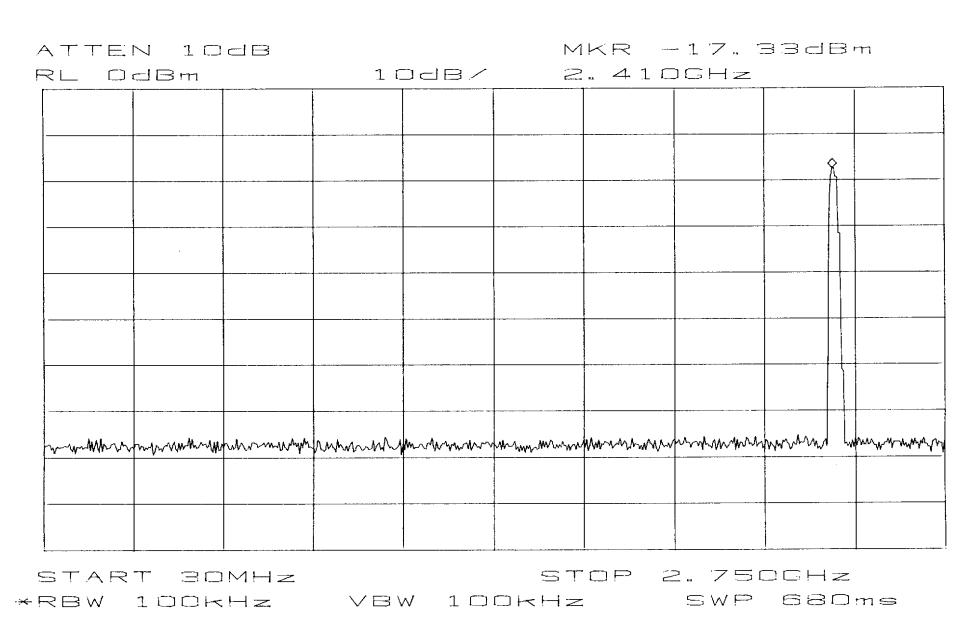
6 dB Bandwidth 2466.5 MHz

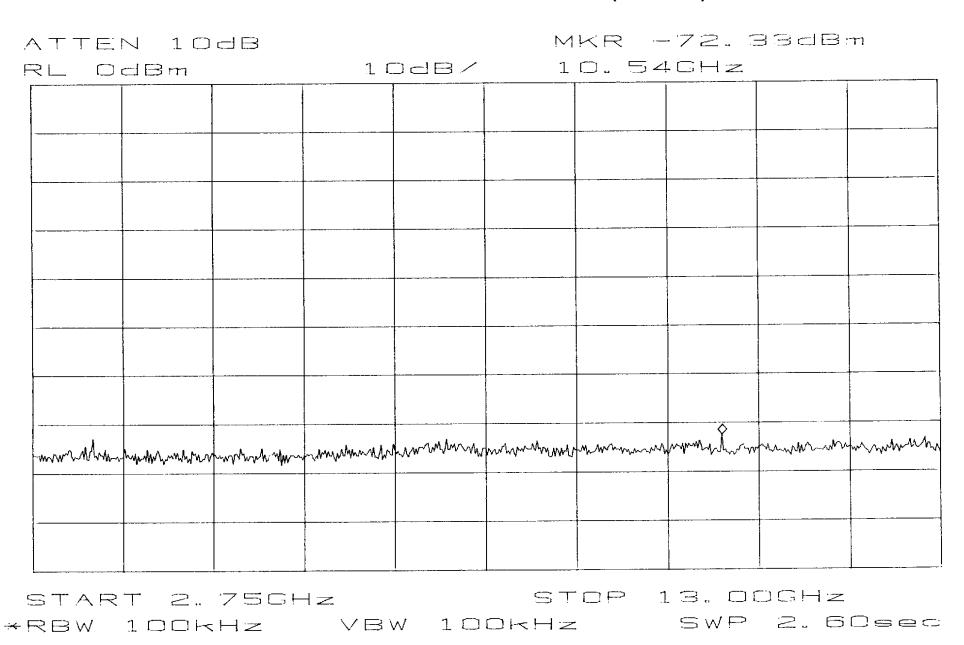

Spectral Power Density 2417 MHz

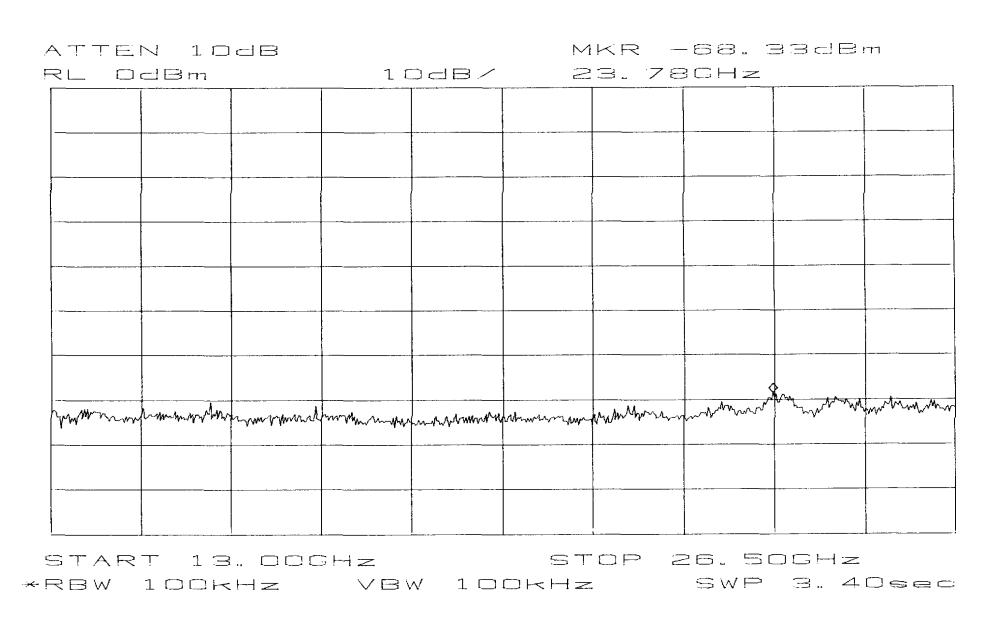

CENTER 2.4150192GHz SPAN 250.0kHz

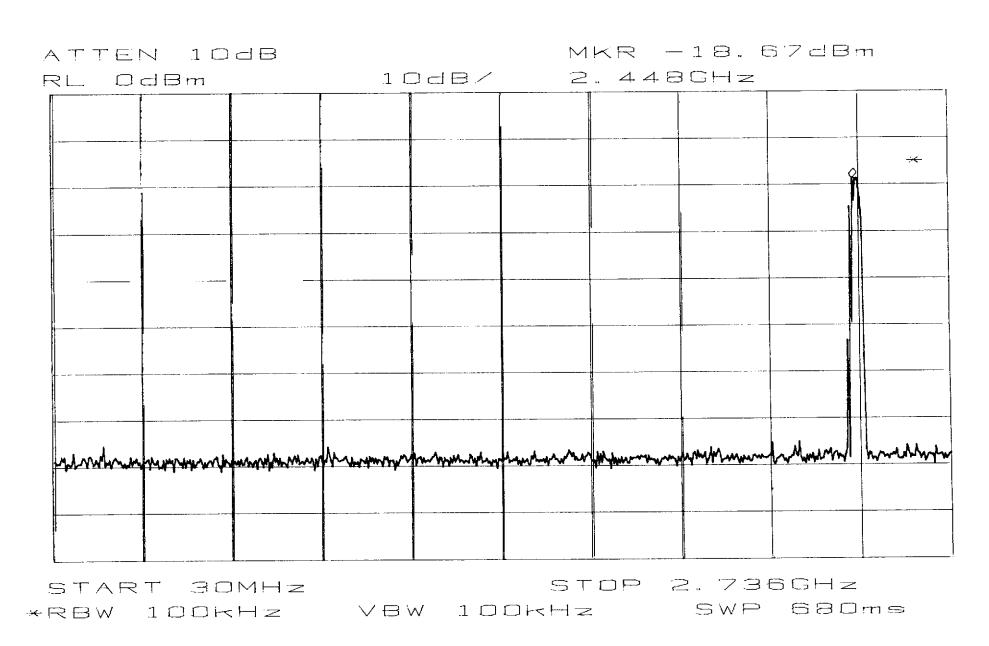
*RBW 3. OKHz VBW 3. OKHz *SWP 100sec

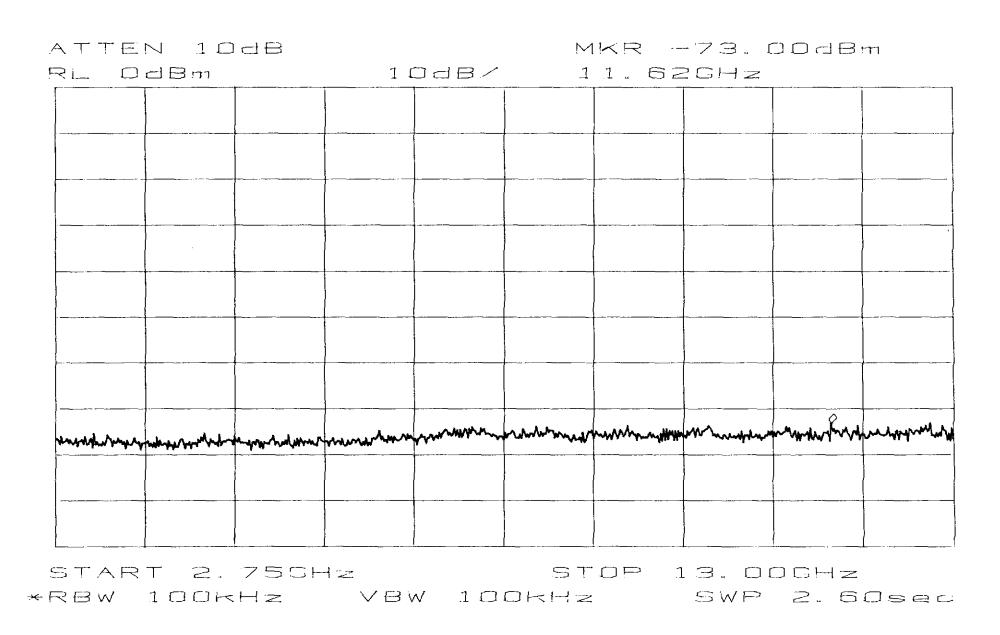

Spectral Power Density 2466.5 MHz

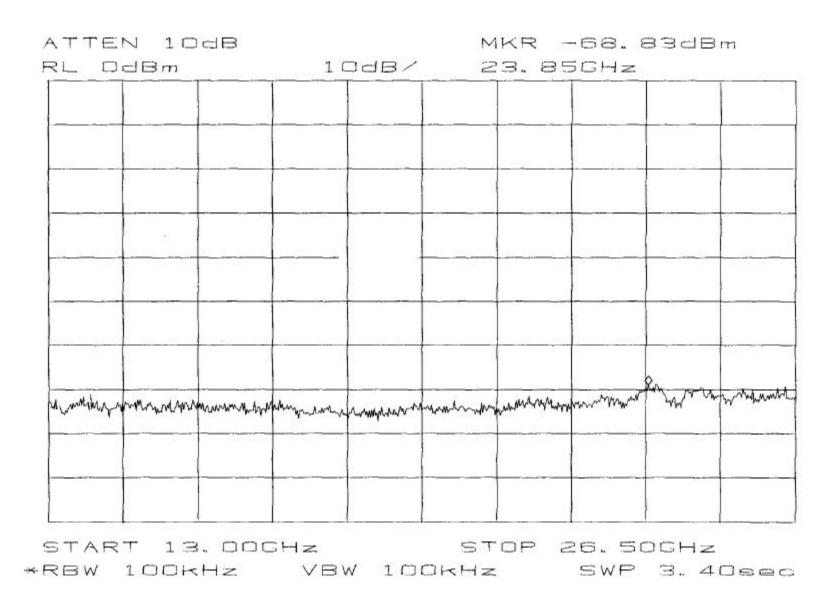

Out of Band Emissions Lower Band Edge


Out of Band Emissions Upper Band Edge


Out of Band Emissions 30MHz – 2.75 GHz (2417 MHz)


Out of Band Emissions 2.75 - 13.0 GHz (2417 MHz)


Out of Band Emissions 13.0 – 26.5 GHz (2417 MHz)


Out of Band Emissions 30 MHz – 2.75 GHz (2466.5 MHz)

Out of Band Emissions 2.75 - 13.0 GHz (2466.5 MHz)

Out of Band Emissions 13.0 – 26.5 GHz (2466.5 MHz)

APPENDIX B

15.205 Restricted Band Data

FILE: 8041401a.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0 **HP IL dB**: 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: California Amplifier DIST dB: 0

21 dBi QLP parabolic

		21 d	Bi QLP	paraboli	С					
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	44.00		Pk	31.4	-7.0	-0.4	35.0	47.8	74.0	-26.2
4834.00	26.83		Avg	31.4	-7.0	-0.4	35.0	30.6	54.0	-23.4
7251.00	47.33	*	Pk	34.5	-10.6	-0.5	35.5	57.5	74.0	-16.5
7251.00	28.83	*	Avg	34.5	-10.6	-0.5	35.5	39.0	54.0	-15.0
9668.00	47.50	*	Pk	36.8	-13.0	-0.5	35.5	62.3	74.0	-11.7
9668.00	29.00	*	Avg	36.8	-13.0	-0.5	35.5	43.8	54.0	-10.2
12085.00	47.50	*	Pk	39.0	-13.6	-0.5	34.3	66.3	74.0	-7.7
12085.00	28.00	*	Avg	39.0	-13.6	-0.5	34.3	46.8	54.0	-7.2
14502.00	43.30	*	Pk	41.9	-15.5	-0.5	34.3	66.9	74.0	-7.1
14502.00	27.33	*	Avg	41.9	-15.5	-0.5	34.3	51.0	54.0	-3.0
16919.00	42.33	*	Pk	38.8	-16.8	-0.5	34.3	64.1	74.0	-9.9
16919.00	28.67	*	Avg	38.8	-16.8	-0.5	34.3	50.4	54.0	-3.6
2466.5										
4933.00	44.00		Pk	31.4	-7.0	-0.4	35.0	47.8	74.0	-26.2
4933.00	27.17		Avg	31.4	-7.0	-0.4	35.0	31.0	54.0	-23.0
7399.50	48.67		Pk	34.5	-10.6	-0.5	35.4	58.9	74.0	-15.1
7399.50	28.00		Avg	34.5	-10.6	-0.5	35.4	38.2	54.0	-15.8
9866.00	47.67	*	Pk	36.8	-13.0	-0.5	35.5	62.5	74.0	-11.6
9848.00	27.33	*	Avg	36.8	-13.0	-0.5	35.5	42.1	54.0	-11.9
12332.50	47.83	*	Pk	39.0	-13.6	-0.5	34.3	66.6	74.0	-7.4
12332.50	26.67	*	Avg	39.0	-13.6	-0.5	34.3	45.4	54.0	-8.6
14799.00	45.67	*	Pk	41.9	-15.5	-0.5	34.3	69.3	74.0	-4.7
14799.00	27.33	*	Avg	41.9	-15.5	-0.5	34.3	51.0	54.0	-3.0
17265.50	43.83	*	Pk	41.9	-16.9	-0.5	34.3	68.8	74.0	-5.2
17265.50	27.17	*	Avg	41.9	-16.9	-0.5	34.3	52.2	54.0	-1.8

FILE: 8041401b.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: COMSAT RSI DIST dB: 0

21 dBi Solid parabolic

		21 a		parabol						
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	44.33		Pk	31.4	-7.0	-0.4	35.0	48.1	74.0	-25.9
4834.00	25.00		Avg	31.4	-7.0	-0.4	35.0	28.8	54.0	-25.2
7251.00	49.00	*	Pk	34.5	-10.6	-0.5	35.5	59.1	74.0	-14.9
7251.00	26.67	*	Avg	34.5	-10.6	-0.5	35.5	36.8	54.0	-17.2
9668.00	47.50	*	Pk	36.8	-13.0	-0.5	35.5	62.3	74.0	-11.7
9668.00	26.83	*	Avg	36.8	-13.0	-0.5	35.5	41.6	54.0	-12.4
12085.00	47.17	*	Pk	39.0	-13.6	-0.5	34.3	65.9	74.0	-8.1
12085.00	25.83	*	Avg	39.0	-13.6	-0.5	34.3	44.6	54.0	-9.4
14502.00	42.00	*	Pk	41.9	-15.5	-0.5	34.3	65.6	74.0	-8.4
14502.00	25.67	*	Avg	41.9	-15.5	-0.5	34.3	49.3	54.0	-4.7
16919.00	43.17	*	Pk	38.8	-16.8	-0.5	34.3	64.9	74.0	-9.1
16919.00	27.67	*	Avg	38.8	-16.8	-0.5	34.3	49.4	54.0	-4.6
2466.5										
4933.00	43.83		Pk	31.4	-7.0	-0.4	35.0	47.6	74.0	-26.4
4933.00	25.00		Avg	31.4	-7.0	-0.4	35.0	28.8	54.0	-25.2
7399.50	48.50		Pk	34.5	-10.6	-0.5	35.4	58.7	74.0	-15.3
7399.50	27.50		Avg	34.5	-10.6	-0.5	35.4	37.7	54.0	-16.3
9866.00	48.50	*	Pk	36.8	-13.0	-0.5	35.5	63.3	74.0	-10.7
9848.00	27.50	*	Avg	36.8	-13.0	-0.5	35.5	42.3	54.0	-11.7
12332.50	48.83	*	Pk	39.0	-13.6	-0.5	34.3	67.6	74.0	-6.4
12332.50	28.33	*	Avg	39.0	-13.6	-0.5	34.3	47.1	54.0	-6.9
14799.00	39.33	*	Pk	41.9	-15.5	-0.5	34.3	63.0	74.0	-11.0
14799.00	27.33	*	Avg	41.9	-15.5	-0.5	34.3	51.0	54.0	-3.0
17265.50	47.83	*	Pk	41.9	-16.9	-0.5	34.3	72.8	74.0	-1.2
17265.50	27.17	*	Avg	41.9	-16.9	-0.5	34.3	52.2	54.0	-1.8

FILE: 8041401c.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0 **HP IL dB**: 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: California Amplifier DIST dB: 0

24 dBi QLP parabolic

		24 a	BI QLP	paraboli						
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	43.17		Pk	31.4	-7.0	-0.4	35.0	47.0	74.0	-27.0
4834.00	25.33		Avg	31.4	-7.0	-0.4	35.0	29.1	54.0	-24.9
7251.00	47.50	*	Pk	34.5	-10.6	-0.5	35.5	57.6	74.0	-16.4
7251.00	27.83	*	Avg	34.5	-10.6	-0.5	35.5	38.0	54.0	-16.0
9668.00	47.33	*	Pk	36.8	-13.0	-0.5	35.5	62.1	74.0	-11.9
9668.00	29.33	*	Avg	36.8	-13.0	-0.5	35.5	44.1	54.0	-9.9
12085.00	48.67	*	Pk	39.0	-13.6	-0.5	34.3	67.4	74.0	-6.6
12085.00	28.50	*	Avg	39.0	-13.6	-0.5	34.3	47.3	54.0	-6.7
14502.00	43.00	*	Pk	41.9	-15.5	-0.5	34.3	66.6	74.0	-7.4
14502.00	27.00	*	Avg	41.9	-15.5	-0.5	34.3	50.6	54.0	-3.4
16919.00	43.17	*	Pk	38.8	-16.8	-0.5	34.3	64.9	74.0	-9.1
16919.00	27.67	*	Avg	38.8	-16.8	-0.5	34.3	49.4	54.0	-4.6
2466.5										
4933.00	44.33		Pk	31.4	-7.0	-0.4	35.0	48.1	74.0	-25.9
4933.00	26.67		Avg	31.4	-7.0	-0.4	35.0	30.5	54.0	-23.5
7399.50	48.17		Pk	34.5	-10.6	-0.5	35.4	58.4	74.0	-15.6
7399.50	27.50		Avg	34.5	-10.6	-0.5	35.4	37.7	54.0	-16.3
9866.00	48.33	*	Pk	36.8	-13.0	-0.5	35.5	63.1	74.0	-10.9
9848.00	27.83	*	Avg	36.8	-13.0	-0.5	35.5	42.6	54.0	-11.4
12332.50	48.67	*	Pk	39.0	-13.6	-0.5	34.3	67.4	74.0	-6.6
12332.50	27.83	*	Avg	39.0	-13.6	-0.5	34.3	46.6	54.0	-7.4
14799.00	44.50	*	Pk	41.9	-15.5	-0.5	34.3	68.1	74.0	-5.9
14799.00	28.33	*	Avg	41.9	-15.5	-0.5	34.3	52.0	54.0	-2.0
17265.50	45.50	*	Pk	41.9	-16.9	-0.5	34.3	70.5	74.0	-3.5
17265.50	26.83	*	Avg	41.9	-16.9	-0.5	34.3	51.8	54.0	-2.2

FILE: 8041401d.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0 **HP IL dB**: 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: Andrew DIST dB: 0

24 dBi Grid parabolic

		24 a	Bi Gria	paraboli						
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	44.50		Pk	31.4	-7.0	-0.4	35.0	48.3	74.0	-25.7
4834.00	26.67		Avg	31.4	-7.0	-0.4	35.0	30.5	54.0	-23.5
7251.00	47.17	*	Pk	34.5	-10.6	-0.5	35.5	57.3	74.0	-16.7
7251.00	28.83	*	Avg	34.5	-10.6	-0.5	35.5	39.0	54.0	-15.0
9668.00	48.17	*	Pk	36.8	-13.0	-0.5	35.5	63.0	74.0	-11.1
9668.00	27.83	*	Avg	36.8	-13.0	-0.5	35.5	42.6	54.0	-11.4
12085.00	48.17	*	Pk	39.0	-13.6	-0.5	34.3	66.9	74.0	-7.1
12085.00	29.17	*	Avg	39.0	-13.6	-0.5	34.3	47.9	54.0	-6.1
14502.00	43.33	*	Pk	41.9	-15.5	-0.5	34.3	67.0	74.0	-7.0
14502.00	27.83	*	Avg	41.9	-15.5	-0.5	34.3	51.5	54.0	-2.5
16919.00	44.83	*	Pk	38.8	-16.8	-0.5	34.3	66.6	74.0	-7.4
16919.00	28.17	*	Avg	38.8	-16.8	-0.5	34.3	49.9	54.0	-4.1
2466.5										
4933.00	44.50		Pk	31.4	-7.0	-0.4	35.0	48.3	74.0	-25.7
4933.00	25.67		Avg	31.4	-7.0	-0.4	35.0	29.5	54.0	-24.5
7399.50	47.67		Pk	34.5	-10.6	-0.5	35.4	57.9	74.0	-16.1
7399.50	28.17		Avg	34.5	-10.6	-0.5	35.4	38.4	54.0	-15.6
9866.00	47.33	*	Pk	36.8	-13.0	-0.5	35.5	62.1	74.0	-11.9
9848.00	27.50	*	Avg	36.8	-13.0	-0.5	35.5	42.3	54.0	-11.7
12332.50	47.33	*	Pk	39.0	-13.6	-0.5	34.3	66.1	74.0	-7.9
12332.50	27.50	*	Avg	39.0	-13.6	-0.5	34.3	46.3	54.0	-7.7
14799.00	43.50	*	Pk	41.9	-15.5	-0.5	34.3	67.1	74.0	-6.9
14799.00	27.50	*	Avg	41.9	-15.5	-0.5	34.3	51.1	54.0	-2.9
17265.50	43.67	*	Pk	41.9	-16.9	-0.5	34.3	68.7	74.0	-5.3
17265.50	28.33	*	Avg	41.9	-16.9	-0.5	34.3	53.3	54.0	-0.7

FILE: 8041401e.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: Gabriel DIST dB: 0

21 dBi Solid parabolic

		21 a		parabol						
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	42.17		Pk	31.4	-7.0	-0.4	35.0	46.0	74.0	-28.0
4834.00	26.83		Avg	31.4	-7.0	-0.4	35.0	30.6	54.0	-23.4
7251.00	48.67	*	Pk	34.5	-10.6	-0.5	35.5	58.8	74.0	-15.2
7251.00	29.17	*	Avg	34.5	-10.6	-0.5	35.5	39.3	54.0	-14.7
9668.00	46.83	*	Pk	36.8	-13.0	-0.5	35.5	61.6	74.0	-12.4
9668.00	26.83	*	Avg	36.8	-13.0	-0.5	35.5	41.6	54.0	-12.4
12085.00	48.17	*	Pk	39.0	-13.6	-0.5	34.3	66.9	74.0	-7.1
12085.00	27.67	*	Avg	39.0	-13.6	-0.5	34.3	46.4	54.0	-7.6
14502.00	43.67	*	Pk	41.9	-15.5	-0.5	34.3	67.3	74.0	-6.7
14502.00	28.00	*	Avg	41.9	-15.5	-0.5	34.3	51.6	54.0	-2.4
16919.00	44.83	*	Pk	38.8	-16.8	-0.5	34.3	66.6	74.0	-7.4
16919.00	27.67	*	Avg	38.8	-16.8	-0.5	34.3	49.4	54.0	-4.6
2466.5										
4933.00	43.67		Pk	31.4	-7.0	-0.4	35.0	47.5	74.0	-26.5
4933.00	25.17		Avg	31.4	-7.0	-0.4	35.0	29.0	54.0	-25.0
7399.50	49.67		Pk	34.5	-10.6	-0.5	35.4	59.9	74.0	-14.1
7399.50	27.17		Avg	34.5	-10.6	-0.5	35.4	37.4	54.0	-16.6
9866.00	48.83	*	Pk	36.8	-13.0	-0.5	35.5	63.6	74.0	-10.4
9848.00	28.17	*	Avg	36.8	-13.0	-0.5	35.5	43.0	54.0	-11.1
12332.50	47.83	*	Pk	39.0	-13.6	-0.5	34.3	66.6	74.0	-7.4
12332.50	28.67	*	Avg	39.0	-13.6	-0.5	34.3	47.4	54.0	-6.6
14799.00	38.50	*	Pk	41.9	-15.5	-0.5	34.3	62.1	74.0	-11.9
14799.00	29.33	*	Avg	41.9	-15.5	-0.5	34.3	53.0	54.0	-1.0
17265.50	47.67	*	Pk	41.9	-16.9	-0.5	34.3	72.7	74.0	-1.3
17265.50	27.33	*	Avg	41.9	-16.9	-0.5	34.3	52.3	54.0	-1.7

FILE: 8041401f.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0 **HP IL dB**: 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: Gabriel DIST dB: 0

17 dBi Panel

		17 ui	Bi Pane							
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	43.50		Pk	31.4	-7.0	-0.4	35.0	47.3	74.0	-26.7
4834.00	25.50		Avg	31.4	-7.0	-0.4	35.0	29.3	54.0	-24.7
7251.00	47.33	*	Pk	34.5	-10.6	-0.5	35.5	57.5	74.0	-16.5
7251.00	28.67	*	Avg	34.5	-10.6	-0.5	35.5	38.8	54.0	-15.2
9668.00	47.33	*	Pk	36.8	-13.0	-0.5	35.5	62.1	74.0	-11.9
9668.00	27.50	*	Avg	36.8	-13.0	-0.5	35.5	42.3	54.0	-11.7
12085.00	47.00	*	Pk	39.0	-13.6	-0.5	34.3	65.8	74.0	-8.2
12085.00	28.00	*	Avg	39.0	-13.6	-0.5	34.3	46.8	54.0	-7.2
14502.00	42.50	*	Pk	41.9	-15.5	-0.5	34.3	66.1	74.0	-7.9
14502.00	27.83	*	Avg	41.9	-15.5	-0.5	34.3	51.5	54.0	-2.5
16919.00	41.83	*	Pk	38.8	-16.8	-0.5	34.3	63.6	74.0	-10.4
16919.00	28.00	*	Avg	38.8	-16.8	-0.5	34.3	49.8	54.0	-4.2
2466.5										
4933.00	44.33		Pk	31.4	-7.0	-0.4	35.0	48.1	74.0	-25.9
4933.00	26.00		Avg	31.4	-7.0	-0.4	35.0	29.8	54.0	-24.2
7399.50	48.17		Pk	34.5	-10.6	-0.5	35.4	58.4	74.0	-15.6
7399.50	29.00		Avg	34.5	-10.6	-0.5	35.4	39.2	54.0	-14.8
9866.00	47.17	*	Pk	36.8	-13.0	-0.5	35.5	62.0	74.0	-12.1
9848.00	27.83	*	Avg	36.8	-13.0	-0.5	35.5	42.6	54.0	-11.4
12332.50	48.50	*	Pk	39.0	-13.6	-0.5	34.3	67.3	74.0	-6.7
12332.50	28.00	*	Avg	39.0	-13.6	-0.5	34.3	46.8	54.0	-7.2
14799.00	43.17	*	Pk	41.9	-15.5	-0.5	34.3	66.8	74.0	-7.2
14799.00	27.17	*	Avg	41.9	-15.5	-0.5	34.3	50.8	54.0	-3.2
17265.50	43.50	*	Pk	41.9	-16.9	-0.5	34.3	68.5	74.0	-5.5
17265.50	27.50	*	Avg	41.9	-16.9	-0.5	34.3	52.5	54.0	-1.5

FILE: 8041401g.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0 **HP IL dB:** 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: Cushcraft DIST dB: 0

7 dBi Panel

		7 UB	i Panei							
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	33.83		Pk	31.4	-7.0	-0.4	35.0	37.6	74.0	-36.4
4834.00	25.67		Avg	31.4	-7.0	-0.4	35.0	29.5	54.0	-24.5
7251.00	48.50	*	Pk	34.5	-10.6	-0.5	35.5	58.6	74.0	-15.4
7251.00	27.83	*	Avg	34.5	-10.6	-0.5	35.5	38.0	54.0	-16.0
9668.00	47.33	*	Pk	36.8	-13.0	-0.5	35.5	62.1	74.0	-11.9
9668.00	28.17	*	Avg	36.8	-13.0	-0.5	35.5	43.0	54.0	-11.1
12085.00	47.67	*	Pk	39.0	-13.6	-0.5	34.3	66.4	74.0	-7.6
12085.00	28.67	*	Avg	39.0	-13.6	-0.5	34.3	47.4	54.0	-6.6
14502.00	43.00	*	Pk	41.9	-15.5	-0.5	34.3	66.6	74.0	-7.4
14502.00	28.17	*	Avg	41.9	-15.5	-0.5	34.3	51.8	54.0	-2.2
16919.00	42.67	*	Pk	38.8	-16.8	-0.5	34.3	64.4	74.0	-9.6
16919.00	27.00	*	Avg	38.8	-16.8	-0.5	34.3	48.8	54.0	-5.2
2466.5										
4933.00	45.00		Pk	31.4	-7.0	-0.4	35.0	48.8	74.0	-25.2
4933.00	24.50		Avg	31.4	-7.0	-0.4	35.0	28.3	54.0	-25.7
7399.50	49.00		Pk	34.5	-10.6	-0.5	35.4	59.2	74.0	-14.8
7399.50	27.17		Avg	34.5	-10.6	-0.5	35.4	37.4	54.0	-16.6
9866.00	48.83	*	Pk	36.8	-13.0	-0.5	35.5	63.6	74.0	-10.4
9848.00	28.00	*	Avg	36.8	-13.0	-0.5	35.5	42.8	54.0	-11.2
12310.00	46.83	*	Pk	39.0	-13.6	-0.5	34.3	65.6	74.0	-8.4
12332.50	26.50	*	Avg	39.0	-13.6	-0.5	34.3	45.3	54.0	-8.7
14799.00	44.50	*	Pk	41.9	-15.5	-0.5	34.3	68.1	74.0	-5.9
14799.00	28.17	*	Avg	41.9	-15.5	-0.5	34.3	51.8	54.0	-2.2
17265.50	45.83	*	Pk	41.9	-16.9	-0.5	34.3	70.8	74.0	-3.2
17265.50	26.00	*	Avg	41.9	-16.9	-0.5	34.3	51.0	54.0	-3.0

EUT: Accesslink CUSTOMER NAME: Wireless RULE PART: 15.247 WORK ORDER: 8041401

FILE: 8041401h.xls

ANTENNA: Horn ATTN dB: 0

DUTY dB: 0

TESTED BY: Donnie HP IL dB: 0
COMMENT: Gabriel DIST dB: 0

26 dBi Grid Parabolic

		u	Di Olia	i arabon	0					
FREQ.	READING		Pk	A.F.	Cbl	FLTR	AMP	TOTAL,	LIMIT	DELTA
MHz	dB(uV)	NF	or Av	dB	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB
2417										
4834.00	44.00		Pk	31.4	-7.0	-0.4	35.0	47.8	74.0	-26.2
4834.00	26.33		Avg	31.4	-7.0	-0.4	35.0	30.1	54.0	-23.9
7251.00	48.17	*	Pk	34.5	-10.6	-0.5	35.5	58.3	74.0	-15.7
7251.00	28.17	*	Avg	34.5	-10.6	-0.5	35.5	38.3	54.0	-15.7
9668.00	47.00	*	Pk	36.8	-13.0	-0.5	35.5	61.8	74.0	-12.2
9668.00	28.33	*	Avg	36.8	-13.0	-0.5	35.5	43.1	54.0	-10.9
12085.00	48.67	*	Pk	39.0	-13.6	-0.5	34.3	67.4	74.0	-6.6
12085.00	28.00	*	Avg	39.0	-13.6	-0.5	34.3	46.8	54.0	-7.2
14502.00	37.33	*	Pk	41.9	-15.5	-0.5	34.3	61.0	74.0	-13.0
14502.00	22.17	*	Avg	41.9	-15.5	-0.5	34.3	45.8	54.0	-8.2
16919.00	43.17	*	Pk	38.8	-16.8	-0.5	34.3	64.9	74.0	-9.1
16919.00	28.50	*	Avg	38.8	-16.8	-0.5	34.3	50.3	54.0	-3.7
2466.5										
4933.00	44.83		Pk	31.4	-7.0	-0.4	35.0	48.6	74.0	-25.4
4933.00	24.83		Avg	31.4	-7.0	-0.4	35.0	28.6	54.0	-25.4
7399.50	47.67		Pk	34.5	-10.6	-0.5	35.4	57.9	74.0	-16.1
7399.50	27.50		Avg	34.5	-10.6	-0.5	35.4	37.7	54.0	-16.3
9866.00	46.83	*	Pk	36.8	-13.0	-0.5	35.5	61.6	74.0	-12.4
9848.00	27.67	*	Avg	36.8	-13.0	-0.5	35.5	42.5	54.0	-11.6
12310.00	48.50	*	Pk	39.0	-13.6	-0.5	34.3	67.3	74.0	-6.7
12332.50	28.33	*	Avg	39.0	-13.6	-0.5	34.3	47.1	54.0	-6.9
14799.00	45.00	*	Pk	41.9	-15.5	-0.5	34.3	68.6	74.0	-5.4
14799.00	26.83	*	Avg	41.9	-15.5	-0.5	34.3	50.5	54.0	-3.5
17265.50	43.83	*	Pk	41.9	-16.9	-0.5	34.3	68.8	74.0	-5.2
17265.50	27.50	*	Avg	41.9	-16.9	-0.5	34.3	52.5	54.0	-1.5

APPENDIX C

15.209 Radiated Emissions Data

Electronic Compliance Laboratories, Inc. 1249 Birchwood Ave. Sunnyvale, CA

Radiated Emissions Frequency range: 30MHz-1000MHz

3 Meter Open Site Site Calibrated: June 1997

Government Agency and Limit: FCC Class B

QP = Quasi-Peak Note: Ignore peak readings when Quasi-Peak reading exists

PK = Peak

Customer: WIRELESS, INC Operator: DONNIE Date: 04-15-1998 Time: 16:15:28

Temperature Range: 75 Deg F Percent Humidity: 35

E.U.T.:

ACCESSLINK

Serial Number:

Support Devices: HP Power Supply Modifications: None Report File Name: F:\TESTDATA\8041001.RF

Antenna Type: BICONICAL

TEST		ACTUAL dBuV/m				ANTENNA HEIGHT	-	DETECTOR Type
- KEQ	======	•		======	DEGREES	_	_	21
196.610	38.2	29.8	43.5	-13.7	180	1.5	Н	PK
213.000	36.8	28.9	43.5	-14.6	60	1.5	H	PK
245.760	50.9	43.3	46.0	-2.7	270	1.3	H	PK
245.760	50.4	42.8	46.0	-3.2	270	1.3	H	QP
257.795	31.9	24.8	46.0	-21.2		1.3	H	PK
259.365	35.0	27.9	46.0	-18.1		1.2	H	PK
262.145		25.1						PK
278.545	37.5	32.0	46.0	-14.0	180	1.3	H	PK
108.080	47.7			-8.1			V	PK
245.760				-10.6			V	PK
278.540	33.0	27.5			315		V	PK
		_	_	NNA TO LO	_	_		
						_		
311.320	33.4	24 6	46.0	-21.4	0	1.0	Н	PK
344.060	38.3	29.7					H	PK
376.820	36.5			-17.8		1.0	H	PK
393.120	39.6		46.0	-14.7		1.0	H	PK
409.605	41.6	33.8		-12.2		1.0	H	PK
589.830	38.4	35.0	46.0	-11.0		1.0	H	PK
622.600	35.2		46.0	-12.3		1.0	H	PK
	37.7	36.1		-9.9		1.0	H	PK
688.140	37.1		46.0			1.2	H	PK
720.900	36.7	36.2		-9.8				PK
802.810	41.9	41.9		-4.1	_	1.0		PK
802.810	40.0	40.0		-6.0		1.0	H	QP
								~

TEST	TEST	ACTUAL	CLASS B	VERSUS	TABLE	ANTENNA	POLAR-	DETECTOR
FREQ	dBuV	dBuV/m	LIMIT	B LIMIT	DEGREES	HEIGHT	IZATION	Type
=====	======	======	======	======	======	======	======	=====
802.830	39.4	39.4	46.0	-6.6	270	1.0	V	PK
770.040	38.3	39.7	46.0	-6.3	315	1.0	V	PK
770.040	38.1	39.5	46.0	-6.5	315	1.0	H	PK
720.900	39.3	38.8	46.0	-7.2	0	1.0	V	PK
688.140	34.8	33.7	46.0	-12.3	180	1.0	V	PK
671.770	38.9	37.3	46.0	-8.7	0	1.2	V	PK
622.590	38.2	36.7	46.0	-9.3	180	1.2	V	PK
589.830	44.5	41.1	46.0	-4.9	180	1.3	V	PK
589.830	41.1	37.7	46.0	-8.3	180	1.3	V	QP
409.600	47.0	39.2	46.0	-6.8	180	1.3	V	PK
393.220	39.6	31.3	46.0	-14.7	180	1.5	V	PK
376.830	35.0	26.7	46.0	-19.3	225	1.2	V	PK
344.070	39.5	30.9	46.0	-15.1	180	2.0	V	PK
311.320	36.8	28.0	46.0	-18.0	0	1.0	V	PK

APPENDIX D

Antenna and Connector Drawings

constructed	Number	olameter	in) Flac	out iges	Bottom W	iain, dBi lid-Band		eamwidth Degrees	Cross Pol Disc., dB	F/B Ratic dB	VSWR ntax (R.L., dB)
essurized											
MERCOLULUS	GRIDPAK"	\ntennas	Rural Te	elephony						,,,,,	
Management	KPRSF-23	3 (0.9)	Type N	Female	24.2	23.6	23.6	6.4V/6.4H	25 28	24 30	1,35 (16.5) 1,35 (16.5)
	KPR4F-23	4 (1.2)	or 7/8	FEIA,	27.3	27.8 31.4	27.6 31.3	4.2V/4.2H	30	35	1.35 (16.5)
- :	KPR6F-23	6 (1.8)	F Flange	e Female.	30.9 32.6	32.5	32.9	3.4V/3.4H	30	36	1.30 (17.7)
luxaa	KPRSF-23	8 (2.4)	7-16 00	V Fernale	34.0	33.8	34.1	2.9V/2.9H	30	38	1.30 (17.7)
	KPR10F-23 KPR13F-23	10 (3.0) 13 (4.0)	_		36.6	37.0	37.1	2.3V/2.3H	30	40	1.30 (17.7)
5 - 2.5 GI									C		VSWR
	Type Number	Diameter ft (m)	Input Flanges Co	legulatory empliance†	Botton	Gain, dBi Mid-Band	Тор	Beamwidth Degrees	Cross n Pol. Disc., dB	Ratio	
	Standard A										
	P6F-24C	6 (1.8)	"F"	В	30.9	31.0	31.1 33.6	4.3 3.2	28 28	36 39	1.30 (17.7) 1.30 (17.7)
Series pressurized ngle Polarized	P8F-24C	8 (2.4)	Flange Female	Α	33.4	33.5	30.0				
S. FCC Part 94											
8 - 2.7 G	Hz						,	10	Cross	F/E	VSWR
	fyp≑ Number	Diameter ff (m)	laput Flanges	Regulator Complianc	y e† Bottom	Gain, dBi Mid-Band	t Top	Beamwidtl Degrees	n Pol. Disc., de	Ratio dB	, max. (R.L., d8)
	High Perfo	rmance /	Antennas ·	- Hypalo	n (Except	4 ft is Ti	EGLAF	P) Radon	ne Includ		
		4 (1.2)	7/8" EIA		27.0	27.3	27.6		30 28	43 50	1.15 (23.1 1.10 (26.4
ir Dielectric	HP4-25A HP6-25E	4 (1.2) 6 (1.8)	110 Lin	•	31.2	31.5	31.5		28 30	52 52	1.08 (28.3
ingle	HP8-25D	8 (2.4)		*	33.7	34.0	34.3		30	55	1.08 (28.3
olariz e d	HP10-25D HP12-25D	10 (3.0) 12 (3.7)		*	35.7 37.2	36.0 37.5	36.3 37.£		30	54	1.08 (28.3
	Focal Plan	ne Anteni	188								
	FB4 och	4 (1.2)	7/8" EIA	-	26.9	27.2	27.0		30 28	41 44	
	FP4-25D FP6-25D	6 (1.8)	,,	-	30.6	30.7 33.5	31. 33.		30	52	1.10 (26.4
ur Dielectric		8 (2.4)		~	33.0				30	55	
ir Dielectric	FP8-25D	10 (3.0)		-	35.3 36.6	44			30	57	
ur Dielectric Single	FP8-25D FP10-25D			•					27	42	
ur Dielectric Single	FP8-25D	12 (3.7)							27	52	
ur Dielectric Single Polarized	FP8-25D FP10-25D	12 (3.7) 6 (1.8)	7/8" EIA	•	29.6 32.3		32.	7 3.5			
ir Dielectric ingle folarized	FP8-25D FP10-25D FP12-25D FPX6-25C FPX8-25C	12 (3.7) 6 (1.8) 8 (2.4)	7/8" EIA	-	29.6 32.3 34.2	32.6	34.	9 3.1	30	5-	
ir Dielectric ingle lolarized Lir Dielectric Dual	FP8-25D FP10-25D FP12-25D FPX6-25C FPX8-25C FPX10-25C	12 (3.7) 6 (1.8) 8 (2.4) 10 (3.0)	7/8" EIA	-	32.3	32.6 34.6	34	9 3.1	30 30	5- 56	8 1.08 (28.
or Dielectric Single Polarized Air Dielectric Dual	FP8-25D FP10-25D FP12-25D FPX6-25C FPX8-25C FPX10-26C FPX12-25C	12 (3.7) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7)		• • •	32.3 34.2 35.9	32.6 34.6 36.3	34. 36	9 3.1 8 2.6 .5 7.2	30 30 30	5- 54	1.08 (28. 1 1.30 (17.
ir Dielectric Single Polarized Air Dielectric Dual	FP8-25D FP10-25D FP12-25D FPX6-25C FPX8-25C FPX10-25C FPX12-25C FP4F-25D	12 (3.7) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 4 (1.2)	«F"	•	32.3 34.2	32.6 34.6 36.3 27.1	34. 36. 27. 31	9 3.1 8 2.6 .5 7.2 .0 4.9	30 30 30 28	5- 5- 4- 4-	1.08 (28. 1 1.30 (17. 4 1.25 (19.
Air Dielectric Single Polarized Air Dielectric Dual Polarized	FP8-25D FP10-25D FP12-25D FPX6-25C FPX10-25C FPX10-25C FPX12-25C FP4F-25D FP6F-25D	12 (3.7) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 4 (1.2) 6 (1.8)	"F" Flange	•	32.3 34.2 35.9 26.8	32.6 34.6 36.3 27.1 30.6 33.4	34. 36. 27. 31. 33.	9 3.1 8 2.6 .5 7.2 .0 4.9 .5 3.9	30 30 30 28 30	5- 5- 4- 4- 5-	1.08 (28. 1 1.30 (17. 4 1.25 (19. 2 1.20 (20
Air Dielectric Single Folarized Air Dielectric Dual Polarized F-Series Unpressurized Single	FP8-25D FP10-25D FP12-25D FPX6-25C FPX10-25C FPX10-25C FPX12-25C FP4F-25D FP8F-25D FP8F-25D	12 (3.7) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 4 (1.2) 6 (1.8) 8 (2.4)	«F"	•	32.3 34.2 35.9 26.8 30.5 32.9 35.2	32.6 34.6 36.3 27.1 30.6 33.4 2 35.5	34. 36. 27. 31. 33. 35.	9 3.1 .8 2.6 .5 7.2 .0 4.9 .5 3.9 .8 3.2	30 30 30 28 30 30	5- 56 4- 4- 5- 5- 5-	1.08 (28. 1 1.30 (17. 4 1.25 (19. 2 1.20 (20. 5 1.15 (23.
Air Dielectric ingle Polarized Air Dielectric Dual Polarized F-Series Unpressurized	FP8-25D FP10-25D FP12-25D FPX6-25C FPX10-25C FPX10-25C FPX12-25C FP4F-25D FP6F-25D	12 (3.7) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 4 (1.2) 6 (1.8)	"F" Flange	- - - - -	32.3 34.2 35.9 26.8 30.5 32.9	32.6 34.6 36.3 27.1 30.6 33.4 2 35.5	34. 36. 27. 31. 33. 35.	9 3.1 .8 2.6 .5 7.2 .0 4.9 .5 3.9 .8 3.2	30 30 30 28 30	5- 5- 4 4 5- 5- 5- 5-	1.08 (28. 1.30 (17. 4.1.25 (19. 2.1.20 (20. 5.1.15 (23.
Air Dielectric Single Polarized Air Dielectric Dual Polarized F-Series Unpressurized Single Polarized	FP8-25D FP10-25D FP10-25D FPX8-25C FPX8-25C FPX10-26C FPX12-25C FP4F-25D FP8F-25D FP8F-25D FP10F-25D FP10F-25D	12 (3.7) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7) 4 (1.2) 6 (1.8) 8 (2.4) 10 (3.0) 12 (3.7)	"F" Flange Female	-	32.3 34.2 35.9 26.8 30.5 32.9 35.2	32.6 34.6 36.3 27.1 30.6 33.4 2 35.5	34. 36. 27. 31. 33. 35.	9 3.1 .8 2.6 .5 7.2 .0 4.9 .5 3.9 .8 3.2	30 30 30 28 30 30	5- 5- 4 4 5- 5- 5- 5-	8 1.08 (28. 1 1.30 (17. 4 1.25 (19. 2 1.20 (20. 5 1.15 (23. 7 1.15 (23.

QLP PARABOLIC ANTENNA ASSEMBLY

21 dBi

PRODUCT SPECIFICATION

Part Number: 130093/130120

ELECTRICAL

2150-2162 MHz Frequency Range 2400-2483 MHz 2500-2700 MHz Gain 19 dB ± 1 dB $20.5 \pm 1 \, dB$ 21 dB ± 1 dB Efficiency 43% Typical 44% Typical 45% Typical **VSWR** 1.5:1 Max. 1.5:1 Max. 1.5:1 Max. 3-dB Beamwidth 14.8° ±1.2° 13.0° ± 1.5° 12.5° ± 1.5° Side Lobe Level -18 dB ± 2 dB -19 dB ± 3 dB -19 dB ± 3 dB

Front to Back Ratio

over near hemisphere 18 dB Min. 18 dB Min. 18 dB Min. at 180 degrees 22 dB Min. 25 dB Min. 27 dB Min.

Polarization Vertical or Horizontal

Cross Polarization Rejection 25 dB Min. 25 dB Min. 28 dB Min.

MECHANICAL

Reflector Type Wire Grid Parabola

 Size
 20" x 24"

 Weight
 3.6 lbs

 Surface Accuracy
 0.05" RMS

 Focal Length
 11"

 F/D Ratio
 0.46 - 0.56

F/D Ratio 0.46 - 0.56
Feed Type Quasi Log Periodic

End Fire Array

Mounting Stainless Steel Hardware for 3/4"-2" O.D. Mast

Azimuth Adjustment Continuous

Finish Powder Coat Paint, Gray
Connector "N" Type Male Environmentally Sealed

ENVIRONMENTAL

Operating Temperature -40°C to +80°C

Humidity 100%

PRODUCTION TESTING

VSWR 100% Water Leakage 100%

California Amplifier, Inc. Subject to change without notice.
460 Calie San Pablo, Camarillo, CA 93012 Tel: (805) 987-9000 FAX: (805) 987-8539
European & Middle East Sales: California Amplifier s.a.r.l., 15 rue de la belle borne B.P. 10 003
95722 Roissy Aeroport CDG Cedex, FRANCE Tel: (33) 1 49 19 89 20 FAX: (33) 1 48 64 52 55

SPEC FORM: M130093 REV: B DATE: 10/96

Form 11040/A

DATE & TIME PRINTED: 4/22/98 11:44 AM

California 📤 Amplifier

QLP PARABOLIC ANTENNA ASSEMBLY

24 dBi

PRODUCT SPECIFICATION

130094/130135 Part Number:

ELECTRICAL

2400-2483 MHz Frequency Range 2150-2162 MHz 2500-2700 MHz 22 dB ± 1 dB Gain $23.5 \pm 1 \, dB$ 24 dB ± 1 dB Efficiency 47% Typical 48% Typical 50% Typical **VSWR** 1.5:1 Max. 1.5:1 Max. 1.5:1 Max. 10.0° ± 1.0° 12.5° ±0.5° 3-dB Beamwidth 9.75° ±0.75° Side Lobe Level $-18 \, dB \pm 2 \, dB$ $-20 \pm 3 \, dB$ $-20 dB \pm 3 dB$ Front to Back Ratio

over rear hemisphere 21 dB Min. at 180 degrees

21 dB Min. 21 dB Min. 28 dB Min. 28 dB Min. 28 dB Min.

Vertical or Horizontal Polarization

Cross Polarization Rejection 28 dB Min. 28 dB Min. 28 dB Min.

MECHANICAL

Wire Grid Parabola Reflector Type

27" x 31.5" Size 5.3 lbs Weight 0.05" RMS Surface Accuracy Focal Length 15" 0.46 - 0.56F/D Ratio Feed Type

Quasi Log Periodic

End Fire Array

Stainless Steel Hardware for 3/4"-2" O.D. Mast Mounting

Azimuth Adjustment Continuous

Powder Coat Paint, Gray Finish

"N" Type Male Environmentally Sealed Connector

ENVIRONMENTAL

-40°C to +80°C Operating Temperature

100% Humidity

PRODUCTION TESTING

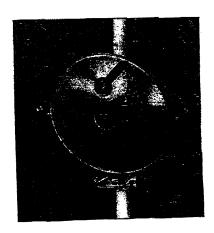
VSWR 100% 100% Water Leakage

California Amplifier, Inc. Subject to change without notice.
480 Calle San Pablo, Camarillo, CA 93012 Tel: (805) 987-9000 FAX: (805) 987-8539
European & Middle East Sales: California Amplifier s.a.r.t., 15 rue de la belle borne B.P. 10 003
95722 Roissy Aeroport CDG Cedex, FRANCE Tel: (33) 1 49 19 89 20 FAX: (33) 1 48 64 52 55

SPEC FORM: M130094 REV: 8 DATE: 10/96

Form 11040/A

DATE & TIME PRINTED: 4/22/98 11:43 AM



SPREAD SPECTRUM ANTENNAS

Demand for Spread spectrum radios is increasing dramatically with the wide range of applications around the world. Quick installation and cost-efficiency are some of the driving factors for radio and antenna selection.

COMSAT RSI has a line of antennas specifically designed to meet the needs of Spread Spectrum systems with flexibility, budget considerations, ease-of-installation and application flexibility built in resulting in a lower system implementation cost.

With over 45 years of experience, the COMSAT RSI "Mark" antenna line is continually being improved to meet changing customer needs and is innovation you can rely on.

- High reliability in a cost efficient design
- Field changeable Horizontal / Vertical polarization
- Multiple connector options
- Grid and Compact Grid for ease of transportation
- Full range of spread spectrum frequencies

COMSAT RSL

lodel Number	Size ft	m	Low	Gain (dBi) Midband	High	HPBW (degrees)	F/B Ratio (dB)	XPD (dB)	VSWR (max)	Low V\$WI
		7.45	31,135		875-960	MHž	William Company		arren	
rid Antennas					40.0	17.75	21	40	1.5	NA
-8A48G‡	4	1.2	19.1	19.5	19.9	12.25	22	40	1.3	NA
-8A72G#	6	1.8	21.6	22	22.4	9.5	24	40	1.3	NA
-8A96G±	8	2.4	23.9	24.5	24.7		27	40	1.3	NA
-8A120G±	10	3.0	26.6	27	27.4	7.3	28	40	1.3	NA
-8A144G#	12	3.7	27.5	27.9	28.3	6.4	30	40	1.3	NA
2-8A180G‡	15	4.6	28.4	28.8	29.2	4.9	30	~~		
	1,8-14	1.420	est.	·	300-250	O MHz:	A MARIE TO A			
· And Control of the Control	Autority (2)	THE PROPERTY.	(T) (S) (S) (S) (S)							NA
Grid Antennas	_	•	25.3	25.7	26	8.4	28	32	1.5	1,15
P-24A36G#	3	.9	25.3 26.8	27.5	27.7	6.75	34	40	1.3	1.15
2-24A48G‡	4	1.2		30.8	31.1	4.4	37	30	1.3	
P-24A72G‡	6	1.8	30.1	33.5	33.6	3.5	38	32	1.1	1.08
P-24A96G‡	8	2.4	32.6	35.1	35.6	2.8	42	32	1.1	1.08
P-24A120G#	10	3.0	34.7	36.8	37.3	2.4	40	31	1.1	
P-24A144G†	12	3.7	36.1		39.1	1.9	48	30	1.1	Ų.
P-24A180G‡	15	4.6	38.1	38.6	G4. .	• •				•
Solid Antennas				***	01.5	14 _	35	24	1.5	1.30
P-24A24‡	2	.6	20.7	21.1	21.5 27.5	7.2	33	26	1.3	1.15
P-24A48‡	4	1.2	26.8	27.1	27.5 31	4.8	36	26	1.3	1.10
P-24A72#	8	1.8	30.3	30.6	33.4	3.6	39	27	1.1	NA
P-24A961	8	2.4	32.7	33.1		2.85	43	30	1.1	NA
P-24A120‡	10	3.0	34.7	35.1	35.4	2.8	43	30	1.1	NA
P-24A144	12	3.7	36.4	36.8	37.1	1.9	48	27	1.1	NA
P-24A180#	15	4.6	38.2	38.6	38.9	60	15	30	1.3	NA
S-24A4	4°	0.1	9.7	10.2	10.4					\$4/1043 4 .1
Freight de district		n siya (sib	Ex Contract	在权证据是	5725-58	350 MHz				
a Kil Antonios		100					39	30	1.15	NA
Solid Antennas	2	.6	28.9	29	29.1	5.8 2.8	41	30	1.15	NA
P-57B24†	4	12	34.6	34.7	34.8	2.6	46	30	1.1	NA
P-57B48†	6	1.8	38.1	38.2	38.3	_	52	30	1.08	NA
P-57A72†	8	2.4	40.7	40.8	40.9	1.45	52	30	1.06	NA.
P-57A96†	10	3.0	42.4	42. 5	42.6	1.2	-14-			
P-57A120†	.0					£ 0	39	30	1.3	NA
	2	.6	28.9	29	29.1	5.8	41	30	1.3	N/
P-57C2411	4	1.2	34.6	34.7	34.8	2.8 2	46	30	1.3	N/A
P-57A48††	6	1.8		38.2	38.3	1.45		30	1.3	N/
P-57A7211	8	2.4		40.8	40.9		52	30	1.3	N
P-57A96†† P-57A120 † †	10			42.5	42.6	1.2	units			
P-D/MIZUII										
							Ť	Availabe	e Flanges	

N N Female (Unpressurized)
E 7/16 DIN (Unpressurized)

Available Flange CPR 137G

TOTAL P.09

Available Flanges
- 7/8 EIA (Pressurized)
E 7/16 DIN (Unpressurized)
F 7/8 EIA (Unpressurized)
N N Female (Unpressurized)
L 7/8 EIA (Pressurized) Low VSWR

DirectLink™

30

indoor / outdoor

Attractive styling

 Articulating • Wall mountable

DirectLink™ Series Antennas

DirectLink has been designed to eliminate concerns over aesthetics in professional workplaces and neighborhoods. DirectLink's contemporary design and neutral color make it a perfect choice for these applications.

Ease of Installation

DirectLink is available in either a Standard Wall Mount or an Articulating Wall Mount Version. The Standard Wall Mount attaches flush to any interior or exterior well surface. The Articulating Wall Mount allows the antenna to be wall mounted and adds the ability to steer the antenna's main lobe +/-30 degrees in the to sieer the aniented's main lose 47-30 using else in the horizontal plane. Adjustments can be made quickly and easily minimizing installation time while achieving peak performance. DirectLink's versatile mounting hardware kits not only allow the anienna to be mounted. to virtually any structure available but they also allow the antenna's pattern to be directed precisely into the

desired coverage area.

Both versions allow the feed cable to be routed to a terminal or base station mounted above or below the antenna and even allow the teed cable to be hidden. behind the antenna and routed through the wall. In behind the antenne and routed through the wall. In addition, the Standard Wall mount version may be mated with two optional mounting brackets for even greater installation flexibility. The Mast Mount Bracket is used for installations on masts from 1 to 2.5 inches (25 mm to 84 mm) in diameter, The Universal Mount Bracket permits up to 210 degrees of tilt and 360 degrees of rotation for main lobe steering and can be attached to mast or a flat eurifice. Both mounts are suitable for a mast or a flat surface. Both mounts are suitable for indoor and outdoor installations.

Performance and Durability

DirectLink Patch antennas are uniquely designed to provide superior performance. The antenna employs patch technology without the usual reliance on expensive and lossy dielectric substrates, Instead, an air dielectric technology, called MicroAir, ** is used to decrease material cost and increase radiation efficiency. Each antenna is provided with a standard low loss cable pigtail. A choice of SMA or TNC connectors is available. Other connector types are available upon request.

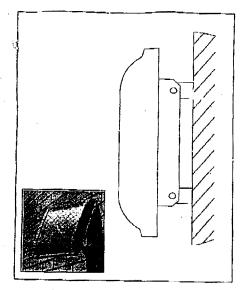
Solid brass elements are rigidly supported by the injection molded ultraviolet resistant enclosure. The enclosure components are designed to nest together during assembly creating a moisture barrier. The antenna will provide years of reliable, trouble free service.

PREQUENCY	2006	GAN	3dB Bm	Malle, deg	YSWR	部	(Connector	Articulation Version
2300-2500	\$2307AM#10TNF	7.5	80	65	1.5:1	12	THC	Yes
2300-2500	S2307AM10TNF	7.5	50	85	1,5:1	12	TNC	No
2300-2500	S2307AMP10SMF	7.5	50	65	1,5:1	12	SMA	Yes
2300-2500	\$2307MP10SMF	7.5	50	65	1,5;1	12	SMA	No
5150-5350	S5151DAMP10TNF	10	27	58	1.5:1	15	TNC	Yea
5150-5350	851510MP10TNF	10	27	58	1.5:1	15	TNÇ	No
5150-5350	SS1510AMP10SMF	10	27	58	1.5:1	15	SMA	Yes
5150-5350	851510MP106MF	10	27	58	1.5:1	15	SMA	No
5150-5350	SS1512AMP10TNF	12	27	45	1.5.1	15	TNC	Yes
5150-5350	851512MP10TNF	12	27	45	1,5:1	15	TNC	No
5150-5330	\$51512AMP10SMF	12	27	45	1.5:1	15	SMA	Yes
5150-5350	S51512MP10SMF	12	27	45	1.5:1	15	SMA	No
5725-5825	S57210AMP10TNF	10	27	58	1.5:1	15	TNC	Yes
5725-5825	S57210MP107NF	10	27	58	1.5:1	15	TNC	No
5725-5825	S57210AMP10SMF	10	27	58	1.5:1	15	SMA	Y e s
5725-5825	857210MP10SMF	10	27	58	1,5:1	15	SMA	Mc
5725-5825	\$57212AMP107NF	12	27	45	1.5:1	15	TNC	Yes
5725-5825	\$57212MP10TNF	12	27	45	1.5:1	15	TNC	No
5725-5825	S57212AMP10SMF	12	27	45	1.5:1	15	SMA	Y⇔
5725-5825	S57212MP10SMF	12	27	45	1.5:1	15	SMA	No

COMMON SPECIFICATIONS Power: 75 Watts (25 Watts at 5 GHz) sions & Weight: Standard stall mount 5.70 x 3.81 x 1.50 in. (14.48 x 9,98 x 3.80 cm). 5 az (.14 kg) Articulating wall mt -5.90 x 3.81 x 2.26 m. (14.73 x 9.68 x 6.74 cm), 6 oz (.23 kg) SMA, TNC. Other connector types available on special request.

nting: Standard units for wait mounting. Mast mount bracket kits configurations for volume users. Cable: Low loss pigsail provided

-hican shaandill



Spread Spectrum Panel Antenna

Facts & Features

- Gabriel Quality and Dependability.
- Vertical or Horizontal Polarization.
- Flat Construction.
- Lightweight and durable construction.
- Quick and easy installation.
- DC grounded for lightning protection.
- Paintable UV Stabilized Fiberglass Radome.
- Optional Mounting hardware for 3-D Orientation.
- One year extended warranty.

riat Panel Antenna

Gabriel Spread Spectrum Flat Panel Antenna

\$\$FP23-17.

Electrical Specifications

Frequency Range (GHz)
Bandwidth (MHz)
Gain, dBi (dBd)
Nominal Bearnwidth @-3 dB
(E-Plane)
(H-Plane)
Cross Polar
F/B Ratio
VSWR Max. (R.L)
Impedance (Ohms)
Maximum Power in Watts

2.300 - 2.500 200 17.1 (15.0) 32° 27° -23 dB -26 dB 1.50:1 (14.0) 50 100 W TNC/N/SMA

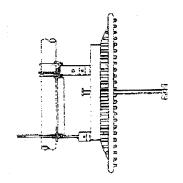
Mechanical Specifications

input Connector Type (other types available)

Dimensions H × W × ↓ in. (mm)
Front Windload ibs. (N)
Side Windload ibs. (N)
Survival Rating mph (kmh)
Weight ibs. (kg)
Mast Mounting Max./Min.
Connector Position
Radome Material
Rademe Color
Chassis Material
Screws

12.1 x 8 x 2 ?
(310 x 203 x 57)
19.5 (87)
4 (18)
93 (150)
4 (1.7)
1.2 - 2.3 (30 -60)
back
Fiberglass
RAL 9002 (standard)
aluminum
Stainless Steel

Product information subject to change without notice.


23-25 X 082697 P.O.Box 70, Scarborough , Maine 04070 USA Tel (207) 883-5161 Fax (207) 883-4469 email info@gabrielnet.com www.gabrielnet.com

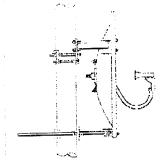
A801005.DOC

48

Spread Spectrum

4 ft (1.2 m) Parabolic Grid Antenna

Parabolic Antennas


2.300 - 2.500 GHz Unpressurized Foam Dielectric Feeds

Facts & Features

- Type N Female coax connector, 50 ohm.
- Most feeds are easily installed from the front of the antenna, while allowing inspection or replacement from rear. Smooth polarization adjustment or change is obtained from the man of the antenna.
- Georgelantennas meet or exceed Standards EIA-195-C and EIA-222-E.
- Grid antenna design offers lower windloading, typically reduced 40% or more (without ice) from comparable sized solid antenna.
- 2.300 2.500 GHz Spread Spectrum Panel Antenna available.

Electrical Specifications

Frequency GHz	Model Number	Dia ft	meter (ro)	Standzed	.Cow	Gain a -Mid d8:	High	Nominal Mid-Band Beamwidt Gegrees	XPD 38	*/5 (840 dB	VSWF max	(R.L. dB)∷
			Grid Pa	rabolic -	Plane	Polar	zed -	Unpressur	ized			
		2	(0.9)		23.8	24.2	24.6	9.4	30	25	1.50	(14.0)
	5563-23	3	(1.2)	_	25.3		27.1	7.2	30	29	1.50	(14.0)
2,300 - 2,500	SSG4-23	4			roduct							
	\$\$G6-23	. 6	(1.8)	i ma p	LOGDET	LO DE I	516436	30071				
			es es el suci	Parabolio	. Pla	ne Poi	arized	- Unpress	urized			
				P D G G G T T	20.3	Z0.7	21.1	14.5	26	21	1.50	(14.0)
	SSP2-23	Z	(0.6)	•				7.2	30	29	1.50	(14.0)
4 444 2 500	SSP4-23	4	(1.2)		2 5 .3	26.7	27.1		30	29	1.50	(
2 300 - 2.500	SSP6-23	6	(1.8)	This p	roduct	to be r	eleased	i soon				

2ft (0.6 m) Standard Parabolic Antenna

5,690 - 5,925 GHz

Facts & Features

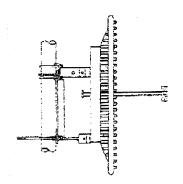
- Type N Female coax connector, 50 ohm.
- Most feeds are easily installed from the front of the antenna, while allowing inspection or replacement from rear. Smooth polarization adjustment or change is obtained from the rear of the antenna.
- Gabriel autennas meer or exceed Standards EIA-195-C and EIA-222-E.
- Amenna features independent azimuth and elevation adjustments.
- All aluminum backstructure is designed for most advantageous strength and weight combination.

SSP4-57 SSP6-57 5.690 - 5.925

 Standard Parabolic
 Plane
 Polarized

 2 (0.6)
 28.3
 28.5
 28.6

 4 (1.2)
 34.2
 34.4
 34.5
 39 1.35 (16.5) 44 1.35 (16.5) 5.9 3.0 This product to be released soon



NOTO: Product Information subject to change without notice.

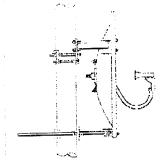
Tel (207) 883-5161 website

P.O. Box 70, Scarborough, Maine 04070 USA Fax (207) 883-4459 info@gabrielnet.com www.cabrisinet.com

Spread Spectrum

4 ft (1.2 m) Parabolic Grid Antenna

Parabolic Antennas


2.300 - 2.500 GHz Unpressurized Foam Dielectric Feeds

Facts & Features

- Type N Female coax connector, 50 ohm.
- Most feeds are easily installed from the front of the antenna, while allowing inspection or replacement from rear. Smooth polarization adjustment or change is obtained from the man of the antenna.
- Georgelantennas meet or exceed Standards EIA-195-C and EIA-222-E.
- Grid antenna design offers lower windloading, typically reduced 40% or more (without ice) from comparable sized solid antenna.
- 2.300 2.500 GHz Spread Spectrum Panel Antenna available.

Electrical Specifications

Frequency GHz	Model Number	Oia ft	meter (m)	Standz/d	Low	Gama -Mid d8:	High	Nominal Mid-Band Beamwidt degrees	XPD	් 7/වූ rado ජපි	VSIVE max	(R.L. dB)::-
			Grid F	erabolic .	Plane	Polar	zed -	Unpressuri	ized			
2.300 - 2.500	55G3-23 SSG4-23	3	(0.9)	*	23.8 25.3	24.2 26.7		9.4 7.2	30 30	25 29	1.50 1.50	(14.0) (14.0)
2.300 - 2.300	\$\$G6-23	. 6	(1.8)	This p	roduct	to be r	elease	d soon				
				d Parabolic	. Pla	ne Poi	arized	- Unpress	urized			
2.300 - 2.500	SSP2-23 SSP4-23 SSP6-23	2 4 6	(0.6) (1.2) (1.8)	•	20.3 26.3	20.7 26.7	21.1 27.1	14.5 7.2 d soon	26 30	21 29	1.50 1.50	(14.0) (14.0)

2ft (0.6 m) Standard Parabolic Antenna

5,690 - 5,925 GHz

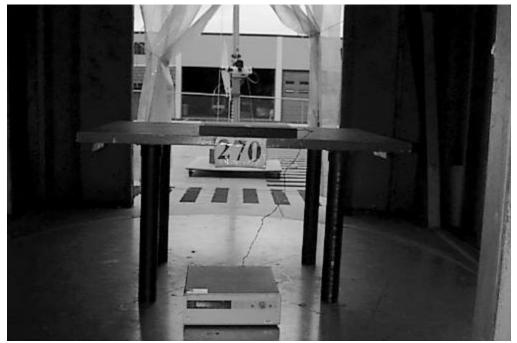
Facts & Features

- Type N Female coax connector, 50 ohm.
- Most feeds are easily installed from the front of the antenna, while allowing inspection or replacement from war, Smooth polarization adjustment or change is obtained from the rear of the antenna.
- Gabriel autennas meer or exceed Standards EIA-195-C and EIA-222-E.
- Amenna features independent azimuth and elevation adjustments.
- All aluminum backstructure is designed for most advantageous strength and weight combination.

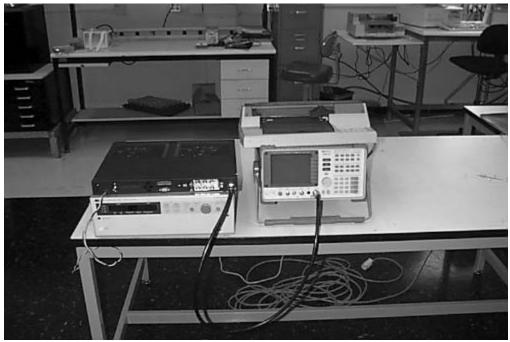
 Standard Parabolic
 Plane
 Polarized

 2 (0.6)
 28.3
 28.5
 28.6

 4 (1.2)
 34.2
 34.4
 34.5
 39 1.35 (16.5) 44 1.35 (16.5) 5.9 3.0 SSP4-57 SSP6-57 5.690 - 5.925 This product to be released soon


NOTO: Product Information subject to change without notice.

P.O. Box 70, Scarborough, Maine 04070 USA Tel (207) 883-5161 website


Fax (207) 883-4459 info@gabrielnet.com www.cabrielnet.com

APPENDIX E

SET-UP PHOTOGRAPHS

FCC B 15.209 Radiated Emissions

FCC 15.247 Conducted RF at Antenna Terminals

FCC 15.205 Restricted Band Emissions 24 dBi QLP Parabolic Antenna

FCC 15.205 Restricted Band Emissions 24 dBi Grid Parabolic Antenna

FCC 15.205 Restricted Band Emissions 17 dBi Panel Antenna

FCC 15.205 Restricted Band Emissions 21 dBi Solid Parabolic Antenna

FCC 15.205 Restricted Band Emissions 7 dBi Panel Antenna

FCC 15.205 Restricted Band Emissions 21 dBi Solid Parabolic Antenna

FCC 15.205 Restricted Band Emissions 21 dBi QLP Parabolic Antenna

FCC 15.205 Restricted Band Emissions 26 dBi Grid Parabolic Antenna

APPENDIX F

Direct Sequence Measurement Techniques

FEDERAL COMMUNICATIONS COMMISSION

Equipment Authorization Division 7435 Oakland Mills Road Columbia, MD 21046 Telephone: (301) 725-1585

Facsimile: (301) 344-2050

Guidance on Measurements for Direct Sequence Spread Spectrum Systems

Part 15 of the FCC Rules provides for operation of direct sequence spread spectrum transmitters. Examples of devices that operate under these rules include radio local area networks, cordless telephones, wireless cash registers, and wireless inventory tracking systems.

The Commission frequently receives requests for guidance as to how to perform measurements to demonstrate compliance with the technical standards for such systems. No formal measurement procedure has been established for determining compliance with the technical standards. Such tests are to be performed following the general guidance in Section 15.31 of the FCC Rules and using good engineering practice. The following provides information on the measurement techniques the Commission has accepted in the past for equipment authorization purposes. Alternative techniques may be acceptable upon consultation and approval by the Commission staff. The information is organized according to the pertinent FCC rule sections.

Section 15.31(m): This rule specifies the number of operating frequencies to be examined for tunable equipment.

Section 15.207: Power line conducted emissions. If the unit is AC powered, an AC power line conducted test is also required per this rule.

Section 15.247(a)(2): Bandwidth. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span \gg RBW.

Section 15.247(b): Power output. This is an RF conducted test. Use a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. Set the RBW > 6 dB bandwidth of the emission or use a peak power meter.

Section 15.247(c): Spurious emissions. The following tests are required:

(1) RF antenna conducted test: Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band *as measured with a 100 kHz RBW*.

(2) Radiated emission test: Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. A pre-amp (and possibly a high-pass filter) is necessary for this measurement. For measurements above 1 GHz, set RBW = 1 MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

Section 15.247(d): Power spectral density. Locate and zoom in on emission peak(s) within the passband. Set RBW = 3 kHz, VBW > RBW, sweep = (SPAN/3 kHz) e.g., for a span of 1.5 MHz, the sweep should be $1.5 \times 10^6 \div 3 \times 10^3 = 500$ seconds. The peak level measured must be no greater than +8 dBm. If external attenuation is used, don't forget to add this value to the reading. Use the following guidelines for modifying the power spectral density measurement procedure when necessary.

- For devices with spectrum line spacing greater than 3 kHz no change is required.
- For devices with spectrum line spacing equal to or less than 3 kHz, the resolution bandwidth must be reduced below 3 kHz until the individual lines in the spectrum are resolved. The measurement data must then be normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band (in linear power units) to determine compliance.
- If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz.
- Should all the above fail or any controversy develop regarding accuracy of measurement, the Laboratory will use the HP 89440A Vector Signal Analyzer for final measurement unless a clear showing can be made for a further alternate.

Section 15.247(e): Processing Gain. The Processing Gain may be measured using the CW jamming margin method. Figure 1 shows the test configuration. The test consists of stepping a signal generator in 50 kHz increments across the passband of the system. At each point, the generator level required to produce the recommended Bit Error Rate (BER) is recorded. This level is the jammer level. The output power of the transmitting unit is measured at the same point. The Jammer to Signal (J/S) ratio is then calculated. Discard the worst 20% of the J/S data points. The lowest remaining J/S ratio is used when calculating the Processing Gain.

In a practical system, there are always implementation losses which degrade the performance below that of an optimal theoretical system of the same type. Losses occur due to non-optimal filtering, lack of equalization, LO phase noise, "corner cutting in digital processing", etc. Total losses in a system, including transmitter and receiver, should be assumed to be no more than 2 dB.

The signal to noise ratio for an ideal non-coherent receiver is calculated from:

(1)
$$Pe = \frac{1}{2}e^{(-\frac{1}{2}(S/N)0)}$$

where :Pe = probability of error (BER)

(S/N)o = the required signal to noise ratio at the receiver output for a given received signal quality

This is an example. You should use the equation (or curve) dictated by your demodulation scheme.

Ref.: Viterbi, A. J. <u>Principles of Coherent Communications</u>, (New York: McGraw-Hill 1966), Pg. 207

Using equation (1) shown above, calculate the signal to noise ratio required for your chosen BER. This value and the measured J/S ratio are used in the following equation to calculate the Processing Gain (Gp) of the system.

$$Gp = (S/N)o + Mj + Lsys$$

where: (S/N)o =Signal to noise ratio

Mj = J/S ratio

Lsys = System losses.

Ref.: Dixon, R., Spread Spectrum Systems (New York: Wiley, 1984), Chapter 1.

APPENDIX G

Processing Gain

Processing Gain on the Access System, Low Channel

Frequency, MHz	CW level	Level of desired	J/S ratio	(\$/N)o	System Losses	PG
of Interferer	of Interferer	signal		40.5	1.5	12.41
2406.0	-80.0	-88	0.414	10.5	1.5	12.37
2406.5	-80.8	-88	0.371	10.5	1.5	12.37
2407.0	-80.8	-88	0.371	10.5	1.5	12.36
2407.5	-81.0	-88	0.360	10.5	1.5	12.39
2408.0	-80.4	-88	0.392	10.5	1.5	12.38
2408.5	-80.6	-88	0.381	10.5		12.38
2409.0	-80 .6	-86	0.381	10.5	1.5	12.38
2409.5	-80.6	-88	0.381	10.5	1.5	12.39
2410.0	-80.4	-88	0.392	10.5	1.5	
2410.5	-79.8	-88	0.425	10.5	1.5	12.42
2411.0	-80.0	-88	0.414	10.5	1.5	12.41 12.39
2411.5	-80.4	-88	0.392	10.5	1.5	
2412.0	-80.2	-88	0.403	10.5	1.5	12.40 12.37
2412.5	-80.8	-88	0.371	10.5	1.5	
2413.0	-80.0	-88	0.414	10.5	1.5	12.41
2413.5	-80.1	-88	0.409	10.5	1.5	12.41
2414.0	-80.0	-88	0.414	10.5	1.5	12.41
2414.5	-79.6	-8 8	0.436	10.5	1.5	12.44
2415.0	-79.5	-88	0.441	10.5	1.5	12.44
2415.5	-80.0	-88	0.414	10.5	1.5	12.41
2416.0	-79.0	-88	0.469	10.5	1.5	12.47
2416.5	-78.5	-88	0.496	10.5	1.5	12.50
241 7.0	-78.4	-88	0.502	10.5	1.5	12.50
2417.5	-78.6	-88	0.491	10.5	1.5	12.49
2418.0	-78.1	-88	0.518	10.5	1.5	12.52
2418.5	-78.2	-88	0.513	10.5	1.5	12.51
2419.0	-78.0	-88	0.524	10.5	1.5	12.52
2419.5	-78.0	-88	0.524	10.5	1.5	12.52
2420.0	-77.6	-88	0.546	10.5	1.5	12.55
2420.5	-77.2	-88	0.569	10.5	1.5	12.57
2421.0	-77.2	-88	0.569	10.5	1,5	12.57
2421.5	-77.2	-88	0.569	10.5	1.5	12.57
2422.0	-77.3	-88	0.563	10.5	1.5	12.56
2422.5	77.8	-88	0.535	10.5	1.5	12.54
2423.0	-78.1	-88	0.518	10.5	1.5	12.52
2423.5	-78.0	-88	0.524	10.5	1.5	12.52
2424.0	-7 8 .5	-88	0.496	10.5	1.5	12.50
2424.5	-78.2	-88	0.513	10.5	1.5	12.51
2425.0	-79.0	-88	0.469	10.5	1.5	12.47
2425.5	-78.5	-88	0.496	10.5	1.5	12.50
2426.0	-78.8	-88	0.480	10.5	1.5	12.48
2426.5	-79.4	-88	0.447	10.5	1.5	12.45

JUL-28-1998 15:21	MULTIP	OINT NETWORKS			65Ø 595	2417	P.03
2427.0 2427.5 2428.0 2428.5 2429.0 2429.5 2430.0 2430.5 2431.0 2431.5 2432.0 2432.5 2433.0 2433.5 2434.0 2434.5 2435.5 2435.0 2436.0	-79.0 -79.2 -79.5 -79.2 -78.5 -78.5 -78.6 -78.7 -78.2 -77.8 -78.6 78.3 -77.5 -77.8 -78.0 -77.5 -77.8	-88 -83 -88 -88 -88 -88 -88 -88 -88 -88	0.469 0.458 0.441 0.458 0.496 0.496 0.524 0.496 0.485 0.513 0.535 0.491 0.507 0.552 0.535 0.524 0.552	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		12.47 12.46 12.46 12.50 12.50 12.52 12.50 12.52 12.50 12.51 12.54 12.51 12.55 12.55 12.55 12.55 12.55

Actual channel is centered on 2421 MHz.

Processing Gain on the Access System, High Channel

Frequency, MHz	CW level	Level of desired	J/S ratio	(S/N)o	System Losses	PG
of Interferer	of Interferer	signal	0.446	10.5	1.5	12.45
2446.0	-78.5	-87	0.474	10.5	1.5	12.47
2446.5	<i>-</i> 78.0	-87	0.474	10.5	1.5	12.49
2447.0	-77.8	-87	0.485	10.5	1.5	12.49
2447.5	-77.8	-87	0.465	10.5	1.5	12.42
2448.0	-79.0	-87	0.364	10.5	1.5	12.36
2448.5	-80.0	-8 7	0.304	10.5	1.5	12.41
2449.0	-79.2	-87	0.386	10.5	1.5	12.39
2449.5	-79.6	-87 -87	0.430	10.5	1.5	12.43
2450 0	-78.8	-87	0.430	10.5	1.5	12.42
2450.5	-78.9	-87	0.491	10.5	1.5	12.49
2451.0	-77.7	-87 87	0.491	10.5	1.5	12.42
2451.5	-79.0	-87 27	0.397	10.5	1.5	12.40
2452.0	-79.4	-87	0.370	10.5	1.5	12.37
2452.5	-79.9	-87	0.370	10.5	1.5	12.42
2453.0	-79.0	-87 o ≠	0.430	10.5	1.5	12.43
2453.5	-78.8	-87	0.430	10.5	1.5	12.42
2454.0	-79.0	-87	0.386	10.5	1.5	12.39
2454.5	-79.6	-8 7 -8 7	0.430	10.5	1.5	12.43
2455.0	-78.8	-87 -87	0.430	10.5	1.5	12.42
2455.5	-79.0	-67 -87	0.441	10.5	1.5	12.44
2456.0	-78. 6	-87	0.441	10.5	1.5	12.45
2456.5	-78.5	-0 <i>1</i> -87	0.452	10.5	1.5	12.45
2457.0	-78.4	-o≀ -87	0.485	10.5	1.5	12.49
2457.5	-77.8	-87	0.530	10.5	1,5	12.53
2458.0	-77.0	-67	0.485	10.5	1,5	12.49
2458.5	-77.8 -77.6	-87 -87	0.497	10.5	1.5	12.50
2459.0	-77.6 -77.0	-87	0.530	10.5	1.5	12.53
2459.5	-77.0 -76.8	-87	0.542	10.5	1.5	12.54
2460.0	-76.6 -77.2	-87	0.519	10.5	1.5	12.52
2460.5 2461.0	-77.2 -77.2	-87	0.519	10.5	1.5	12.52
2461.5	-77.0	- 8 7	0.530	10.5	1.5	12.53
2462.0	-77.0 -77.0	-87	0.530	10.5	1.5	12.53
2462.5	-76.8	-87	0.542	10.5	1.5	12.54
2463.0	-78.0	-87	0.474	10.5	1.5	12.47
2463.5	-77.6	-87	0.497	10.5	1.5	12.50
2464.0	-77.4	-87	0.508	10.5	1.5	12.51
2464.5	-77.7	- 8 7	0.491	10.5	1.5	12.49
2465.0	-78,0	-87	0.474	10.5	1.5	12.47
2465.5	-77.9	-87	0.480	10.5	1.5	12.48
2466.0	-78.0	-87	0.474	10.5	1.5	12.47
2466.5	-78.2	-87	0.463	10.5	1.5	12.46

⊩-28-1998 15:22	MULTIPO	INT NETWORKS			650 595 2417	P.05
2467 0 2467.5 2468.0 2468.5 2469.0 2469.5 2470.0 2470.5 2471.0 2471.5 2472.0 2472.5 2473.0 2473.5 2474.0 2474.5 2475.0 2475.0	-78.0 -78.0 -78.3 -78.3 -78.5 -77.8 -78.5 -78.0 -78.2 -78.0 -77.8 -77.8 -77.8 -77.8 -77.5 -77.7 -77.7 -77.3 -77.5 -77.0	-87 -87 -87 -87 -87 -87 -87 -87 -87 -87	0.474 0.474 0.458 0.458 0.446 0.485 0.474 0.463 0.474 0.485 0.485 0.530 0.502 0.491 0.502 0.530	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	12.47 12.46 12.46 12.45 12.45 12.47 12.47 12.49 12.49 12.53 12.50 12.49 12.53

Actual channel is centered on 2462 MHz.

TOTAL P.05