

FCC PART 15 CLASS B EMI MEASUREMENT AND TEST REPORT

FOR

Pentel Co., Ltd

7-2, Koami-cho, Nihonbashi, Chuo-ku, Tokyo, Japan

Model Number: PTD-1800-D

Issued Date: November 27, 2001 Report No.: THRU-F011127B

This Report Concerns:

✓ Original Report

Equipment Type:

Glass Touch Screen

PTD-1800-D

Test Date: November 27, 2001

Tested By: Kyfourf Your Chai

K. M. Choi - Test Engineer

Certified By: Mae Woon Park

H.W.Park - M. Director, Compliance Engineering

Prepared By: Thru Lab. & Engineering

1367-1, ShinKil-Dong, YoungDeungPo-Ku,

Seoul 150-855, KOREA

TEL: 82-(2)-846-5002 / FAX: 82-(2)-834-0969

Note: This report may not be duplicated except in full without prior written consent of Thru Lab. & Engineering.

Table of Contents

1.	Gen	eral Information
	1.1	Test Facility
	1.2	Test Methodology
	1.3	Test Equipment List
	1.4	Product Description for Equipment Under Test (EUT)
	1.5	Equipment Under Test
	1.6	Support Equipment
	1.7	External I/O Cabling
2.	Syst	em Test Configuration
	2.1	Justification
	2.2	EUT Exercise
	2.3	Special Accessories
	2.4	Block Diagram
	2.5	Configuration of Test System
	2.6	Conducted Emission Test Setup Block Diagram
3.	Con	ducted Emission Test
	3.1	EUT Setup
	3.2	Test Equipment Setup
	3.3	Test Procedure
	3.4	Summary of Test Results
	3.5	Conducted Emission Test Result Data
	3.6	Plot of Conducted Emission Test Data
4.	Rad	iated Emission Test
	4.1	EUT Setup
	4.2	Test Equipment Setup
	4.3	Test Procedure
	4.4	Corrected Amplitude and Margin Calculation
	4.5	Summary of Test Results
	4.6	Radiated Emission Test Result Data

Table of Contents(cont'd)

5.	FCC	C Labelling Requirement
	5.1	FCC Statement
	5.2	Label Location
6.	Con	ducted and Radiated Setup Photographs
	6.1	Conducted Emission: Front View
	6.2	Conducted Emission: Side View
	6.3	Radiated Emission: Front View
	6.4	Radiated Emission: Rear View
7.	Pho	tographs
	7.1	EUT: Front View
	7.2	EUT: Rear View
	7.3	EUT: Label View
	7.4	EUT: Internal View
	7.5	EUT: Control Board, Component View
	7.6	EUT: Control Board, Circuit View
A	ppen	dix A - Plot of Conducted Emission Test Data
A	ppen	dix B - EUT Block Diagram
A	ppen	dix C - User's Manual

1.. General Information

1.1 Test Facility

The open area test site (OATS) used by Thru Lab. & Engineering to collect radiated and conducted emissions measurement data is located in the 389 JeArm-Rhi, HyangNam-Myun, HwaSung-Gun, KyungKi-Do, Korea.

Test sites at Thru Lab. & Engineering has been fully described in reports submitted to the Federal Communication Commission and the details of the reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules. The test facility also complies with the radiated and AC line conducted test site criterion in ANSI C63.4-1992. The Federal Communications Commission has the reports on file and is listed under Registration Number 92583. The scope of the accreditation covers the FCC Method - 47 CFR Part 15 or 18 of the Commission's Rules.

1.2 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-1992. All radiated and conducted emission measurements were performed at Thru Lab. & Engineering. The radiated testing was performed at an antenna-to-EUT distance of 10 meters for Class A devices and 3 meters for Class B devices.

1.3 Test Equipment List

Description	Model No.	Serial No.	Manufacturer	Cal. Due	Used
EMI Test Receiver	ESVS 10	830489/001	Rodhe&Schwarz	04/25/2002	RE
Biconical Antenna	94455-1	0977	Eaton	04/25/2002	RE
Log Periodic Antenna	3146	2051	EMCO	04/25/2002	RE
Spectrum Analyzer	8566B	2311A02394	Hewlett Packard	03/17/2002	RE
Spectrum Display	85662A	2542A12429	Hewlett Packard	03/17/2002	RE
Quasi-Peak Adapter	85650A	2521A00887	Hewlett Packard	03/17/2002	RE
RF Preselector	85685A	2648A00504	Hewlett Packard	03/17/2002	RE
Pre-Amplifier	8447D	1644A00978	Hewlett Packard	03/17/2002	
Horn Antenna	SAS-571	414	A.H. Systems	05/09/2002	
Dipole Antenna Set	TDA25/.1/.2	176/200/200	Electro Metrics	10/04/2001	
Signal Generator	SMS	872165/100	Rodhe&Schwarz	04/25/2002	
Spectrum Analyzer	R3261C	71720189	Advantest	04/25/2002	
LISN	KNW-242	8-923-2	Kyoritsu	N/A	
LISN	8012-50-R-24	8379121	Solar	N/A	
Plotter	7475A	2210A02802	Hewlett Packard	N/A	
Positioner Set	N/A	N/A	Dongsung Prec.	N/A	RE

1.4 Product Description for Equipment Under Test (EUT)

Pentel Co., Ltd's Glass Touch Screen or the "EUT" as referred to this report is Touch Screen of Personal Computer

Main Features of EUT are:

Input voltage : +5VPower consumption : 70mA

Dimension
 Weight
 Coordinate detection method
 385.7*313mm
 Less than 1000g
 by direct touch

- Resolution : 0.05-6.4mm software controllable

Coordinate detection speed : 200point/secSurface treatment : anti-glare

CommunicationSurface hardnessmore than 9H

1.5 **Equipment Under Test**

Description	Model Number	Serial Number	Manufacturer	Remarks
Host Computer	ART586C	TRL0080730	Art Computer	ATX
Glass Touch Screen	PTD-1800-D	-	Pentel Co., Ltd	EUT
VGA Monitor	CGC5607L	H1BH900689	Samsung Electronics	15"
Keyboard	BTC-5560	K71200885	BTC Korea	PS/2
Mouse	Mouse 2.0	02873445	Microsoft Corp.	PS/2
Printer	C2605	3221S66649	Hewlett Packard	300dpi
Modem	SM1200A1	71000230	Samsung Electronics	1200bps
Zip Drive	Z100USB	PSBL35F137	Iomega Corp.	USB

1.6 Support Equipment

Description	Model Number	Serial Number	Manufacturer	Remarks
Power Supply	ST-250GL	S008016533	Seventeam Electronics	250W
Motherboard	Richmond AGP	LA700937	Sambo Computer	ATX
Video Card	PV-822	2 PV258729 Leotech		AGP
Hard Drive	PLS-31084A	JQXG917701	Samsung Electronics	30GB
Floppy Drive	SFD-321D/T	J2YD611113	Samsung Electronics	3.5"
CD-ROM Drive	SCR-831	63PH400104	Samsung Electronics	24X
CPU	Pentium MMX	none	Intel Corporation	233MHz
Memory	SDRAM	none	Samsung Electronics	128MB
Host Chassis	ART586C	TRL0080730	TRL0080730 Art Computer	

1.7 External I/O Cabling

Description	Length (m)	Port/From	Port/To	Remarks
VGA Cable	0.2	miniDIN/EUT	Dsub/Host	Shielded
Keyboard Cable	1.8	Keyboard/Host	Keyboard	Shielded
Mouse Cable	2.0	Mouse/Host	Mouse	Shielded
Printer Cable	1.5	Parallel/Host	Printer/Centronics	Shielded
Modem Cable	2.0	Serial/Host	Modem/RS232	Shielded
Glass Touch Screen	0.5	Serial/Host	Controller/RS232	Unshielded
USB Cable	1.0	USB/Host	ZIP Drive/USB	Shielded

2.. System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as normally used by a typical user). Worst case conducted and radiated emissions are presented in section 3.5 and section 4.6 of this report.

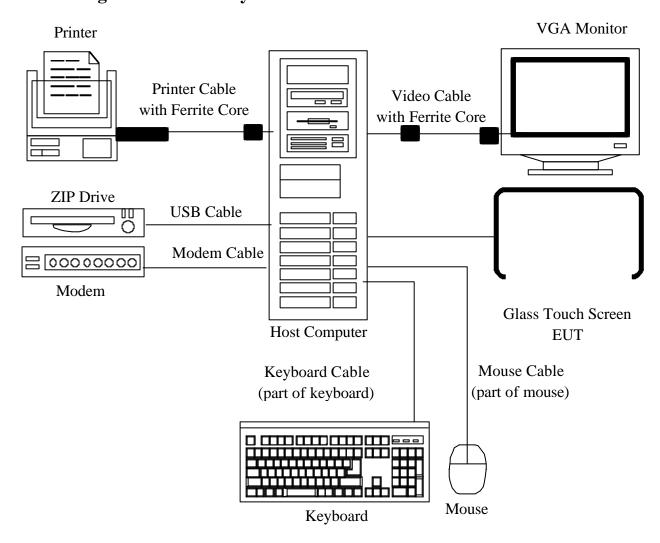
The test was performed as below.

- 1. Attached Glass Touch Screen to front of Monitor with both side adhesive tape.
- 2. Connected control PCB cable to RS-232 Input of Host Computer.

2.2 EUT Exercise

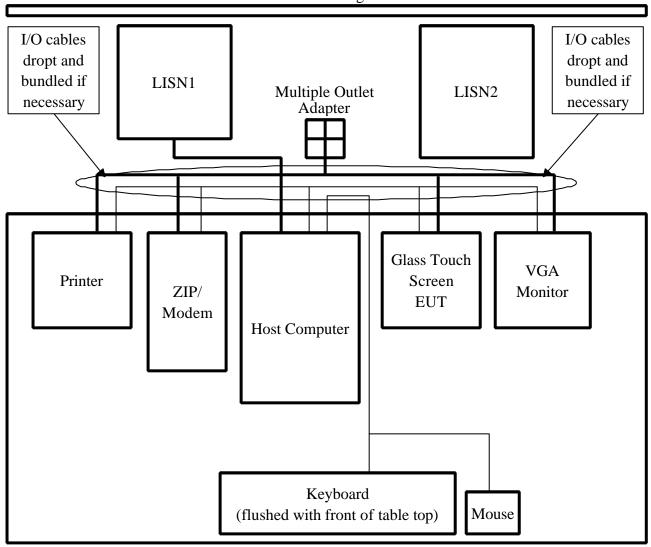
The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The test software, supplied by the client, running on Windows 98SE operating system.

2.3 Special Accessories


As shown in section 2.5, all interface cables used for compliance testing are non-shielded as normally supplied or by use respective component manufacturers.

2.4 Block Diagram

The EUT block diagram is presented in Appendix B as reference.


2.5 Configuration of Test System

2.6 Conducted Emission Test Setup Block Diagram

Vertical Conducting Surface

Wooden Table (1.5m x 0.8m x 0.8m)

3.. Conducted Emission Test

3.1 **EUT Setup**

The measurement was performed in the screen room of test site, using the setup in accordance with ANSI C63.4-1992 conducted emission measurement procedure.

The EUT was connected with RS-232 cable to Input of Host Computer.. The host computer was placed on the center and back edge of the test table. The printer, modem were placed on one side of the host computer with the Monitor and EUT on the other side. The rear of the host computer and all support equipments were flushed with the rear and sides of the tabletop. The keyboard was placed in front of the host computer, flushed with the front of the tabletop. The mouse was placed flushed with the back of the keyboard.

Spacing between the peripherals was approximately 10 centimeters.

3.2 Test Equipment Setup

The spectrum analyzer was configured during the conduction test in as follows:

Start Frequency450kHzStop Frequency30MHzResolution Bandwidth9kHzSweep TimeAutoDetector ModeOP

3.3 Test Procedure

During the conducted emission test, the host computer power cord was connected to the auxiliary outlet of the LISN1 and all other peripherals power cords were connected to the multiple outlet adapter of the LISN2.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance using all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (less than -4dBuV). Quasi-peak readings are distinguished with a "QP".

The conducted emission test was performed with EUT exercise program loaded, and the emissions were scanned between 0.45MHz to 30MHz on the LINE side and NEUTRAL side, herein referred to as L and N, respectively. The final test data for this test configuration is recorded in the table listed under section 3.5 of this report.

3.4 Summary of Test Results

According to the data in section 3.5, the EUT complied with the FCC Part 15 Class B standards, and had the worst margin reading of:

-14.6dB at 11.264MHz in the LINE(NEUTRAL) side with the Seventeam Electronics, Model ST-250GL ATX power supply.

3.5 Conducted Emission Test Data

	Line Conduc	FCC Part15 Class B				
Frequency Amplitude		Detector Phase		Liı	Margin	
(MHz)	(dBuV)	Qp/Ave/Peak	Line/Neutral	(dBuV/m)	(uV/m)	(dB)
0.481	27.3	QP	N	48.0	250	-20.7
0.624	28.6	QP	Н	48.0	250	-19.4
1.013	28.9	QP	Н	48.0	250	-19.1
1.802	29.9	QP	N	48.0	250	-18.1
2.204	34.8	QP	Н	48.0	250	-13.2
2.356	33.5	QP	N	48.0	250	-14.5
11.856	28.0	QP	N	48.0	250	-20.0
17.012	28.6	QP	Н	48.0	250	-19.4
19.562	28.0	QP	Н	48.0	250	-20.0
22.003	27.8	QP	N	48.0	250	-20.2
22.286	34.5	QP	Н	48.0	250	-13.5
24.008	28.7	QP	N	48.0	250	-19.3

3.6 Plot of Conducted Emission Test Data

Plot(s) of conducted emission test data for the Seventeam Electronics, Model ST-250GL ATX power supply is presented in Appendix A of this report as reference.

4.. Radiated Emission Test

4.1 EUT Setup

The radiated emission tests were performed in the open area test site, using the setup in accordance with ANSI C63.4-1992 radiated emission measurement procedure.

The VGA monitor with EUT and all peripherals were place on the test table same as section 3.1.. Spacing between the peripherals was approximately 10 centimeters.

4.2 Test Equipment Setup

During the radiated emission test, the EMI test receiver was set with the following configurations:

Start Frequency	. 30MHz
Stop Frequency	. 1000MHz
IF Bandwidth	. 120kHz
Sweep Time	. 10msec
Detector Mode	. QP

4.3 Test Procedure

For the radiated emission test, the host computer and all support equipments power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the six (6) highest emissions to verify that the EUT complied with all installation combination.

The radiated emission test was performed with EUT exercise program loaded, and the emissions were scanned between 30MHz to 1000MHz. At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum emission levels. Measurements were taken using both HORIZONTAL and VERTICAL antenna polarization. The final test data for this test configuration is recorded in the table listed under section 4.6 of this report.

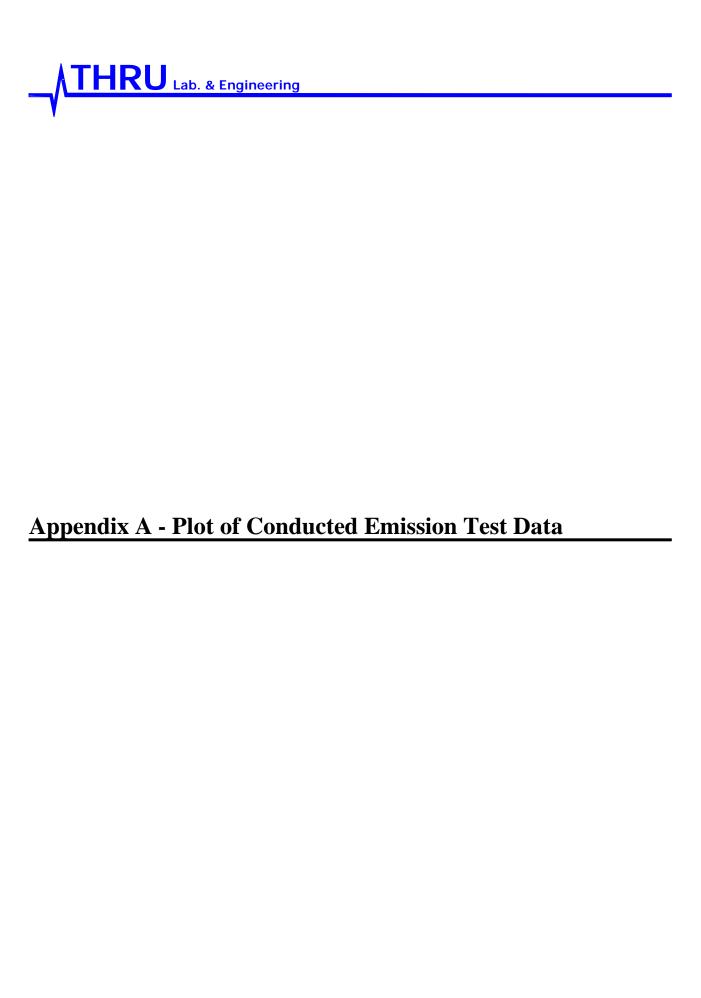
4.4 Corrected Amplitude and Margin Calculation

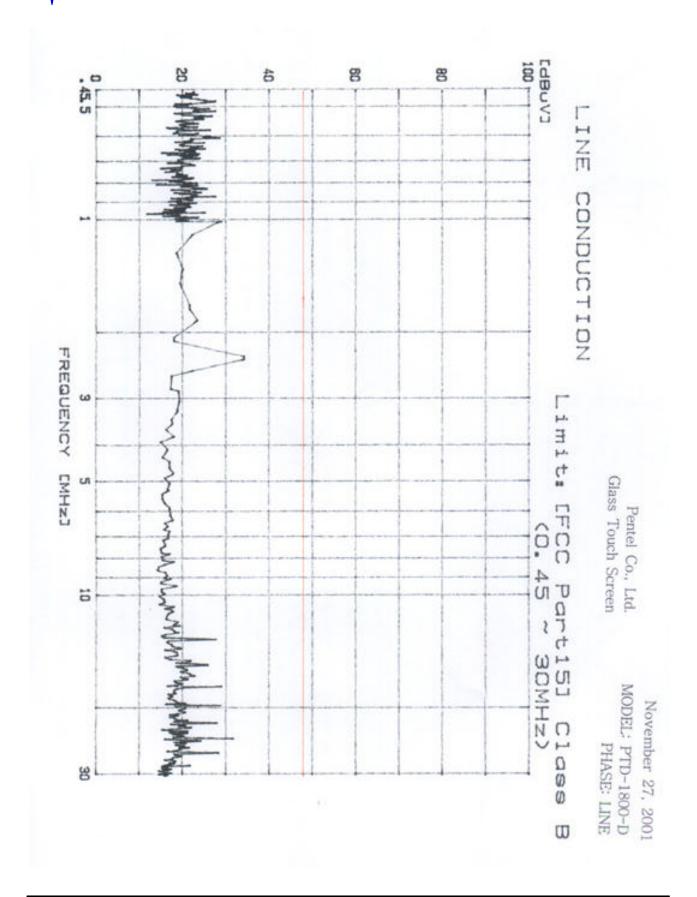
The Corrected Amplitude is calculated by adding the antenna and cable Correction Factor from the Indicated Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Amplitude + Antenna Factor + Cable Factor

The Margin column of the data table in section 4.6 indicates the degree of compliance with the applicable limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Applicable Limit


4.5 Summary of Test Results


According to the data in section 4.6, the EUT complied with the FCC Part 15 Class B standards, and had the worst margin of:

-7.0 dB at 132.36MHz in the HORIZONTAL polarization at an antenna-to-EUT distance of 3 meters.

4.6 Radiated Emission Test Result Data

Indicated		Ante	enna	Table		ection ctor	Corrected Amplitude	FCC P	art15 Cl	ass B
Freq.	Ampl.	Polar.	Height	Angle	Ant.	Cable	(dBuV/m)	Applicabl	Applicable Limit	
(MHz)	(dBuV/m)	(H/V)	(m)	(deg.)	(dB)	(dB)	(dDu V/III)	(dBuV/m)	(uV/m)	(dB)
33.18	6.7	Н	2.0	270	12.9	0.5	20.1	40.0	100	-19.9
48.06	15.6	Н	2.4	130	11.5	0.7	27.8	40.0	100	-12.2
66.78	17.5	Н	3.0	170	5.7	0.9	24.1	40.0	100	-15.9
71.58	16.6	Н	3.1	50	5.5	1.0	23.1	40.0	100	-16.9
75.41	18.7	Н	3.4	100	6.5	1.1	26.3	40.0	100	-13.7
84.14	18.4	Н	3.9	170	8.8	1.2	28.4	40.0	100	-11.6
120.01	18.5	Н	3.5	90	10.8	1.4	30.7	43.5	150	-12.8
125.04	22.2	Н	2.4	250	11.7	1.5	35.4	43.5	150	-8.1
132.36	21.7	Н	3.1	130	13.2	1.6	36.5	43.5	150	-7.0
144.01	16.6	Н	2.9	230	15.7	1.6	33.9	43.5	150	-9.6
198.00	17.2	Н	1.8	260	13.1	2.1	32.4	43.5	150	-11.1
200.53	17.1	Н	2.0	300	12.9	2.1	32.1	43.5	150	-11.4
240.01	16.1	Н	2.5	90	12.5	2.4	31.0	46.0	200	-15.0
300.70	12.8	Н	2.6	270	16.0	2.9	31.7	46.0	200	-14.3
334.06	18.8	Н	2.9	90	15.8	3.0	37.6	46.0	200	-8.4
415.25	15.1	Н	2.7	270	16.1	3.3	34.5	46.0	200	-11.5
432.10	13.1	Н	2.9	130	16.5	3.4	33.0	46.0	200	-13.0
550.40	15.3	Н	2.0	80	18.4	3.7	37.4	46.0	200	-8.6

