

Test Report No:
2530121R-RFUSV10S-A

TEST REPORT

FCC Rules&Regulations

Product Name	8 inch Touch Screen Table top, 10.1 inch Touch Screen Table top
Brand Name	CRESTRON
Model No.	M202404005, M202404006
FCC ID	EROTS80
Applicant's Name / Address	Crestron Electronics, Inc. 15 Volvo Drive, Rockleigh, NJ 07647
Manufacturer's Name	Crestron Electronics, Inc.
Test Method Requested, Standard	FCC CFR Title 47 Part 15 Subpart C ANSI C63.10-2020
Verdict Summary	IN COMPLIANCE
Documented By April Chen	
Tested By Ivan Chuang	
Approved By Alan Chen	
Date of Receipt	2025/03/05
Date of Issue	2025/05/27
Report Version	V1.0

INDEX

	page
Competences and Guarantees.....	4
General Conditions	4
Revision History	5
Summary of Test Result	6
1. General Information.....	7
1.1. EUT Description	7
1.2. EUT Information	8
1.3. Testing Location Information	8
1.4. Measurement Uncertainty	9
1.5. List of Test Equipment	10
2. Test Configuration of EUT.....	11
2.1. Test Condition.....	11
2.2. Test Frequency Mode.....	11
2.3. Measurement Configuration.....	11
2.4. Tested System Details.....	12
2.5. Configuration of tested System	12
2.6. EUT Operating Procedures	12
3. AC Power Line Conducted Emission	13
3.1. Test Setup	13
3.2. Test Limit	13
3.3. Test Procedure	13
3.4. Test Result of AC Power Line Conducted Emission	13
4. Occupied Bandwidth	14
4.1. Test Setup	14
4.2. Test Limit	14
4.3. Test Procedures	14
4.4. Test Result of Occupied Bandwidth	14
5. Maximum output power (EIRP)	15
5.1. Test Setup	15
5.2. Test Limit	15
5.3. Test Procedures	16
5.4. Test Result of Maximum output power (EIRP)	16
6. Radiated Emission	17
6.1. Test Setup	17
6.2. Test Limit	18
6.3. Test Procedure	19

6.4. Test Result of Radiated Emissions.....	19
7. Frequency Stability	20
7.1. Test Setup	20
7.2. Limit.....	20
7.3. Test Procedure	20
7.4. Test Result of Frequency Stability.....	20

Appendix A. Test Result of AC Power Line Conducted Emission

Appendix B. Test Result of Occupied Bandwidth

Appendix C. Test Result of Maximum output power (EIRP)

Appendix D. Test Result of Radiated Emissions

Appendix E. Test Result of Frequency Stability

Appendix F. Test Setup Photograph

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General Conditions

1. The test results relate only to the samples tested.
2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
3. This report must not be used to claim product endorsement by TAF or any agency of the government.
4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report	2025/05/27

Summary of Test Result

Report Clause	Test Items	Result (PASS/FAIL)	Remark
3	AC Power Line Conducted Emission	--	-
4	Occupied Bandwidth	PASS	-
5	Maximum output power (EIRP)	PASS	-
6	Radiated Emission	PASS	-
7	Frequency Stability	PASS	-

Comments and Explanations

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1. General Information

1.1. EUT Description

Frequency Band	61.0 ~ 61.5 GHz
Operating Frequency / Channel Number	61.20 GHz / 1 Channel
Type of Modulation	FMCW

The difference for each model is shown as below:

Model No.	Description
M202404005	Screen size 8 Inch Table top
M202404006	Screen size 10.1 Inch Table top

From the above models, model: M202404006 was selected as representative model for the test and its data was recorded in this report.

Antenna Information				
Item.	Brand Name	Model No.	Type	Antenna Gain (dBi)
1	infineon	BGT60LTR11SAIP	Microstrip	6

Working Frequency of Each Channel	
Channel	Frequency (GHz)
1	61.2

Note: The above EUT information is declared by the manufacturer.

1.2. EUT Information

EUT Power Type	From PoE
----------------	----------

1.3. Testing Location Information

USA	FCC Designation Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.
	Linkou Laboratory
Address	No. 85, Wenlin St., Linkou Dist., New Taipei City 244017, Taiwan, R.O.C.
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.
Phone Number	+886-3-275-7255
Fax Number	+886-3-327-8031

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual	Test Date
Radiated Emission	Temperature (°C)	10~40 °C	23.8 °C	2025/03/24~2025/04/02
	Humidity (%RH)	10~90 %	61.3 %	
RF Conducted Emission	Temperature (°C)	10~40 °C	24.3 °C	2025/03/28
	Humidity (%RH)	10~90 %	61.4 %	

1.4. Measurement Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test item	Uncertainty
AC Power Line Conducted Emission	± 3.50 dB
Occupied Bandwidth	± 1580.61 Hz
Maximum output power (EIRP)	± 4.02 dB
Radiated Emission	9kHz~30MHz: ± 3.88 dB 30MHz~1GHz: ± 4.42 dB 1GHz~18GHz: ± 4.28 dB 18GHz~40GHz: ± 3.90 dB 40GHz~50GHz: ± 5.06 dB 50GHz~325GHz: ± 5.71 dB
Frequency Stability	± 1580.61 Hz

1.5. List of Test Equipment

For RF Conducted Emission / HY-SR03

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Temperature Chamber	KSON	THS-D4T-100	A0606	2025/02/24	2026/02/23
V	DC Power Supply	GW Insteek	SPD-3606	GEQ820915	2024/08/05	2025/08/04
V	Spectrum Analyzer	Keysight	N9030B	MY56320509	2024/07/19	2025/07/18
V	Horn Antenna	VDI	RCH015 (50-75GHz)	N/A	2024/12/17	2027/12/16

Note:

1. The mm-Wave VDI equipment (above 50GHz) is calibrated every three years, the other equipment is calibrated every year.
2. The test instruments marked with "V" are used to measure the final test results.

For Radiated Measurements / HY-CB02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Loop Antenna	AMETEK	HLA6121	49611	2025/02/18	2026/02/17
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-675	2023/08/09	2025/08/08
V	Horn Antenna	RF SPIN	DRH18-E	210503A18ES	2024/02/29	2026/02/28
V	Horn Antenna	Com-Power	AH-840	101101	2023/12/04	2025/12/03
V	Horn Antenna with waveguide adapter	QuinStar	QWH-QPRR00	1409700013	2023/10/19	2026/10/18
V	Pre-Amplifier	SGH	SGH0301	20230308-1	2025/02/06	2026/02/05
V	Pre-Amplifier	SGH	PRAMP118	20200702	2025/01/10	2026/01/09
V	Pre-Amplifier	MICZEN	MZLNA1850GAC40	WB0103001	2025/01/10	2026/01/09
V	Preamplifier	EMCI	EMC335045SE	980639	2025/01/10	2026/01/09
V	Coaxial Cable	SGH	SGH40	HC360-2.4M2.4M-1M-202108-1	2025/01/10	2026/01/09
V	Coaxial Cable	SGH	SGH40	HC360-2.4M/2.4M-3M-202108-1	2025/01/10	2026/01/09
V	Horn Antenna	VDI	RCH015 (50-75GHz)	--	2024/12/17	2027/12/16
V	Horn Antenna	VDI	RCH010 (75-110GHz)	--	2024/12/17	2027/12/16
V	Horn Antenna	VDI	RCH08 (90-140GHz)	--	2024/12/17	2027/12/16
V	Horn Antenna	VDI	RCH05 (140-220GHz)	--	2024/12/17	2027/12/16
V	Horn Antenna	VDI	RCH03 (220-330GHz)	--	2024/12/17	2027/12/16
V	Down Convertor (SAX156)	VDI	N9029AV15(AT0-55847)	US54250119	2024/12/17	2027/12/16
V	Down Convertor (SAX902)	VDI	N9029AV10(AT0-74929)	US53250010	2024/12/17	2027/12/16
V	Down Convertor (SAX091)	VDI	N9029AV08(AT0-59571)	US53250004	2024/12/17	2027/12/16
V	Down Convertor (SAX090)	VDI	N9029AV05(AT0-60029)	US53250004	2024/12/17	2027/12/16
V	Down Convertor (SAX214)	VDI	N9029AV03(AT0-57775)	US53250006	2024/12/17	2027/12/16
V	EMI Test Receiver	R&S	ESR3	102793	2024/12/06	2025/12/05
V	Spectrum Analyzer	R&S	FSV3044	101113	2025/01/22	2026/01/21
V	Spectrum Analyzer	Keysight	N9030B	MY56320509	2024/07/19	2025/07/18
V	Coaxial Cable	SGH	HA800	GD20110223-2	2025/01/10	2026/01/09
V	Coaxial Cable	SGH	HA800	GD20110222-4	2025/01/10	2026/01/09
V	Coaxial Cable	SGH	SGH18	2021005-2	2025/01/10	2026/01/09
V	Coaxial Cable	SGH	SGH18	202108-5	2025/01/10	2026/01/09

Note:

1. Bi-Log Antenna and Horn Antenna (AH-840) are calibrated every two years, VDI and Millitech equipment are calibrated every three years, other equipment is calibrated every year.
2. The test instruments marked with "V" are used to measure the final test results.
3. Test Software Version: e3 230303 dekra V9.

2. Test Configuration of EUT

2.1. Test Condition

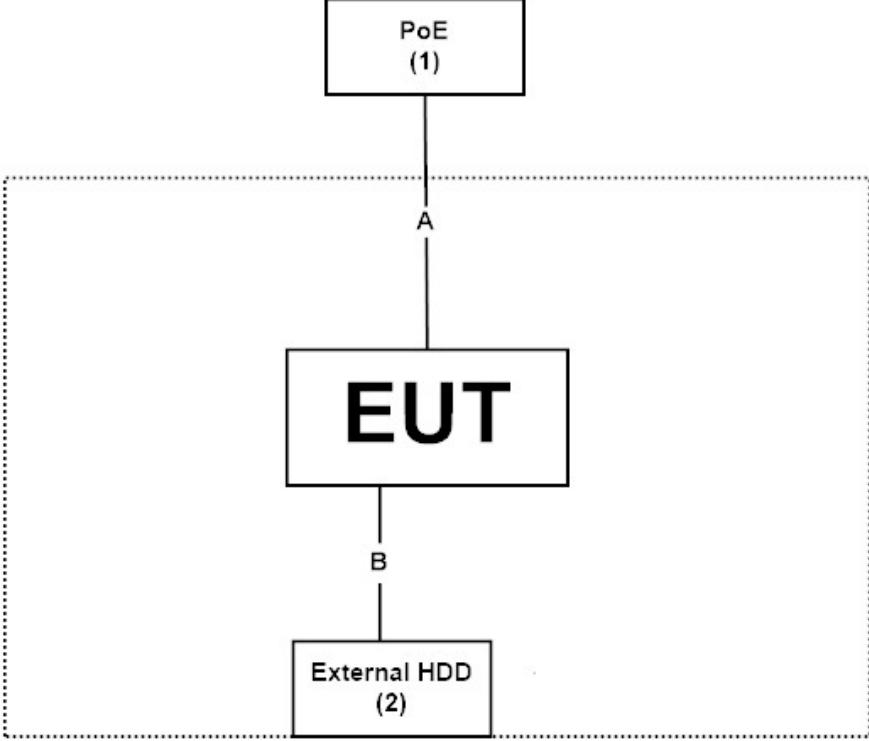
EUT Operational Condition	
Testing Voltage	DC 48V

2.2. Test Frequency Mode

Test Software Version	N/A
-----------------------	-----

Modulation	Frequency (GHz)	Power Setting
FMCW	61.2	NA

2.3. Measurement Configuration

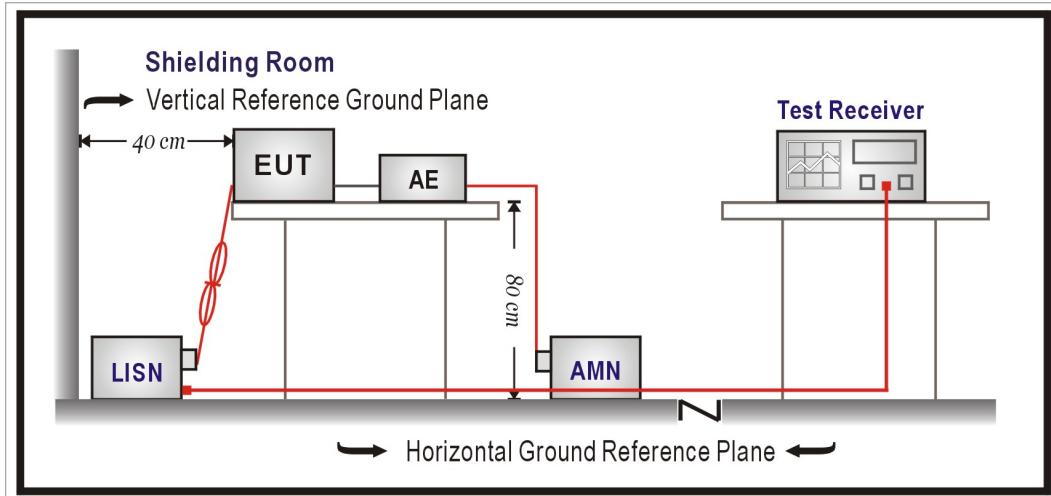

Test Mode	Mode 1: Transmit
-----------	------------------

Note: Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.4. Tested System Details

No.	Equipment	Brand Name	Model No.	Serial No.	Power Cord
1	PoE	NETGEAR	GS305EPP	N/A	N/A
2	External HDD	Transcend	TS1TSJ25MC	F30467-0003	N/A

2.5. Configuration of tested System


Connection Diagram	
Signal Cable Type	Signal Cable Description
A	LAN Cable
B	USB Cable

2.6. EUT Operating Procedures

1	Setup the EUT as shown in Section 2.5.
2	Provide the DC Power Source, Start transmits continually
3	Configure the test mode, the test channel.
4	Verify that the EUT works properly.

3. AC Power Line Conducted Emission

3.1. Test Setup

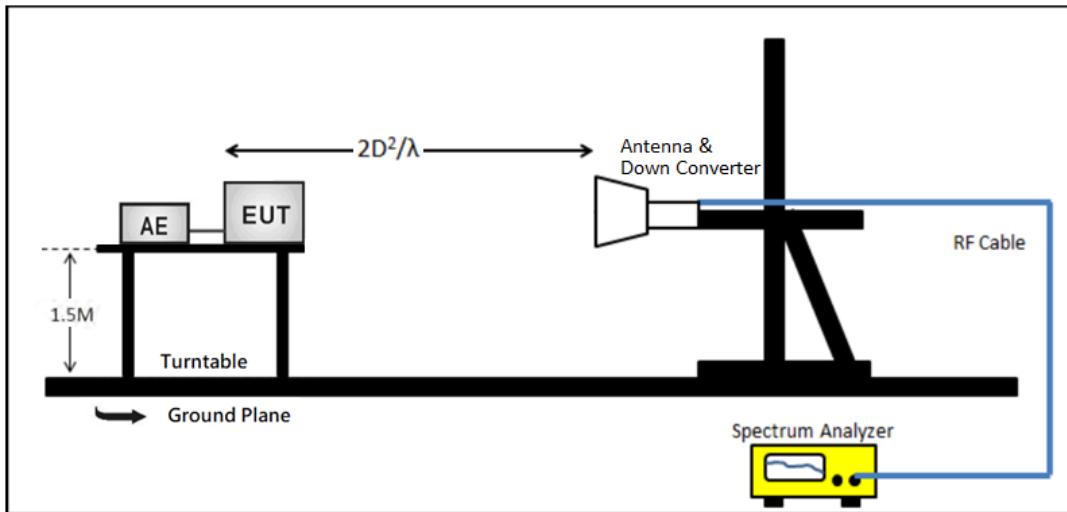
3.2. Test Limit

Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Remarks: In the above table, the tighter limit applies at the band edges.

3.3. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50 ohm /50 uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs.) Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2020 on conducted measurement.


Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz.

3.4. Test Result of AC Power Line Conducted Emission

Refer as Appendix A

4. Occupied Bandwidth

4.1. Test Setup

4.2. Test Limit

Within the designated 57-71GHz frequency band.

(15.255(c)(2)(v) For fixed field disturbance sensors within the frequency band 61.0-61.5 GHz)

4.3. Test Procedures

The occupied bandwidth (OBW) is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

Use the following spectrum analyzer settings:

1. Span equal to approximately 1.5 times the OBW, centered on the carrier frequency.
2. RBW, prefer 1% to 5% of OBW, or a minimum of 1 MHz if this is not possible due to a large OBW
3. VBW approximately $3 \times$ RBW
4. Set the reference level of the instrument as required to reduce the chance of the signal amplitude exceeding the maximum spectrum analyzer input mixer level for linear operation.
5. Sweep = No faster than coupled (auto) time.
6. Detector function = peak.
7. Trace = max-hold.


Note: The RBW and VBW were setting up to the limitations of the test equipment.

4.4. Test Result of Occupied Bandwidth

Refer as Appendix B

5. Maximum output power (EIRP)

5.1. Test Setup

5.2. Test Limit

FCC 15.255(c)(2)(v): Within the 57-71 GHz band, emission levels shall not exceed the following equivalent isotropically radiated power (EIRP):

For fixed field disturbance sensors other than those operating under the provisions of paragraph (c)(2)(v) of this section, For field disturbance sensors/radars that occupy 500 MHz bandwidth or less that are contained wholly within the frequency band 61.0-61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0-61.5 GHz band.

5.3. Test Procedures

Maximum power (EIRP) –Averaging detector

Note: The maximum power (averaging detector) measurements are performed using the “channel power” measurement capability and integrated over the 99% OBW to obtain the result.

1. Measurement capability of instrument = channel power
2. Set RBW = 1MHz
3. Set VBW \geq 3 x RBW
4. span to 2 x to 3 x the OBW
5. Channel bandwidth setting of instrument \geq OBW
6. Detector = power averaging (rms)
7. Set number of points in sweep $\geq 2 \times$ span / RBW
8. Sweep time=auto-couple
9. Trace = averaging

Maximum peak power (EIRP) –Peak detector

1. Set RBW = 1MHz
2. Set VBW \geq 3 x RBW
3. span to 2 x to 3 x the OBW
4. Detector = Peak
5. Set number of points in sweep $\geq 2 \times$ span / RBW
6. Sweep time=auto-couple
7. Trace = max-hold

Measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

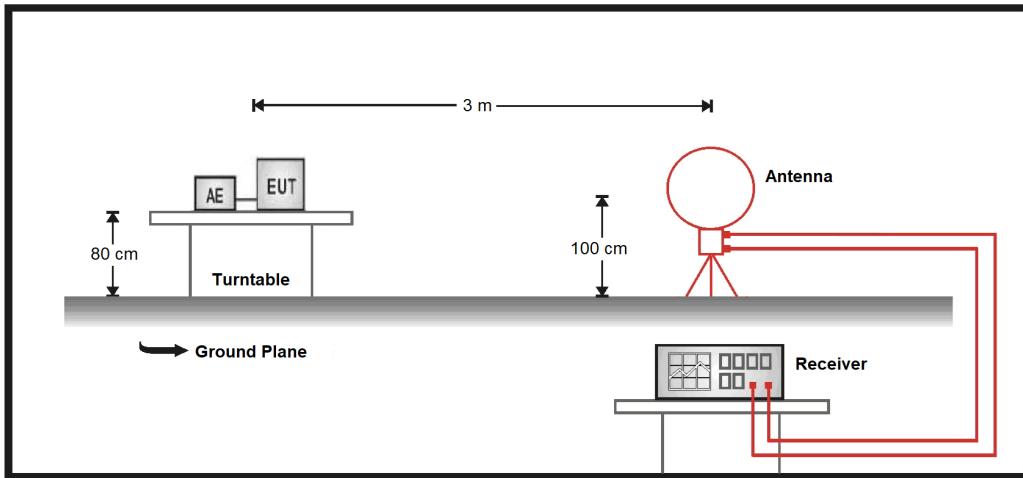
The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2020 Section 9. on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is above 1GHz is 1MHz.

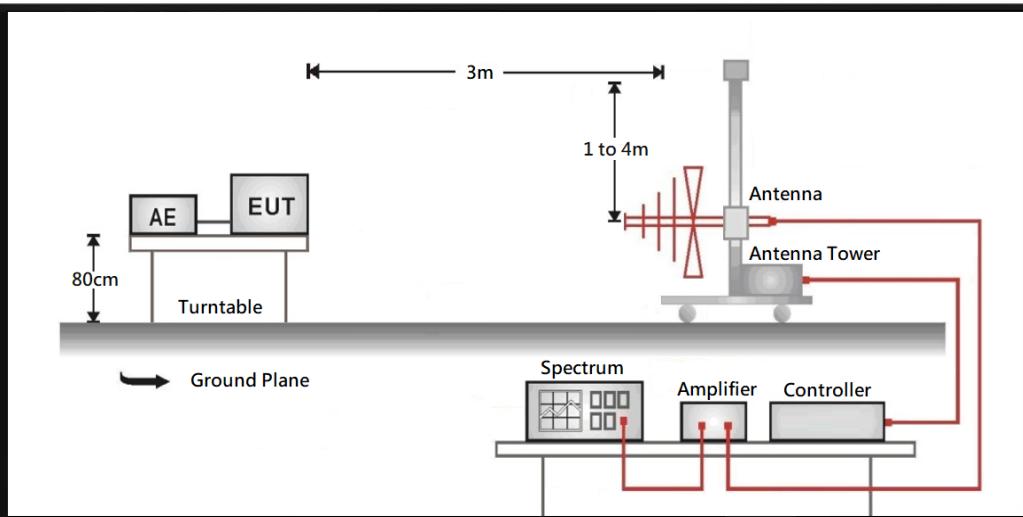
Radiated emission measurements above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

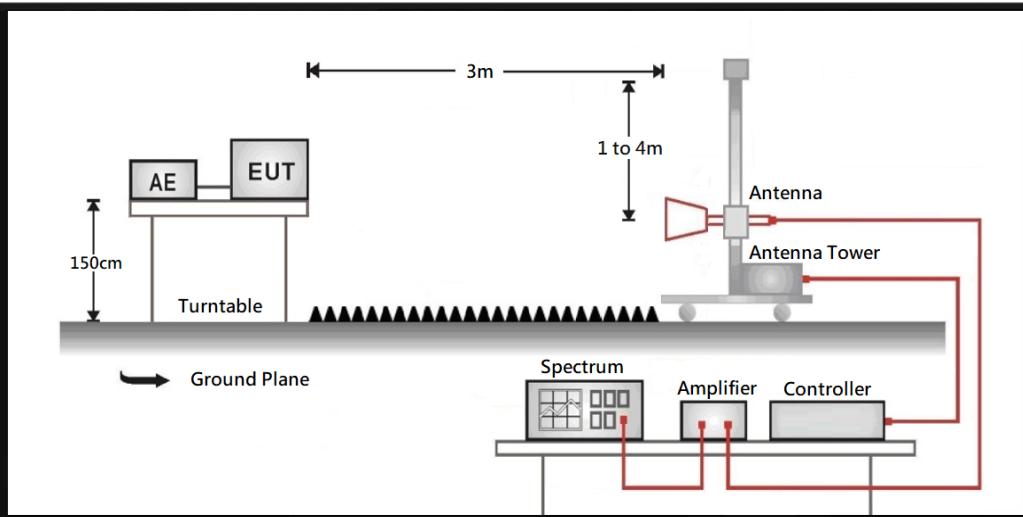
The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

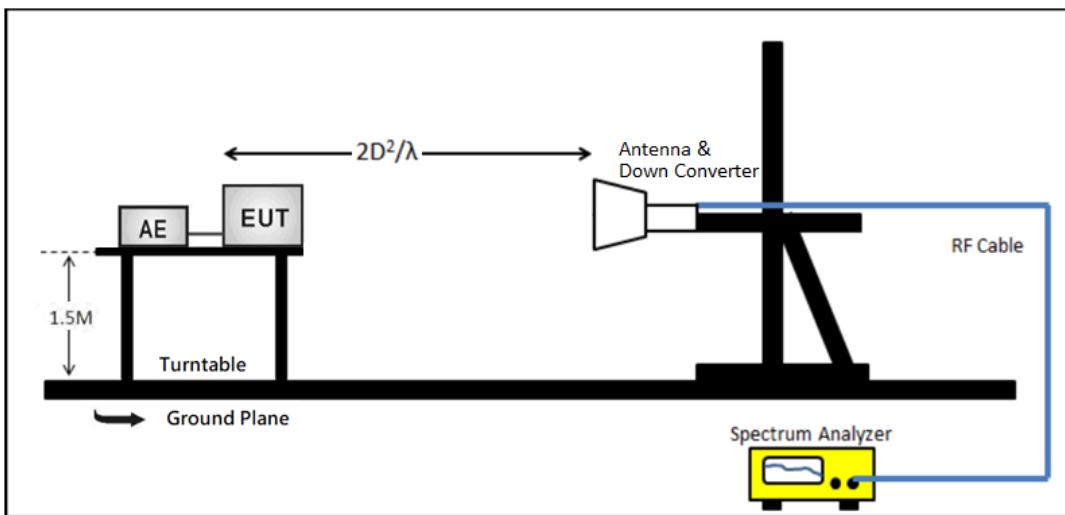

5.4. Test Result of Maximum output power (EIRP)

Refer as Appendix C


6. Radiated Emission

6.1. Test Setup


9kHz ~ 30 MHz


30 MHz ~ 1 GHz

Above 1 GHz

Above 50 GHz

6.2. Test Limit

Frequency (MHz)	Field strength (uV/m)	Field strength (dBuV/m)	Measurement distance (m)
0.009 – 0.490	$2400/F(\text{kHz})$	$20 \log (2400/F(\text{kHz}))$	300
0.490 – 1.705	$24000/F(\text{kHz})$	$20 \log (24000/F(\text{kHz}))$	30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW / cm² at a distance of 3 meters.

Remarks:

1. Field strength (dBuV/m) = 20 log Field strength (uV/m)
2. In the Above Table, the tighter limit applies at the band edges.
3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

6.3. Test Procedure

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2020 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and

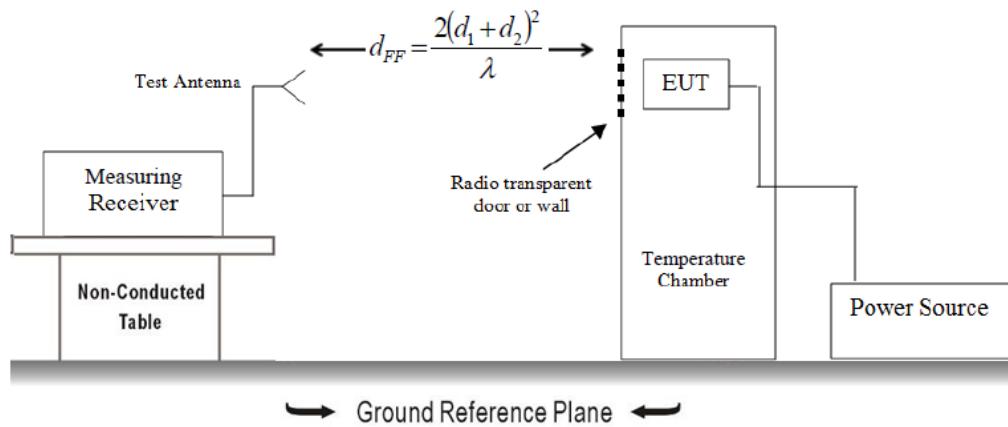
30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bi-Log antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna.

The measurement frequency range from 9kHz – 200GHz was investigated.


For measurements above 40 GHz, the effects of reflections were minimized as required by KDB 414788 D01 and ANSI C63.10-2020 Clause 5.2, and a site source (signal generator with up-converter) was used before testing to confirm that the measurement results are not affected by reflections.

6.4. Test Result of Radiated Emissions

Refer as Appendix D

7. Frequency Stability

7.1. Test Setup

7.2. Limit

Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation.

7.3. Test Procedure

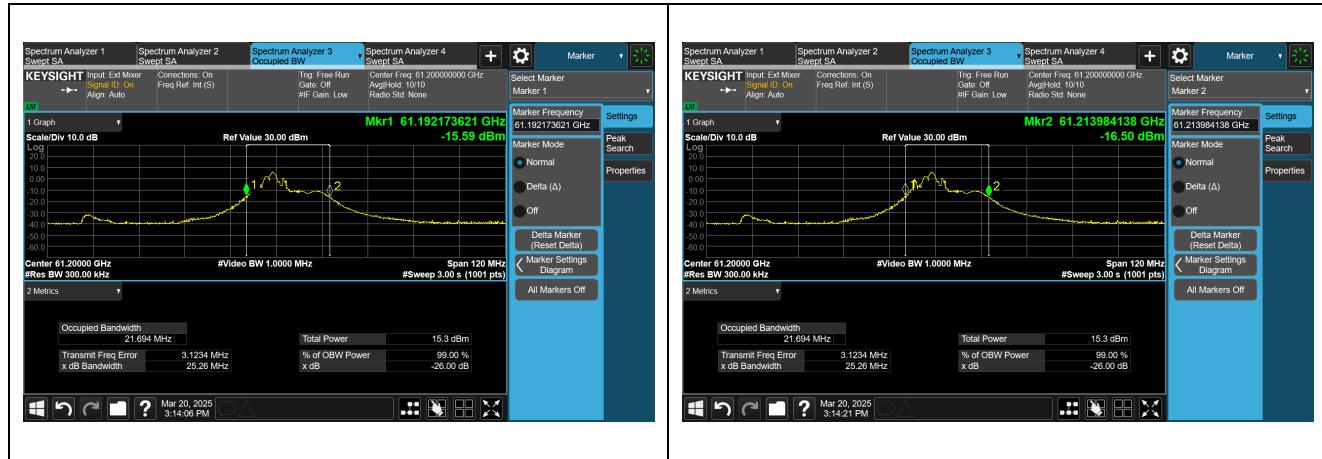
The carrier frequency of the transmitter is measured at room temperature. (20°C to provide a reference) At 10 °C intervals of temperatures between -30 °C and +50 °C at the manufacturer's rated supply voltage, and At +20 °C temperature and $\pm 15\%$ supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

Measurement data showing variation in transmitter output frequency from a cold start and the elapsed time necessary for the frequency to stabilize within the applicable tolerance. Tests shall be made after temperature stabilization at each of the ambient temperature levels; the lower temperature limit, 0° centigrade and + 30° centigrade with no primary power applied.

Beginning at each temperature level, While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 min, 5 min, and 10 min after the EUT is energized. Four measurements in total are made.. During each test, the ambient temperature shall not be allowed to rise more than 10° centigrade above the respective beginning ambient temperature level.

7.4. Test Result of Frequency Stability

Refer as Appendix E


Appendix A. Test Result of AC Power Line Conducted Emission

Owing to the EUT use DC-Powered, the test item is not performed.

Appendix B. Test Result of Occupied Bandwidth

M202404006

Test Frequency (GHz)	Measurement Value (fL) (GHz)	Measurement Value (fH) (GHz)	Measurement Level (MHz)	Limit (dBm)
61.2	61.192	61.213	21.694	<500MHz

M202404005

Test Frequency (GHz)	Measurement Value (fL) (GHz)	Measurement Value (fH) (GHz)	Measurement Level (MHz)	Limit (dBm)
61.2	61.193	61.213	20.241	<500MHz

Appendix C. Test Result of Maximum output power (EIRP)**M202404006**

Peak Output Power

Test Frequency (GHz)	Measurement Level (dBm)	FMCW Desensitization factor (dB)	EIRP (dBm)	EIRP Limit (dBm)
61.2	9.71	-2.75	12.46	43

Note: EIRP= Measurement Level - FMCW Desensitization factor.


Average Output Power

Test Frequency (GHz)	Measurement Level (dBm)	Limit (dBm)
61.2	-10.03	40

Measurement Level

FMCW Desensitization factor (Chirp Time= 8us)

BWchirp (MHz)	Tchirp (us)	B (MHz)	α (dB)	FMCW Desensitization factor (dB)
21.694	6.000	1.000	0.729	-2.75

Note:

Desensitization factor was calculated from follow equation;

$$\alpha = \frac{1}{\left(1 + \left[\left(\frac{2 \times \ln(2)}{\pi}\right)^2 \times \left(\frac{BW_{Chirp}}{T_{Chirp} \times RBW^2}\right)^2\right]\right)^{0.25}}$$

and

FMCW Desensitization factor = 20 Log (α)

where

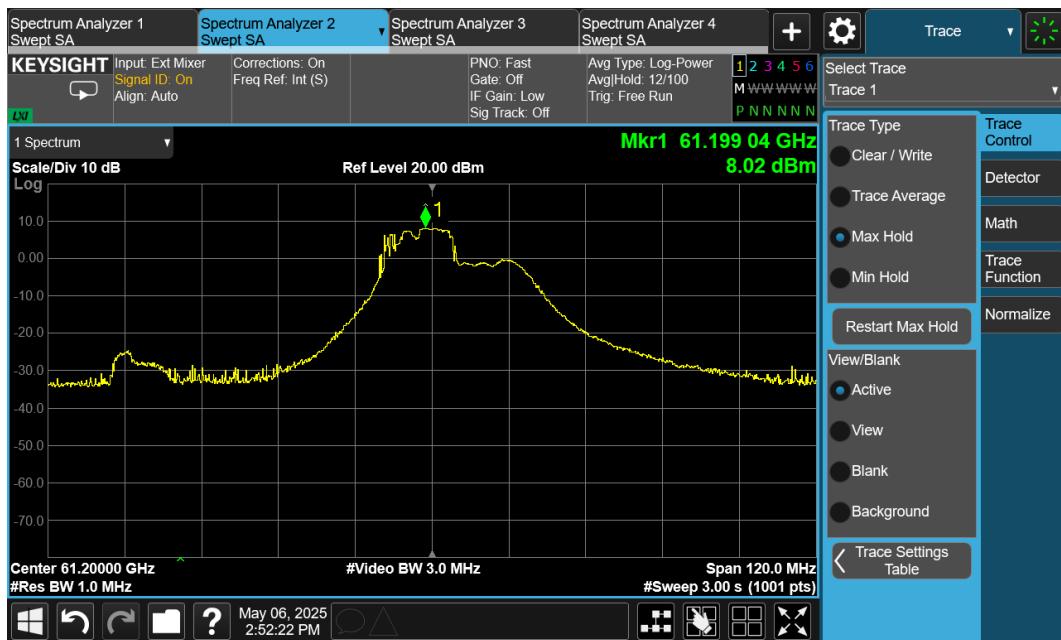
α BW_{Chirp} is the reduction in amplitudes the FMCW Chirp Bandwidth

T_{Chirp} is the FMCW Chirp Time

B is the 3 dB IF Bandwidth = RBW

M202404005

Peak Output Power


Test Frequency (GHz)	Measurement Level (dBm)	FMCW Desensitization factor (dB)	EIRP (dBm)	EIRP Limit (dBm)
61.2	8.02	-1.76	9.80	43

Note: EIRP= Measurement Level - FMCW Desensitization factor.

Average Output Power

Test Frequency (GHz)	Measurement Level (dBm)	Limit (dBm)
61.2	-11.87	40

Measurement Level

FMCW Desensitization factor (Chirp Time= 8us)

BWchirp (MHz)	Tchirp (us)	B (MHz)	α (dB)	FMCW Desensitization factor (dB)
20.241	8.000	1.000	0.817	-1.76

Note:

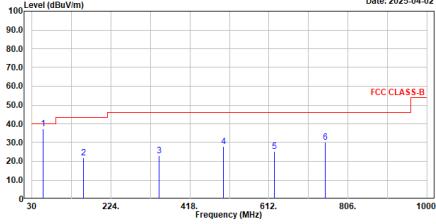
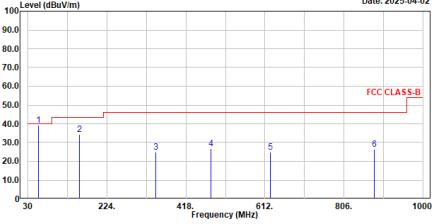
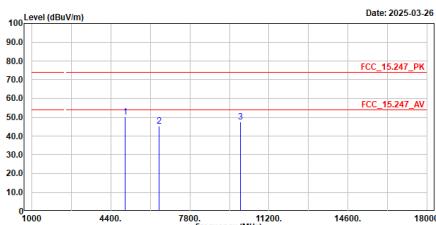
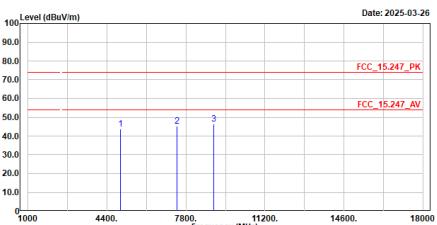
Desensitization factor was calculated from follow equation;

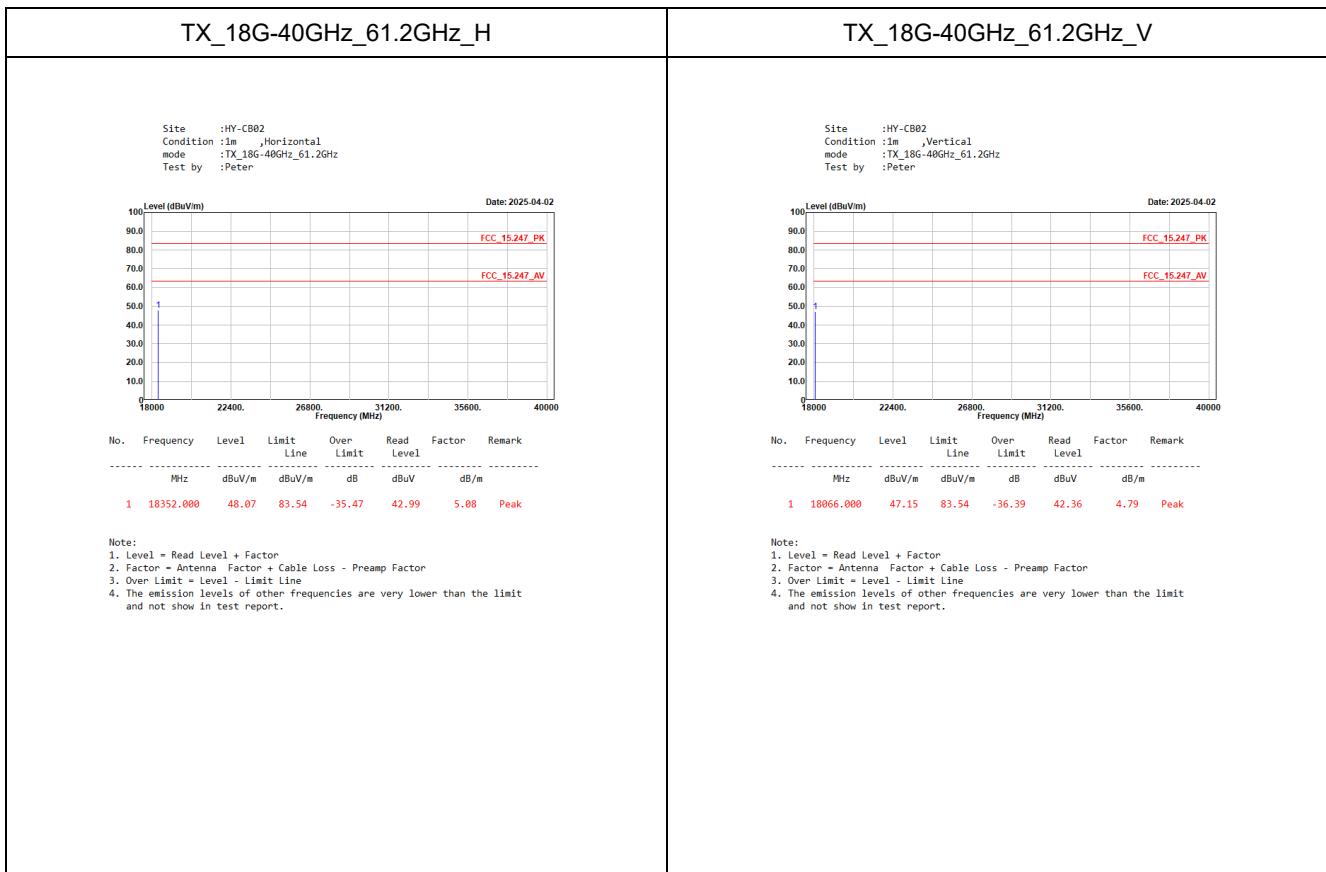
$$\alpha = \frac{1}{\left(1 + \left[\left(\frac{2 \times \ln(2)}{\pi} \right)^2 \times \left(\frac{BW_{Chirp}}{T_{Chirp} \times RBW^2} \right)^2 \right] \right)^{0.25}}$$

and

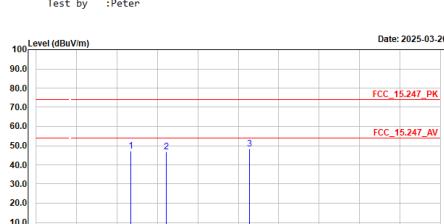
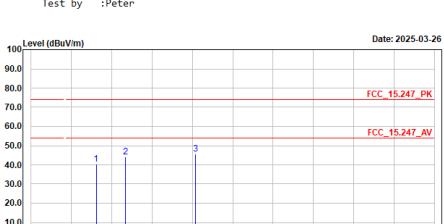
FMCW Desensitization factor = 20 Log (α)

where





α BW_{Chirp} is the reduction in amplitudes the FMCW Chirp Bandwidth


T_{Chirp} is the FMCW Chirp Time

B is the 3 dB IF Bandwidth = RBW



Appendix D. Test Result of Radiated Emissions

M202404006

TX_30M-1GHz_61.2GHz_H	TX_30M-1GHz_61.2GHz_V																																																																																																																
<p>Site :HY-CB02 Condition :3m ,Horizontal mode :TX_30M-1GHz_61.2GHz Test by :Peter</p> <p>100 Level (dBuV/m) Date: 2025-04-02</p> <p>No. Frequency Level Limit Read Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dB)</th> <th>Factor</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>57.160</td><td>37.54</td><td>40.00</td><td>-2.46</td><td>62.06</td><td>-24.52</td><td>QP</td></tr> <tr><td>2</td><td>157.070</td><td>21.79</td><td>43.50</td><td>-21.71</td><td>46.27</td><td>-24.48</td><td>QP</td></tr> <tr><td>3</td><td>342.340</td><td>23.09</td><td>46.00</td><td>-22.91</td><td>45.67</td><td>-22.58</td><td>QP</td></tr> <tr><td>4</td><td>500.450</td><td>28.04</td><td>46.00</td><td>-17.96</td><td>46.72</td><td>-18.68</td><td>QP</td></tr> <tr><td>5</td><td>625.580</td><td>25.48</td><td>46.00</td><td>-26.60</td><td>41.32</td><td>-19.92</td><td>QP</td></tr> <tr><td>6</td><td>750.710</td><td>30.21</td><td>46.00</td><td>-15.79</td><td>44.02</td><td>-13.81</td><td>QP</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission under 30MHz was not included since the emission levels are very low against the limit.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark	1	57.160	37.54	40.00	-2.46	62.06	-24.52	QP	2	157.070	21.79	43.50	-21.71	46.27	-24.48	QP	3	342.340	23.09	46.00	-22.91	45.67	-22.58	QP	4	500.450	28.04	46.00	-17.96	46.72	-18.68	QP	5	625.580	25.48	46.00	-26.60	41.32	-19.92	QP	6	750.710	30.21	46.00	-15.79	44.02	-13.81	QP	<p>Site :HY-CB02 Condition :3m ,Vertical mode :TX_30M-1GHz_61.2GHz Test by :Peter</p> <p>100 Level (dBuV/m) Date: 2025-04-02</p> <p>No. Frequency Level Limit Read Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dB)</th> <th>Factor</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>56.190</td><td>39.31</td><td>40.00</td><td>-0.69</td><td>63.70</td><td>-24.39</td><td>QP</td></tr> <tr><td>2</td><td>156.100</td><td>34.25</td><td>43.50</td><td>-9.25</td><td>58.73</td><td>-24.48</td><td>QP</td></tr> <tr><td>3</td><td>343.310</td><td>25.06</td><td>46.00</td><td>-20.94</td><td>47.64</td><td>-22.58</td><td>QP</td></tr> <tr><td>4</td><td>480.080</td><td>26.87</td><td>46.00</td><td>-19.13</td><td>45.89</td><td>-19.02</td><td>QP</td></tr> <tr><td>5</td><td>625.580</td><td>24.94</td><td>46.00</td><td>-21.06</td><td>40.86</td><td>-15.92</td><td>QP</td></tr> <tr><td>6</td><td>880.690</td><td>26.55</td><td>46.00</td><td>-19.45</td><td>39.33</td><td>-12.78</td><td>QP</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission under 30MHz was not included since the emission levels are very low against the limit.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark	1	56.190	39.31	40.00	-0.69	63.70	-24.39	QP	2	156.100	34.25	43.50	-9.25	58.73	-24.48	QP	3	343.310	25.06	46.00	-20.94	47.64	-22.58	QP	4	480.080	26.87	46.00	-19.13	45.89	-19.02	QP	5	625.580	24.94	46.00	-21.06	40.86	-15.92	QP	6	880.690	26.55	46.00	-19.45	39.33	-12.78	QP
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark																																																																																																										
1	57.160	37.54	40.00	-2.46	62.06	-24.52	QP																																																																																																										
2	157.070	21.79	43.50	-21.71	46.27	-24.48	QP																																																																																																										
3	342.340	23.09	46.00	-22.91	45.67	-22.58	QP																																																																																																										
4	500.450	28.04	46.00	-17.96	46.72	-18.68	QP																																																																																																										
5	625.580	25.48	46.00	-26.60	41.32	-19.92	QP																																																																																																										
6	750.710	30.21	46.00	-15.79	44.02	-13.81	QP																																																																																																										
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark																																																																																																										
1	56.190	39.31	40.00	-0.69	63.70	-24.39	QP																																																																																																										
2	156.100	34.25	43.50	-9.25	58.73	-24.48	QP																																																																																																										
3	343.310	25.06	46.00	-20.94	47.64	-22.58	QP																																																																																																										
4	480.080	26.87	46.00	-19.13	45.89	-19.02	QP																																																																																																										
5	625.580	24.94	46.00	-21.06	40.86	-15.92	QP																																																																																																										
6	880.690	26.55	46.00	-19.45	39.33	-12.78	QP																																																																																																										
TX_1G-18GHz_61.2GHz_H	TX_1G-18GHz_61.2GHz_V																																																																																																																
<p>Site :HY-CB02 Condition :3m ,HORIZONTAL mode :TX_1G-18GHz_61.2GHz Test by :Peter</p> <p>100 Level (dBuV/m) Date: 2025-03-26</p> <p>No. Frequency Level Limit Read Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dB)</th> <th>Factor</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>4998.400</td><td>50.33</td><td>74.00</td><td>-23.67</td><td>56.86</td><td>-6.53</td><td>Peak</td></tr> <tr><td>2</td><td>6480.800</td><td>45.28</td><td>74.00</td><td>-28.72</td><td>47.65</td><td>-2.37</td><td>Peak</td></tr> <tr><td>3</td><td>9984.500</td><td>47.64</td><td>74.00</td><td>-26.36</td><td>45.08</td><td>2.56</td><td>Peak</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission levels of other frequencies are very lower than the limit and not show in test report.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark	1	4998.400	50.33	74.00	-23.67	56.86	-6.53	Peak	2	6480.800	45.28	74.00	-28.72	47.65	-2.37	Peak	3	9984.500	47.64	74.00	-26.36	45.08	2.56	Peak	<p>Site :HY-CB02 Condition :3m ,VERTICAL mode :TX_1G-18GHz_61.2GHz Test by :Peter</p> <p>100 Level (dBuV/m) Date: 2025-03-26</p> <p>No. Frequency Level Limit Read Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dB)</th> <th>Factor</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>4984.800</td><td>43.78</td><td>74.00</td><td>-30.22</td><td>50.34</td><td>-6.56</td><td>Peak</td></tr> <tr><td>2</td><td>7407.300</td><td>45.16</td><td>74.00</td><td>-28.84</td><td>45.24</td><td>-0.08</td><td>Peak</td></tr> <tr><td>3</td><td>9008.700</td><td>46.33</td><td>74.00</td><td>-27.67</td><td>44.84</td><td>1.49</td><td>Peak</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission levels of other frequencies are very lower than the limit and not show in test report.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark	1	4984.800	43.78	74.00	-30.22	50.34	-6.56	Peak	2	7407.300	45.16	74.00	-28.84	45.24	-0.08	Peak	3	9008.700	46.33	74.00	-27.67	44.84	1.49	Peak																																																
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark																																																																																																										
1	4998.400	50.33	74.00	-23.67	56.86	-6.53	Peak																																																																																																										
2	6480.800	45.28	74.00	-28.72	47.65	-2.37	Peak																																																																																																										
3	9984.500	47.64	74.00	-26.36	45.08	2.56	Peak																																																																																																										
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dB)	Factor	Remark																																																																																																										
1	4984.800	43.78	74.00	-30.22	50.34	-6.56	Peak																																																																																																										
2	7407.300	45.16	74.00	-28.84	45.24	-0.08	Peak																																																																																																										
3	9008.700	46.33	74.00	-27.67	44.84	1.49	Peak																																																																																																										

M202404005

TX_30M-1GHz_61.2GHz_H	TX_30M-1GHz_61.2GHz_V																																																																																																																
<p>Site :HY-CB02 Condition :3m ,Horizontal mode :TX_30M-1GHz_61.2GHz Test by :Peter</p> <p>Level (dBuV/m)</p> <p>Date: 2025-04-02</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dBuV)</th> <th>Factor (dB)</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>59.108</td><td>33.29</td><td>40.00</td><td>-6.71</td><td>58.16</td><td>-24.87</td><td>QP</td></tr> <tr><td>2</td><td>158.0408</td><td>23.44</td><td>43.50</td><td>-20.06</td><td>47.92</td><td>-24.48</td><td>QP</td></tr> <tr><td>3</td><td>250.198</td><td>23.95</td><td>46.00</td><td>-22.05</td><td>49.48</td><td>-25.53</td><td>QP</td></tr> <tr><td>4</td><td>500.450</td><td>29.77</td><td>46.00</td><td>-16.23</td><td>48.45</td><td>-18.68</td><td>QP</td></tr> <tr><td>5</td><td>625.580</td><td>30.46</td><td>46.00</td><td>-15.54</td><td>46.38</td><td>-15.92</td><td>QP</td></tr> <tr><td>6</td><td>875.840</td><td>29.07</td><td>46.00</td><td>-16.93</td><td>41.88</td><td>-12.81</td><td>QP</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission under 30MHz was not included since the emission levels are very low against the limit.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark	1	59.108	33.29	40.00	-6.71	58.16	-24.87	QP	2	158.0408	23.44	43.50	-20.06	47.92	-24.48	QP	3	250.198	23.95	46.00	-22.05	49.48	-25.53	QP	4	500.450	29.77	46.00	-16.23	48.45	-18.68	QP	5	625.580	30.46	46.00	-15.54	46.38	-15.92	QP	6	875.840	29.07	46.00	-16.93	41.88	-12.81	QP	<p>Site :HY-CB02 Condition :3m ,Vertical mode :TX_30M-1GHz_61.2GHz Test by :Peter</p> <p>Level (dBuV/m)</p> <p>Date: 2025-04-02</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dBuV)</th> <th>Factor (dB)</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>58.130</td><td>36.37</td><td>40.00</td><td>-3.63</td><td>61.15</td><td>-24.78</td><td>QP</td></tr> <tr><td>2</td><td>154.160</td><td>33.09</td><td>43.50</td><td>-10.41</td><td>57.57</td><td>-24.48</td><td>QP</td></tr> <tr><td>3</td><td>500.450</td><td>25.48</td><td>46.00</td><td>-20.52</td><td>44.16</td><td>-18.68</td><td>QP</td></tr> <tr><td>4</td><td>625.580</td><td>26.33</td><td>46.00</td><td>-19.67</td><td>42.25</td><td>-15.92</td><td>QP</td></tr> <tr><td>5</td><td>750.710</td><td>25.95</td><td>46.00</td><td>-20.05</td><td>39.76</td><td>-13.81</td><td>QP</td></tr> <tr><td>6</td><td>875.840</td><td>26.03</td><td>46.00</td><td>-19.97</td><td>38.84</td><td>-12.81</td><td>QP</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission under 30MHz was not included since the emission levels are very low against the limit.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark	1	58.130	36.37	40.00	-3.63	61.15	-24.78	QP	2	154.160	33.09	43.50	-10.41	57.57	-24.48	QP	3	500.450	25.48	46.00	-20.52	44.16	-18.68	QP	4	625.580	26.33	46.00	-19.67	42.25	-15.92	QP	5	750.710	25.95	46.00	-20.05	39.76	-13.81	QP	6	875.840	26.03	46.00	-19.97	38.84	-12.81	QP
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark																																																																																																										
1	59.108	33.29	40.00	-6.71	58.16	-24.87	QP																																																																																																										
2	158.0408	23.44	43.50	-20.06	47.92	-24.48	QP																																																																																																										
3	250.198	23.95	46.00	-22.05	49.48	-25.53	QP																																																																																																										
4	500.450	29.77	46.00	-16.23	48.45	-18.68	QP																																																																																																										
5	625.580	30.46	46.00	-15.54	46.38	-15.92	QP																																																																																																										
6	875.840	29.07	46.00	-16.93	41.88	-12.81	QP																																																																																																										
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark																																																																																																										
1	58.130	36.37	40.00	-3.63	61.15	-24.78	QP																																																																																																										
2	154.160	33.09	43.50	-10.41	57.57	-24.48	QP																																																																																																										
3	500.450	25.48	46.00	-20.52	44.16	-18.68	QP																																																																																																										
4	625.580	26.33	46.00	-19.67	42.25	-15.92	QP																																																																																																										
5	750.710	25.95	46.00	-20.05	39.76	-13.81	QP																																																																																																										
6	875.840	26.03	46.00	-19.97	38.84	-12.81	QP																																																																																																										
TX_1-18GHz_61.2GHz_H	TX_1-18GHz_61.2GHz_V																																																																																																																
<p>Site :HY-CB02 Condition :3m ,HORIZONTAL mode :TX_1-18GHz_61.2GHz Test by :Peter</p> <p>Level (dBuV/m)</p> <p>Date: 2025-03-26</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dBuV)</th> <th>Factor (dB)</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>4979.700</td><td>47.14</td><td>74.00</td><td>-26.86</td><td>53.71</td><td>-6.57</td><td>Peak</td></tr> <tr><td>2</td><td>6479.100</td><td>46.65</td><td>74.00</td><td>-27.35</td><td>49.02</td><td>-2.37</td><td>Peak</td></tr> <tr><td>3</td><td>9977.700</td><td>48.22</td><td>74.00</td><td>-25.78</td><td>45.66</td><td>2.56</td><td>Peak</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission levels of other frequencies are very lower than the limit and not show in test report.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark	1	4979.700	47.14	74.00	-26.86	53.71	-6.57	Peak	2	6479.100	46.65	74.00	-27.35	49.02	-2.37	Peak	3	9977.700	48.22	74.00	-25.78	45.66	2.56	Peak	<p>Site :HY-CB02 Condition :3m ,VERTICAL mode :TX_1-18GHz_61.2GHz Test by :Peter</p> <p>Level (dBuV/m)</p> <p>Date: 2025-03-26</p> <table border="1"> <thead> <tr> <th>No.</th> <th>Frequency (MHz)</th> <th>Level (dBuV/m)</th> <th>Limit (dBuV/m)</th> <th>Over Limit</th> <th>Read Level (dBuV)</th> <th>Factor (dB)</th> <th>Remark</th> </tr> </thead> <tbody> <tr><td>1</td><td>3748.900</td><td>40.20</td><td>74.00</td><td>-33.80</td><td>49.60</td><td>-9.40</td><td>Peak</td></tr> <tr><td>2</td><td>4981.400</td><td>44.13</td><td>74.00</td><td>-29.87</td><td>50.70</td><td>-6.57</td><td>Peak</td></tr> <tr><td>3</td><td>7927.500</td><td>45.67</td><td>74.00</td><td>-28.33</td><td>45.72</td><td>-0.05</td><td>Peak</td></tr> </tbody> </table> <p>Note: 1. Level = Read Level + Factor 2. Factor = Antenna Factor + Cable Loss - Preamp Factor 3. Over Limit = Level - Limit Line 4. The emission levels of other frequencies are very lower than the limit and not show in test report.</p>	No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark	1	3748.900	40.20	74.00	-33.80	49.60	-9.40	Peak	2	4981.400	44.13	74.00	-29.87	50.70	-6.57	Peak	3	7927.500	45.67	74.00	-28.33	45.72	-0.05	Peak																																																
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark																																																																																																										
1	4979.700	47.14	74.00	-26.86	53.71	-6.57	Peak																																																																																																										
2	6479.100	46.65	74.00	-27.35	49.02	-2.37	Peak																																																																																																										
3	9977.700	48.22	74.00	-25.78	45.66	2.56	Peak																																																																																																										
No.	Frequency (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit	Read Level (dBuV)	Factor (dB)	Remark																																																																																																										
1	3748.900	40.20	74.00	-33.80	49.60	-9.40	Peak																																																																																																										
2	4981.400	44.13	74.00	-29.87	50.70	-6.57	Peak																																																																																																										
3	7927.500	45.67	74.00	-28.33	45.72	-0.05	Peak																																																																																																										

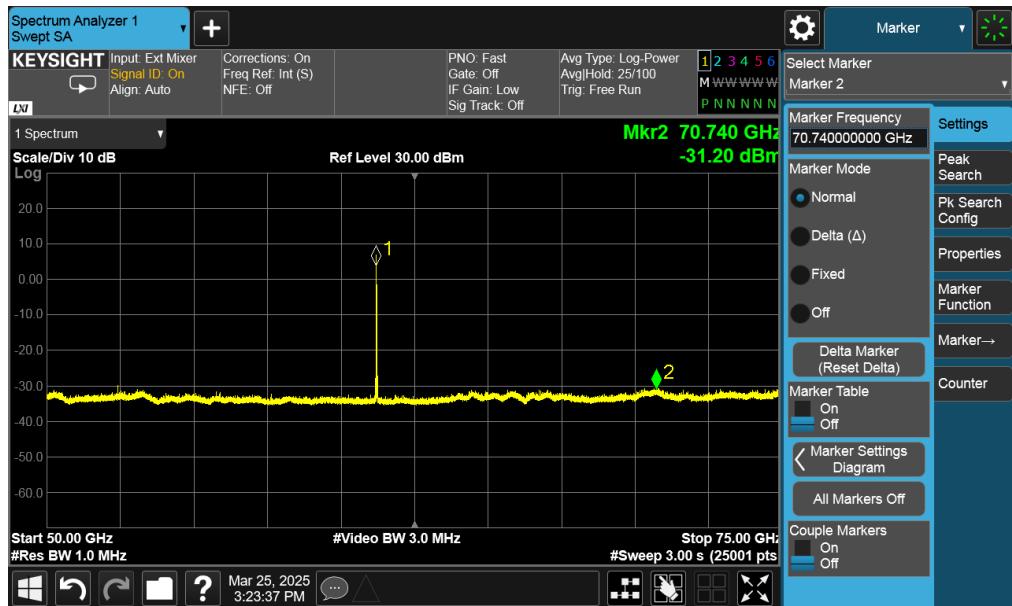
M202404006

Above 40 GHz

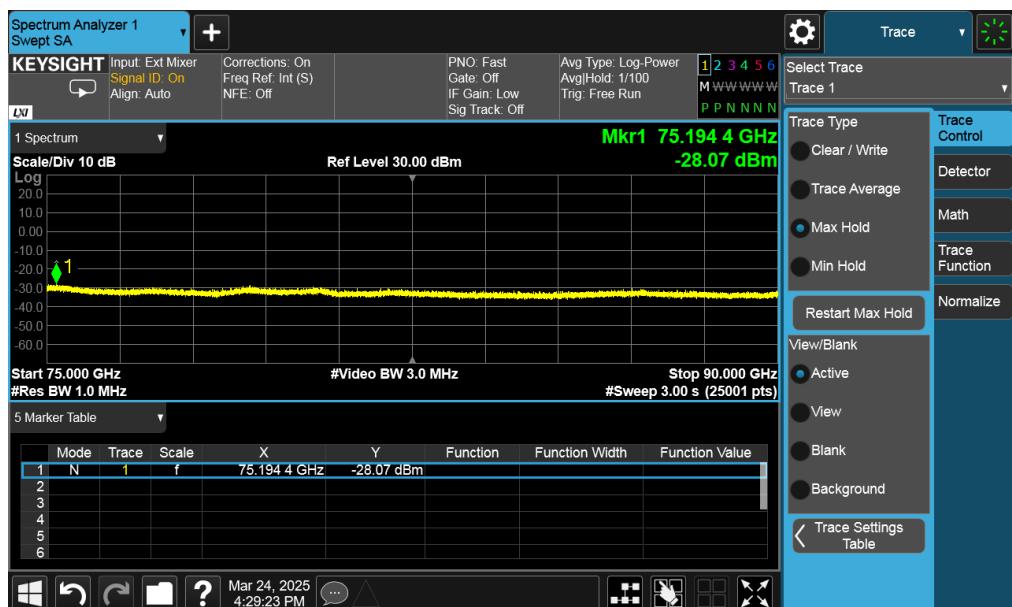
Frequency Range (GHz)	Measurement Frequency (GHz)	EIRP (dBm)	EIRP (W)	Specification Distance (m)	Power Density (W / m ²)	Power Density (pW / cm ²)	Limit (pW / cm ²)
40-50	49.981	-47.05	0.00000002	3	1.7454E-10	0.02	90
50-75	70.74	-31.20	0.000001	3	6.7121E-09	0.67	90
75-90	75.1944	-28.07	0.000002	3	1.3801E-08	1.38	90
90-140	120.9188	-22.55	0.000006	3	4.9149E-08	4.91	90
140-200	142.0775	-20.46	0.000009	3	7.7904E-08	7.79	90

Note: Power densiny was calculated from follow equation;

$$PD = \frac{EIRP_{\text{Linear}}}{4\pi d^2}$$


where

PD is the power density at the distance specified by the limit, in W/m²
 EIRP_{Linear} is the equivalent isotropically radiated power, in watts
 d is the distance at which the power density limit is specified, in m


40~50GHz

50~75GHz

75~90GHz

90-140GHz

140-200GHz

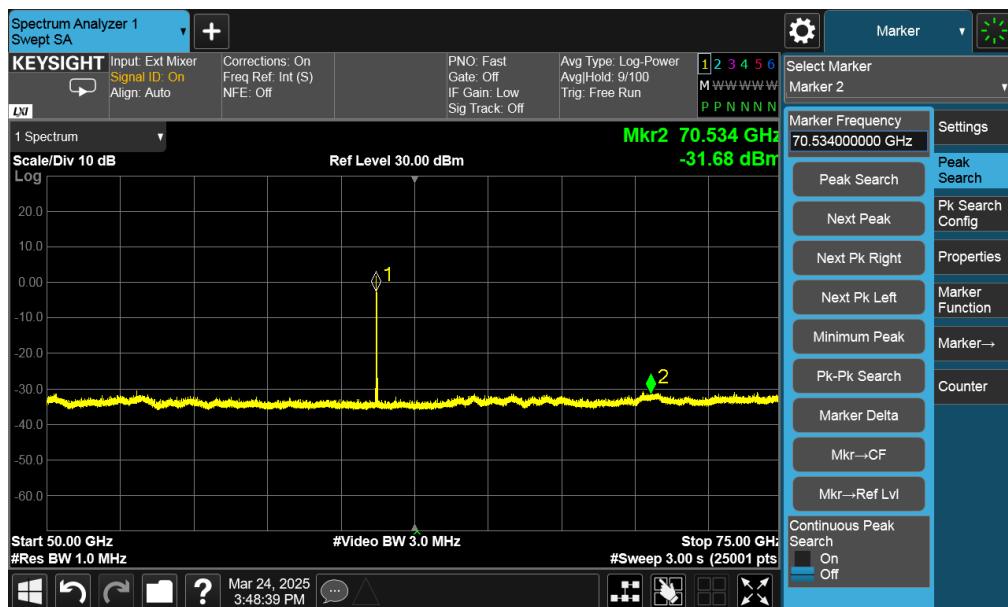
M202404005

Above 40 GHz

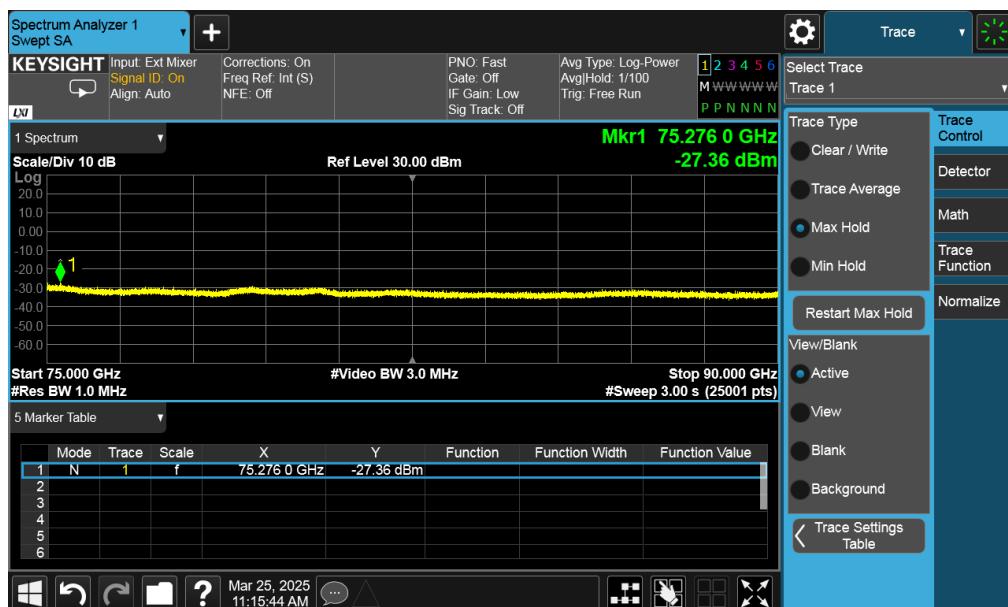
Frequency Range (GHz)	Measurement Frequency (GHz)	EIRP (dBm)	EIRP (W)	Specification Distance (m)	Power Density (W / m ²)	Power Density (pW / cm ²)	Limit (pW / cm ²)
40-50	49.993	-47.20	0.000000	3	1.6851E-10	0.02	90
50-75	70.534	-31.68	0.000001	3	6.0087E-09	0.60	90
75-90	75.276	-27.36	0.000002	3	1.6249E-08	1.62	90
90-140	121.0313	-22.25	0.000006	3	5.2641E-08	5.26	90
140-200	140.8031	-20.18	0.000010	3	8.4845E-08	8.48	90

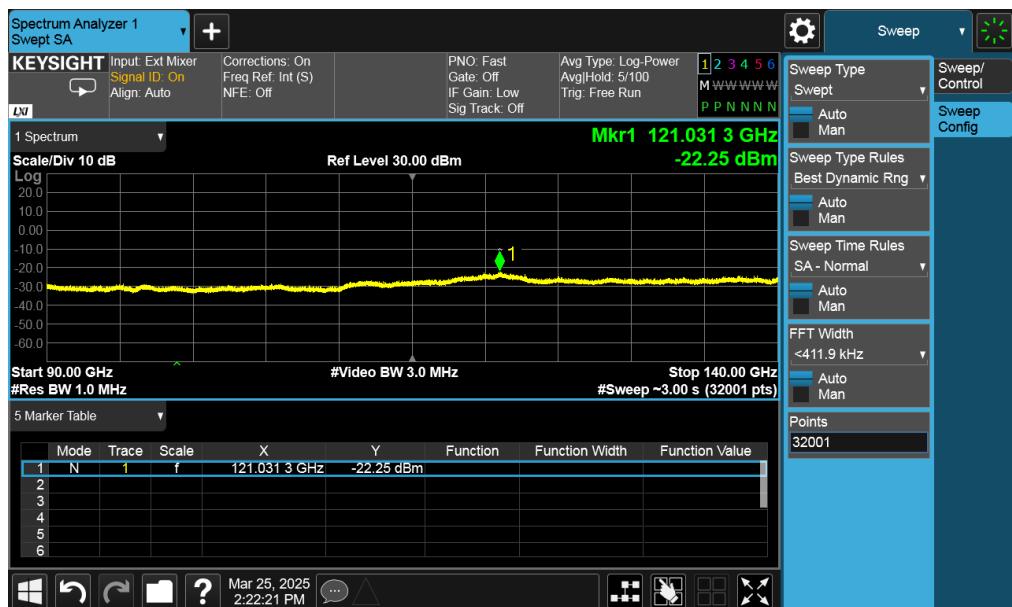
Note: Power densiny was calculated from follow equation;

$$PD = \frac{EIRP_{\text{Linear}}}{4\pi d^2}$$


where

PD is the power density at the distance specified by the limit, in W/m²
 EIRP_{Linear} is the equivalent isotropically radiated power, in watts
 d is the distance at which the power density limit is specified, in m


40~50GHz


50~75GHz

75~90GHz

90-140GHz

140-200GHz

Appendix E. Test Result of Frequency Stability**M202404006**

Voltage (V)	Measurement Frequency (fL) (GHz)	Measurement Frequency (fH) (GHz)	Limit $fL \geq 57$ GHz $fH \leq 64$ GHz
138	61.1905	61.2205	Within band
120	61.1914	61.220	Within band
102	61.1917	61.2199	Within band

Temperature (°C)	Observe Time	Measurement Frequency (fL) (GHz)	Measurement Frequency (fH) (GHz)	Limit fL ≥ 57 GHz fH ≤ 64 GHz
50	start	61.1899	61.2173	Within band
	2 mins	61.1899	61.2173	Within band
	5 mins	61.1899	61.2173	Within band
	10 mins	61.1899	61.2173	Within band
40	start	61.1899	61.2172	Within band
	2 mins	61.1899	61.2172	Within band
	5 mins	61.1899	61.2172	Within band
	10 mins	61.1899	61.2172	Within band
30	start	61.1904	61.2178	Within band
	2 mins	61.1904	61.2178	Within band
	5 mins	61.1904	61.2178	Within band
	10 mins	61.1904	61.2178	Within band
20	start	61.1904	61.2178	Within band
	2 mins	61.1904	61.2178	Within band
	5 mins	61.1904	61.2178	Within band
	10 mins	61.1904	61.2178	Within band
10	start	61.1932	61.2197	Within band
	2 mins	61.1932	61.2197	Within band
	5 mins	61.1932	61.2197	Within band
	10 mins	61.1932	61.2197	Within band
0	start	61.1926	61.2187	Within band
	2 mins	61.1926	61.2187	Within band
	5 mins	61.1926	61.2187	Within band
	10 mins	61.1908	61.2183	Within band
-10	start	61.1908	61.2183	Within band
	2 mins	61.1926	61.2187	Within band
	5 mins	61.1926	61.2187	Within band
	10 mins	61.1906	61.2165	Within band
-20	start	61.1906	61.2165	Within band
	2 mins	61.1906	61.2165	Within band
	5 mins	61.1906	61.2165	Within band
	10 mins	61.1906	61.2165	Within band