

# Engineering Report

in Support of Type Acceptance FCC Form 731  
for MCUC5R radiomodem

Subject: Compliance of Radio Modem with Respect to FCC Rules & Regulations Parts 2, 90 and 101 for Type Acceptance FCC Form 731

Equipment: 900 MHz Radio Modem

FCC Id: EOTMCUC5R

Applicant: Dataradio Incorporated  
5500 Royal Mount Ave., Suite 200  
Town of Mount Royal, H4P 1H7  
Quebec, Canada

Aug.10 1999  
Dataradio Inc

Johnson Data Telemetry Corporation  
Waseca, Minnesota

### ENGINEERING STATEMENT OF MARK CHRISTENSEN

The application consisting of the attached engineering exhibit and associated FCC form 731, has been prepared in support of a request for Type Acceptance for the Johnson Data Telemetry (JDT) DL-3492, 928-960 MHz Transceiver with the Data Radio 3315(Integra) Modem. The Transceiver mated with the Integra Modem will be identified by the part number INB92XY0T where X represents range and Y represents IF bandwidth (see below for part#). The model name is MCUC5R. The Transceiver/Modem will be identified by the FCC number EOTMCUC5R. The transceiver operates pursuant to Part(s) 90 and 101 of the Rules and Regulations.

#### EXISTING CONDITIONS

The units utilized for these type acceptance measurements were obtained from the pilot-production. The transceiver is designed to operate on frequencies ranging from 928.000 MHz to 960.000 MHz. The frequency tolerance of the transceiver is .00015% or 1.5 parts per million. The frequency stability of the transceiver is controlled by a temperature compensated crystal oscillator (TCXO) operating at 17.5 MHz.

#### PROPOSED CONDITIONS

It is proposed to Type Accept the MCUC5R, 928-960 MHz Transceiver/Modem for operation in the band of frequencies previously outlined. The applicant anticipates marketing the device for use in wireless transmission of data.

#### PERFORMANCE MEASUREMENTS

All Type Acceptance measurements were conducted in accordance with the Rules and Regulations Section 2.1041 of Pike & Fischer Inc., CD ROM revision 9/28/98. Equipment performance measurements were made in the engineering laboratory and on the FCC certified Open Area Test Site at the Transcrypt International / E.F. Johnson Radio Products located at 299 Johnson Avenue in Waseca, Minnesota. All measurements were made and recorded by myself or under my direction. The performance measurements were made between Jul 20, 1999 and Aug 8, 1999.

#### CONCLUSION

Given the results of the measurements contained herein, the applicant requests that Certification be granted for the MCUC5R, 928-960 MHz Transceiver/Modem as tested for data communications.



8/10/99

Mark Christensen  
Director of Engineering, Johnson Data Telemetry

Part Number

| X | Freq Range  |
|---|-------------|
| 5 | 928-960 MHz |

| Y | IF Bandwidth |
|---|--------------|
| 1 | 12.5 KHz     |
| 3 | 25 KHz       |

## QUALIFICATIONS OF ENGINEERING PERSONNEL

NAME: Allen Frederick  
TITLE: Certified Technologist  
TECHNICAL EDUCATION: Bachelor of Science Degree in Electronic Engineering Technology (1998) from Mankato State University  
TECHNICAL EXPERIENCE: 3 years experience in analog and radio frequency communications

NAME: Constantin Pintilei  
TITLE: R&D Test Engineer  
TECHNICAL EDUCATION: Bachelor of Science Degree in Radiotchnique Electronic Engineering (1993) from Technical University of Iasi, Romania  
TECHNICAL EXPERIENCE: 6 years experience in radio frequency measurements

## Contents

|                                                                                                                                                                                                          |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>ENGINEERING SUMMARY .....</b>                                                                                                                                                                         | <b>5</b>  |
| <b>GENERAL INFORMATION .....</b>                                                                                                                                                                         | <b>6</b>  |
| FCC SUBMISSION INFORMATION.....                                                                                                                                                                          | 6         |
| MANUFACTURER'S DATA.....                                                                                                                                                                                 | 6         |
| PRODUCT'S GENERAL SPECIFICATIONS .....                                                                                                                                                                   | 6         |
| <b>INFORMATION FOR CERTIFICATION .....</b>                                                                                                                                                               | <b>7</b>  |
| 1. <i>Name of Applicant:</i> .....                                                                                                                                                                       | 7         |
| 2. <i>FCC Identifier</i> .....                                                                                                                                                                           | 7         |
| 3. <i>Instruction book</i> .....                                                                                                                                                                         | 7         |
| .4 <i>Types of emission</i> .....                                                                                                                                                                        | 7         |
| 5. <i>Frequency range</i> .....                                                                                                                                                                          | 7         |
| 6. <i>Range of operating power levels</i> .....                                                                                                                                                          | 7         |
| 7. <i>Maximum Power rating</i> .....                                                                                                                                                                     | 8         |
| 8. <i>DC voltages and currents into final amplifier</i> .....                                                                                                                                            | 8         |
| 9. <i>Tune-up procedure</i> .....                                                                                                                                                                        | 8         |
| 10. <i>Complete circuit diagram, circuitry and devices for determining and stabilizing frequency, circuits for suppression of spurious radiation, limiting of modulation and limiting of power</i> ..... | 8         |
| 11. <i>Equipment identification plate/label</i> .....                                                                                                                                                    | 8         |
| 12. <i>Photographs of the equipment</i> .....                                                                                                                                                            | 9         |
| 13. <i>Digital modulation techniques</i> .....                                                                                                                                                           | 9         |
| 14. <i>Test data</i> .....                                                                                                                                                                               | 10        |
| 15. <i>Other data</i> .....                                                                                                                                                                              | 10        |
| <b>TESTS RESULTS FOR MCUC5R RADIO MODEM .....</b>                                                                                                                                                        | <b>11</b> |
| <i>Transmitter Rated Output Power</i> .....                                                                                                                                                              | 12        |
| TRANSMITTER OCCUPIED BANDWIDTH.....                                                                                                                                                                      | 13        |
| <i>Necessary Bandwidth Measurement</i> .....                                                                                                                                                             | 13        |
| Theory of Measurement .....                                                                                                                                                                              | 14        |
| Dataradio's Measurement Set-Up .....                                                                                                                                                                     | 15        |
| INTEGRA Modem at 9600 bps.....                                                                                                                                                                           | 17        |
| MASK: D,5W .....                                                                                                                                                                                         | 19        |
| MASK: 101.111a5,5W.....                                                                                                                                                                                  | 20        |
| MASK: D,1W .....                                                                                                                                                                                         | 21        |
| MASK: 101.111a5,1W.....                                                                                                                                                                                  | 22        |
| WIDE SPAN = 100 MHz.....                                                                                                                                                                                 | 23        |
| INTEGRA Modem at 19.2 Kbps.....                                                                                                                                                                          | 25        |
| MASK: C,5W .....                                                                                                                                                                                         | 27        |
| MASK: 101.111a6,5W.....                                                                                                                                                                                  | 28        |
| MASK: C,1W .....                                                                                                                                                                                         | 29        |
| MASK: 101.111 a6,1W.....                                                                                                                                                                                 | 30        |
| Transmitter Spurious and Harmonic Outputs.....                                                                                                                                                           | 31        |
| Field Strength of Spurious Radiation.....                                                                                                                                                                | 34        |
| Frequency Stability.....                                                                                                                                                                                 | 38        |
| part 1. According with Variation in Ambient Temperature.....                                                                                                                                             | 38        |
| part 2. According with Variation in Supply Voltage.....                                                                                                                                                  | 40        |
| <b>ATTACHMENTS: .....</b>                                                                                                                                                                                | <b>42</b> |
| DESCRIPTION OF CIRCUITRY, ATTACHMENT A.....                                                                                                                                                              | 42        |
| SCHEMATICS, ATTACHMENT B .....                                                                                                                                                                           | 42        |
| PHOTOGRAPHS, ATTACHMENT C .....                                                                                                                                                                          | 42        |
| TECHNICAL MANUAL, ATTACHMENT D .....                                                                                                                                                                     | 42        |

## Engineering Summary

This report contains the results of the engineering evaluation performed on a Dataradio Inc. radio modem, having a frequency range of 928-960 MHz, model MCUC5R. Johnson Data Telemetry (JDT) Corporation carried out the tests in accordance with FCC Rules and Regulation Part 2, Part 90 and Part 101.

The radio modem was evaluated for output power levels of 1 and 5 watts.

Based on test results, it is certified that the product meets the requirements as set forth in the above specifications for Type Acceptance.

The MCUC5R 900 MHZ radio modem is comprised of a Dataradio 3315 loader/modem board and a DL 3492 Telemetry transceiver. Test data and graphs for this configuration are presented in this report.

## General Information

### FCC submission information

FCC Id: EOTMCUC5  
Equipment: 900 MHz radio modem  
Model: MCUC5R  
Applicant: Dataradio Incorporated  
5500 Royal Mount Ave., Suite 200  
Town of Mount Royal, H4P 1H7  
Quebec, Canada  
Manufacturer: Dataradio Incorporated  
5500 Royal Mount Ave., Suite 200  
Town of Mount Royal, H4P 1H7  
Quebec, Canada  
Test laboratory: Johnson Data Telemetry Corporation (JDT)  
299 Johnson Ave. SW  
Waseca, MN 56093

### Manufacturer's data

Equipment: 900 MHz radio modem  
Model: MCUC5R  
Serial Number: xxxx (prototype serial)  
Reference: FCC Rules and Regulations Part 2, Part 90 and Part 101  
Manufacturer: Dataradio Incorporated

### Product's general specifications

|   |                                |                    |
|---|--------------------------------|--------------------|
| 1 | Frequency range                | 928-960 MHz        |
| 2 | Rated transmitted output power | 1 - 5W             |
| 3 | Data modulation                | DGMSK              |
| 4 | Channel spacing                | 25 KHz 12.5 KHz    |
| 5 | Emission type                  | 15K3 F1D 9K30 F1D  |
| 6 | Frequency deviation            | ±4 KHz ±2.5 KHz    |
| 7 | Data rate                      | 19200 bps 9600 bps |
| 8 | Antenna impedance              | 50 Ω               |
| 9 | Power source                   | 13.3 V             |

## Information for Certification

Ref: FCC Part 2 paragraph 2.1033(c)

### 1. Name of Applicant:

Ref: FCC Part 2 paragraph 2.1033 (c)(1)

Applicant: Dataradio Incorporated  
5500 Royal Mount Ave., Suite 200  
Town of Mount Royal, H4P 1H7  
Quebec, Canada  
Manufacturer Same as the applicant

### 2. FCC Identifier

Ref: FCC Part 2 paragraph 2.1033 (c)(2)

Model No.: MCUC5R, comprised of two boards:  
MCU 3315 (Dataradio 210-03315-0xx)- modem board  
DL 3492 (JDT 242-3492-5x0)- transceiver board  
Serial No.: xxxx (prototype serial)  
xxx-3315-0xx-modem board  
3492- xxxxx-5x0-transceiver board  
FCC Id: EOTMCUC5R

### 3. Instruction book

Ref: FCC Part 2 paragraph 2.1033 (c) (3)

See technical manual in Integra-R Technical Manual, Attachment D,

### 4. Types of emission

Ref: FCC Part 2 paragraph 2.1033(c)(4)

|                     |          |          |
|---------------------|----------|----------|
| Channel spacing     | 25 KHz   | 12.5 KHz |
| Emission type       | 15K3 F1D | 9K30 F1D |
| Frequency deviation | ±4 KHz   | ±2.5 KHz |

### 5. Frequency range

Ref: FCC Part 2 paragraph 2.1033 (c) (5)

928-960 MHz

### 6. Range of operating power levels

Ref: FCC Part 2 paragraph 2.1033 (c) (6)

The power is software adjustable from 1W to 5W.

## 7. Maximum Power rating

Ref: FCC Part 2 paragraph 2.1033 (c) (7)

5 Watts.

## 8. DC voltages and currents into final amplifier

Ref: FCC Part 2 paragraph 2.1033 (c) (8)

Refer also to RF output and DC input power measurement in section “Test Results”.

## 9. Tune-up procedure

Ref: FCC Part 2 paragraph 2.1033 (c) (9)

1. Connect the transceiver to be aligned to a DC power source. A DC current meter capable of measuring at least 2.5 Amps should be connected in line with the DC source. Connect the output of the transceiver through a watt meter and into a 50 ohm dummy load.
2. Load the synthesizer with the center channel frequency.
3. Key the transmitter and make sure that the supply voltage at the RF board is 13.3 VDC. (Do not transmit for extended periods of time).
4. Adjust PwrSet R525 potentiometer clockwise for 5.0 Watts of output power.
5. Check the power levels on the low and the high frequencies for 5.0 Watts +/- 1 Watt.

## 10. Complete circuit diagram, circuitry and devices for determining and stabilizing frequency, circuits for suppression of spurious radiation, limiting of modulation and limiting of power

Ref: FCC Part 2 paragraph 2. 1033(c)(10)

For the main control circuits and the modem circuits see the section Dataradio MCU modem, in Description of Circuitry, Attachment A part 1.

For the transceiver circuits see the section JDT DL-3492 Telemetry Transceiver, in Description of Circuitry, Attachment A part 2.

Circuitry's mainly involved in determining and stabilizing frequency are VCO block and Synthesizer block described in Transceiver's part.

- i) spurious radiation- The main suppression of spurious radiation is performed by the filter described in “Low Pass Filter” paragraph from JDT DL-3492 Telemetry Transceiver, Description of Circuitry part 2, Attachment A
- ii) limiting of modulation- Limiting of modulation is given by amplitude limited audio signal provided by modem part as it was explained in “Modem” paragraph from Dataradio MCU modem, Description of Circuitry part 1, Attachment A. Supplementary limiting of modulation is described in “ Frequency Modulation” paragraph from Synthesizer section JDT DL-3492 Telemetry Transceiver, Description of Circuitry part 2, Attachment A.
- iii) limiting of power- A very tight control of transmission power is maintained by circuitry described in “Power Control” paragraph from JDT DL-3492 Telemetry Transceiver, Description of Circuitry part 2, Attachment A

See schematics in Schematics, Attachment B

## 11. Equipment identification plate/label

Ref: FCC Part 2 paragraph 2.1033(c)(11)

A scanned image of the Equipment identification label is provided in Photographs, Attachment C

## 12. Photographs of the equipment

Ref: FCC Part 2 paragraph 2.1033 (c)(12)

All scanned photographs of the Equipment are provided in Photographs, Attachment C

## 13. Digital modulation techniques

Ref: FCC Part 2 paragraph 2.1033 (c) (13)

The digital modulation used by the MCU modem is DGMSK (Differential Gaussian Minimum Shift Keying). A modem using such type of modulation is divided in three main units. They are:

1. Scrambler,
2. Differential encoder,
3. Waveshape generator.

We will explain each of those units, starting with the scrambler.

### 1. Scrambler:

The scrambler converts data stream to a new data stream having better characteristics for a FM radio system. Here are the main advantages:

- It removes the DC component from a DGFSK signal,
- It randomizes the data in such a way we can avoid predictable patterns, by example:  
00000000, 11111111, 01010101, 00110011, etc.
- It keeps the power spectrum more compact by avoiding sequences like 01010101...

All these functions are performed with a serial shift register and 2 exclusive OR gates that implement the polynomial form  $X^7+X^5-1$ . The receiver side of our radio modems has a similar circuit called descrambler to decode the received scrambled data.

### 2. Differential encoder:

After data is scrambled, we encode the data with a differential encoder. Here is the process that differential encoder does:

| previous<br>input bit | current<br>input bit | output<br>bit |
|-----------------------|----------------------|---------------|
| 0                     | 0                    | 0             |
| 0                     | 1                    | 1             |
| 1                     | 0                    | 1             |
| 1                     | 1                    | 0             |

Example:

From a sequence of 010010111010001010100010, differentially encoded data stream is:

110111000111001111110011.

The differential encoder is used to make the modem insensitive to audio polarity inversion of the FM radio system.

### 3. Waveshape generator:

The waveshape generator converts the processed data bits (scrambled and differentially encoded for DGMSK) to the audio signal that will modulate a FM transmitter. This gives the DGMSK waveshape having a compact spectrum to fit inside FCC Part 90 and Part 101 masks according to the channel bandwidth intended.

Furthermore, the modem itself generates a RF signal heading the transmission in normal usage and a test pattern for test purposes.

#### 1. Transmission preamble:

Each data transmission begins by sending a 15ms preamble of sinewave (101010...). This is to synchronize the digital phase locked loop of the receiver modem.

#### 2. Test pattern generator:

A 30s test pattern sequence is generated by test software at “test data” click button event. According to the baud rate, the highest resulting modulating frequency is (baud rate)/2 Hz. The sequence is sent with baud rate speed, and its data has the pattern:

###ABCDEFHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789\r\n,

repeated for 30 seconds

In this pattern ### is replaced by the number of replays, \r is a carriage return and \n is a linefeed. The data is fed to the RS232 interface IC and processed as described above. The async-to-sync conversion, scrambler and differential encoder make the ABCDE... pattern appear random over the air.

#### 14. Test data

Ref: FCC Part 2 paragraph 2.1033 (c)(14)

All applicable test data according to:

- Part 2: 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, and 2.1057
- Part 90, Subpart I: 90.209, 90.210, 90.211, 90.213 and 90.214
- Part 101, Subpart C: 101.107, 101.109, and 101.111

are provided in section Test Results of this Engineering Report

#### 15. Other data

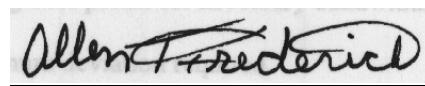
For data according to 2.1033(c)(15,16), this unit is not designed for the mentioned purposes.

## Tests Results for MCUC5R radio modem

2.1033 (c)(14)

Transmitter Rated Output Power

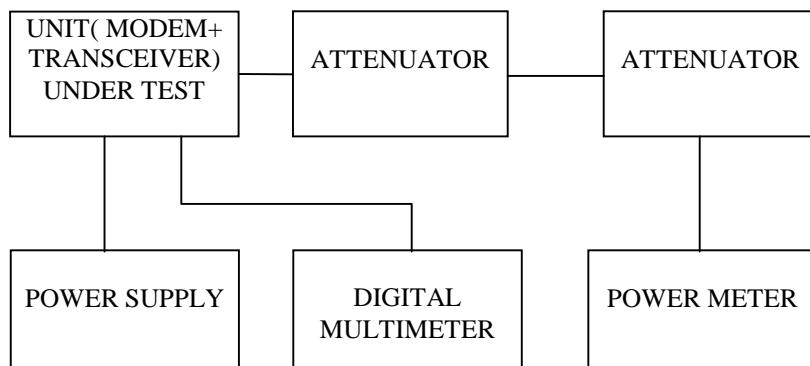
RULE PART NUMBER: 2.1033 (c)(6)(7), 2.1046 (a)


TEST RESULTS: See results below

TEST CONDITIONS: Standard Test Conditions, 25 C

TEST EQUIPMENT:

Attenuator, Tenuline Model 8340 / 20 dB / 25 Watt  
 Attenuator, Tenuline Model 8340 / 10 dB / 25 Watt  
 Power Supply, Model HP-6284A  
 Power Meter, Model HP436A  
 Digital Voltmeter, Fluke Model 8012A


PERFORMED BY:



DATE: 7/20/99

Allen Frederick

TEST SET-UP:



TEST RESULTS:

| Frequency<br>(MHz) | DC Voltage at<br>Final (Vdc) | DC Current into<br>Final (Adc) | DC Power into<br>Final (W) | RF Power Output<br>(W) |
|--------------------|------------------------------|--------------------------------|----------------------------|------------------------|
| 944.000            | 13.3                         | 1.61                           | 21.41                      | 5.0                    |
|                    | 13.3                         | 0.82                           | 10.91                      | 1.0                    |

## Transmitter Occupied Bandwidth

RULE PART NUMBER: 2.1049(h)  
 2.201, 2.202, 90.209 (b)(5), 101.109(c) for Emission Designator calculation

### Necessary Bandwidth Measurement

This radiomodem uses digital modulation signals, passing through a linear 8<sup>th</sup> order low-pass filter (Raise-Cosine alpha 1 approximation), to an FM transceiver. The necessary bandwidth calculation for this type of modulation (DRCMSK) is not covered by paragraphs (1), (2) or (3) from 2.202(c). Therefore, the approach outlined in (2.202(c)(4)) is applicable in this case.

The measurement explanations are provided in “Annex ” (following pages)

Necessary Bandwidth Measurement:

Peak deviation =  $\pm 4$  kHz

Modulator signal bit rate 19200 bps,

Bn=15260 Hz

The corresponding emission designator prefix for necessary bandwidth = 15K3

\*\*\*\*\*

Table 1 - Measurements results for the INTEGRA-R unit , 9600 bps BT.3 and 19200 bps BT.3 and frequency deviations set to obtain specified values .

| unit's software settings | measured data (kHz) |                 | Emission designator |
|--------------------------|---------------------|-----------------|---------------------|
| bit rate (data settings) | freq. dev           | 99% occupied BW |                     |
| 9600 BT.3                | 2.5                 | 9.24            | 9K30                |
| 19200 BT.3               | 4.0                 | 15.26           | 15K3                |

## ANNEX

**Theory of Measurement**

The way to define the **Occupied Bandwidth** is “the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission” (FCC 2.202), the mathematics are as follows:

$$0.005 * TP = P_{(f1)} = \int_0^{f1} PSD_{(f)} df$$

$$0.995 * TP = P_{(f2)} = \int_0^{f2} PSD_{(f)} df$$

$$OBW = f2 - f1$$

where TP (total mean power) is

$$TP = \int_0^{+\infty} PSD_{(f)} df = (1/t) \int_{-\infty}^{+\infty} |Z_{(t)}|^2 dt$$

and PSD (power spectral distribution) is

$$PSD_{(f)} = |Z_{(f)}|^2 + |Z_{(-f)}|^2 \quad 0 \leq f < 4$$

and expresses the positive frequency representation of the transmitter output power for  $z(t)$  signal.

By applying these mathematics to the measurements, it is possible to measure the Occupied Bandwidth using the RF signal's trace provided by a digital spectrum analyzer and processed further by computational methods.

The Occupied Bandwidth measurement is in two parts relatively independent of each other. The first gives the RF spectrum profile, and the second calculates the frequency limits and they result in the Occupied bandwidth. While the first involves RF measurement instrumentation, the second is strictly a computational part related to measured trace.

Getting an equally-sampled RF power spectrum profile requires a Digital Spectrum Analyzer. In addition to the instrument's usual requirements, a special attention must be paid to the analyzer's span (bandwidth to be investigated).

This bandwidth must be large enough to contain all the power spectral components created by the transmitter. The frequency step, where the samples are picked, is directly dependent on the span's value.

$$\Delta f = \text{span/number of points displayed}$$

The frequency resolution will determine the measurement accuracy. So for greater accuracy, less bandwidth will give better values because of the constant number of points that can be displayed. Taking into account the purpose of transmitter, an acceptable balance can be set. For channel-limited transmitters all the power spectral components can be found in main channel and a number of adjacent channels, upper and lower, from the main channel. The relation between these two requirements, number of channels and accuracy, is depicted by:

$$a(\%) \cong (2 * k * n / N) * 100,$$

where  $a$  is desired accuracy, in percentage units,  $n$  is the number of channels in span, including main channel,  $N$  is displayed number of points and  $k = (\text{authorized bandwidth}) / \text{channel bandwidth}$ .

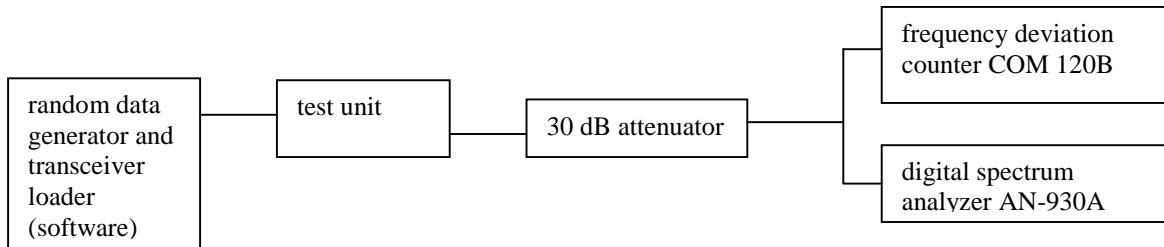
For usual spectrum analyzers  $N \cong 500$ ,  $k = 0.8$  (20/25) for 25kHz channel transmitters or  $k = 0.9$  (11.25/12.5) for 12.5kHz channel transmitters, so  $a \cong n/2.5$  (%) can estimate the expected precision for measurement.

All other requirements for spectrum analyzer are the same as they are for mask compliance determination.

The second part has computational requirements related to the trace's values processing.

The following operations must be performed over the trace's (x,y) points:

1. convert y value in dBm (or the analyzer's display y units) units power sample
2. convert y value in W units power sample,
3. add to total power every power sample and get total power value (W units for total power)
4. set low level (0.5%\*total power)
5. detect x1-sample which pass low level (convert f1 integrals to sample summing)
6. convert (x1-1)-sample value in frequency units (the x-sample is already in occupied bandwidth),
7. store first frequency correspondent to (x1-1)-sample
8. set up level (99.5%\*total power)
9. detect x2-sample which pass up level ( convert f2 integrals to sample summing)
10. convert (x2)-sample value in frequency units (the x-sample is now out of occupied bandwidth),
11. store second frequency correspondent to (x2)-sample
12. read the frequency difference , this is **Occupied Bandwidth**, and display the result.


Standard calculation precision is all that is required. The main error factor being the y display resolution is covering calculation precision.

The absolute error for this measurement is  $-0/+2*\epsilon f$ . It is not possible to decrease span bandwidth under 2 channels bandwidth because this will affect the significance of result by cutting off the power's spectral distribution edges.

#### Dataradio's Measurement Set-Up

For the above requirements, the occupied bandwidth of a transmitter was measured using an IFR AN930 A spectrum analyzer having adequate macrofunction to perform computational part. The number of power spectrum samples (N) is 500. Because in test results frequency deviation was also a parameter, measurement instruments were completed with an IFR COM-120 B for frequency deviation determination.

The measurement set-up is:



The AN-930 A spectrum analyzer's parameters are adjusted as follow:

- total span is adjusted at 2.8\*channel space this means 70 kHz for 25 kHz channel and 35 kHz for 12.5 kHz channel. This setting will result in frequency sample step (f) of 140 Hz for 25 kHz channel and 70 Hz for 12.5 kHz channel.
- RBW is set to 300 Hz, this is better than 1% of total span bandwidth.
- video filter is set to 1Khz;
- all other parameter of the instrument are automatically adjusted to obtain calibrated measurements (sweep time 4s).
- central frequency and reference level are adjusted to the unmodulated carrier frequency and level.

The AN 930 A spectrum analyzer's Occupied Bandwidth macrofunction input parameters are:

- central frequency, same as above, the unmodulated carrier frequency.
- channel spacing, 25 kHz or 12.5 kHz according to the signal,
- percentage of Occupied Bandwidth 99%.

The macro operations are:

- the trace is read;
- follow all the computational steps required.

Each sample is converted from dBm to mW and add to total power (tpow) variable. Then are computed the limits of 0.5% and 99.5% by using variable remaining percent (RemPer), and in same time are stored sample number where these two percentage meet. Then are assigned to the markers the correspondent frequencies of numbers.

- Occupied Bandwidth is then displayed as Delta mode marker (difference between markers).
- return to operational mode.

NOTE 1: The computational part could be performed on every device featured with data acquisition.

NOTE 2: An approximation of the occupied bandwidth calculation can be performed by measuring at the points at which the spectrum, measured with a spectrum analyzer of 300 Hz resolution bandwidth, is 25dB down relative to the unmodulated carrier reference level.

NAME OF TEST: Transmitter Occupied Bandwidth

**INTEGRA Modem at 9600 bps**

In Support of Emission Designator **9K30F1D**

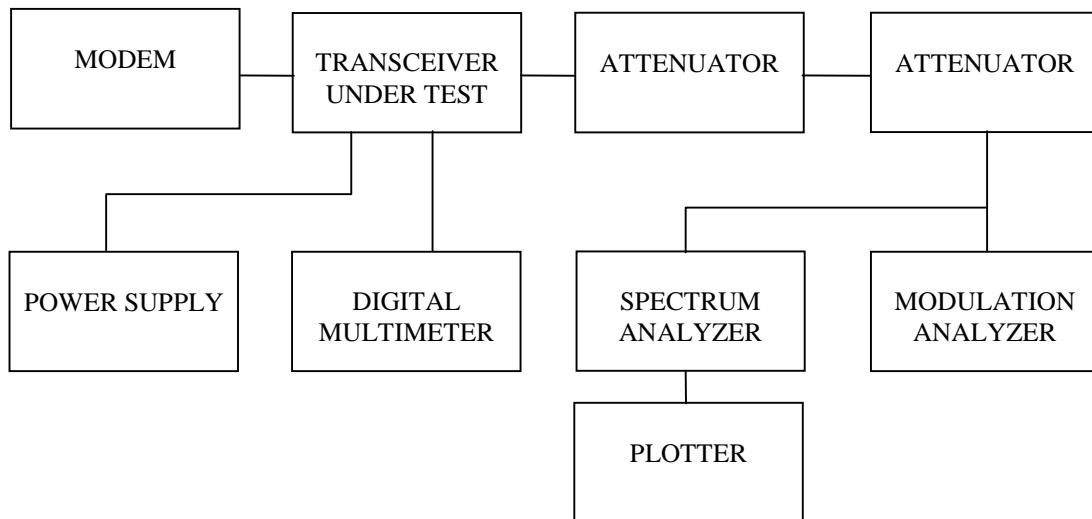
RULE PART NUMBER: 2.1049(h)  
90.209(b)(5), 101.109(c), 90.210 (d), 101.111 (a)(5)-authorized bandwidth and emission  
limitations

MINIMUM STANDARD: Mask 90.210 D - Sidebands and Spurious  
Authorized Bandwidth = 11.25 kHz [Rule 90.209(b) (5)]  
From Fo to 5.625 kHz, down 0 dB.  
Greater than 5.625 kHz to 12.5 kHz, down  $7.27(f_d - 2.88\text{kHz})$  dB.  
Greater than 12.5 kHz, at least  $50 + 10\log_{10}(P)$  or 70 dB, whichever is the lesser  
Values:  
Attenuation = 0 dB at Fo to 5.625 kHz  
Attenuation = 20 dB at 5.625 kHz and 70 dB at 12.5 kHz  
Attenuation = 57 dB at > 12.5 kHz for P=5W or 50dB for P=1W  
  
Mask 101.111(a)(5) - Sidebands and Spurious  
Authorized Bandwidth = 12.5 kHz [Rule 101.109]  
From Fo to 2.5 kHz, down 0 dB.  
Greater than 2.5 kHz to 6.25 kHz, down  $53\log(fd/2.5)$   
Greater than 6.25 kHz to 9.5 kHz, down  $103\log(fd/3.9)$   
Greater than 9.5 to 15 kHz,  $157\log(fd/5.3)$   
Greater than 15 kHz,  $50 + 10\log(P)$  or 70 dB  
Values:  
Attenuation = 0 db at Fo to 6.25 kHz  
Attenuation = 21.1dB at 6.25 kHz  
Attenuation = 39.8 dB at 9.5 kHz  
Attenuation = 70.9 dB at 15 kHz  
Attenuation = 57 dB at > 15 kHz for P=5W or 50dB for P=1W

TEST RESULTS: Meets minimum standard (see data on the following pages)

TEST CONDITIONS: Standard Test Conditions, 25 C

TEST EQUIPMENT: Attenuator, BIRD Model / 9715 / 50-A-MFN-06 / 6 dB / 50 Watt  
Attenuator, BIRD Model / 9716 / 25-A-MFN-20 / 20 dB / 25 Watt  
Digital Voltmeter, Fluke Model 8012A  
DC Power Source, Model HP6284A  
Modulation Analyzer, Model HP8901A  
Spectrum Analyzer, Model HP8563E  
Plotter, HP7470A


PERFORMED BY:



Allen Frederick

DATE: 8/5/99

## TEST SETUP:



## MODULATION SOURCE DESCRIPTION:

See page 9 of the report for modulation source description

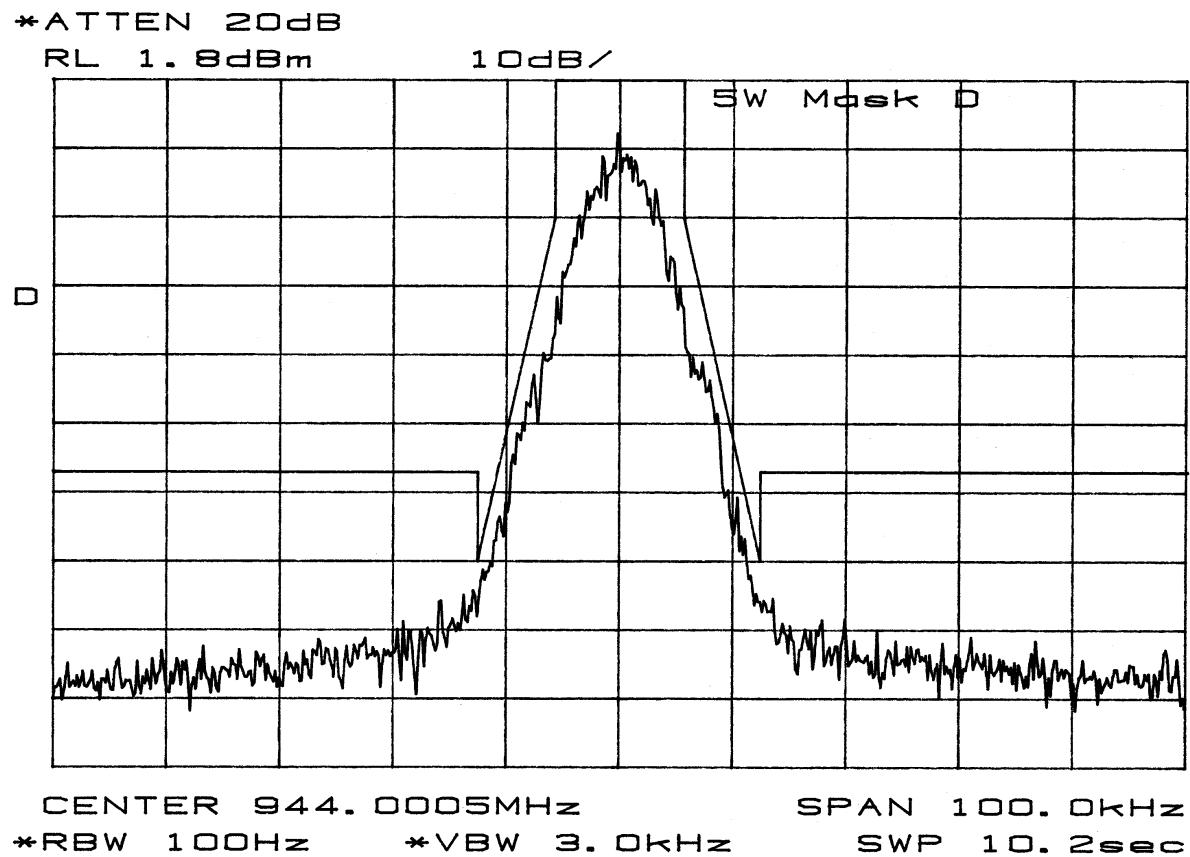
## NECESSARY BANDWIDTH (Bn) CALCULATION

See page 13 for Emission Designator determination.

The corresponding emission designator prefix for necessary bandwidth = **9K30**

TEST DATA: Refer to the following graphs:

**MASK: D,5W**


**SPECTRUM FOR EMISSION 9K30F1D**

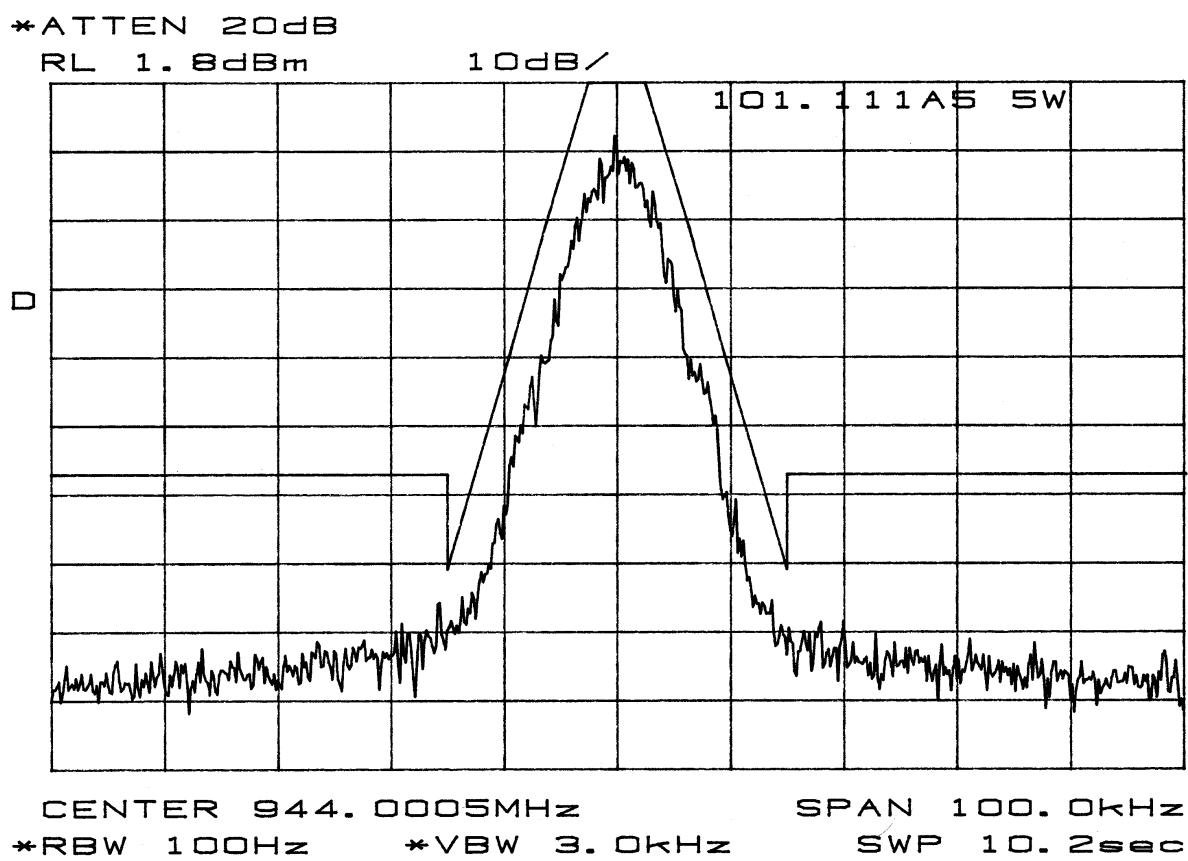
**OUTPUT POWER: 5 Watts**

**9600 bps**

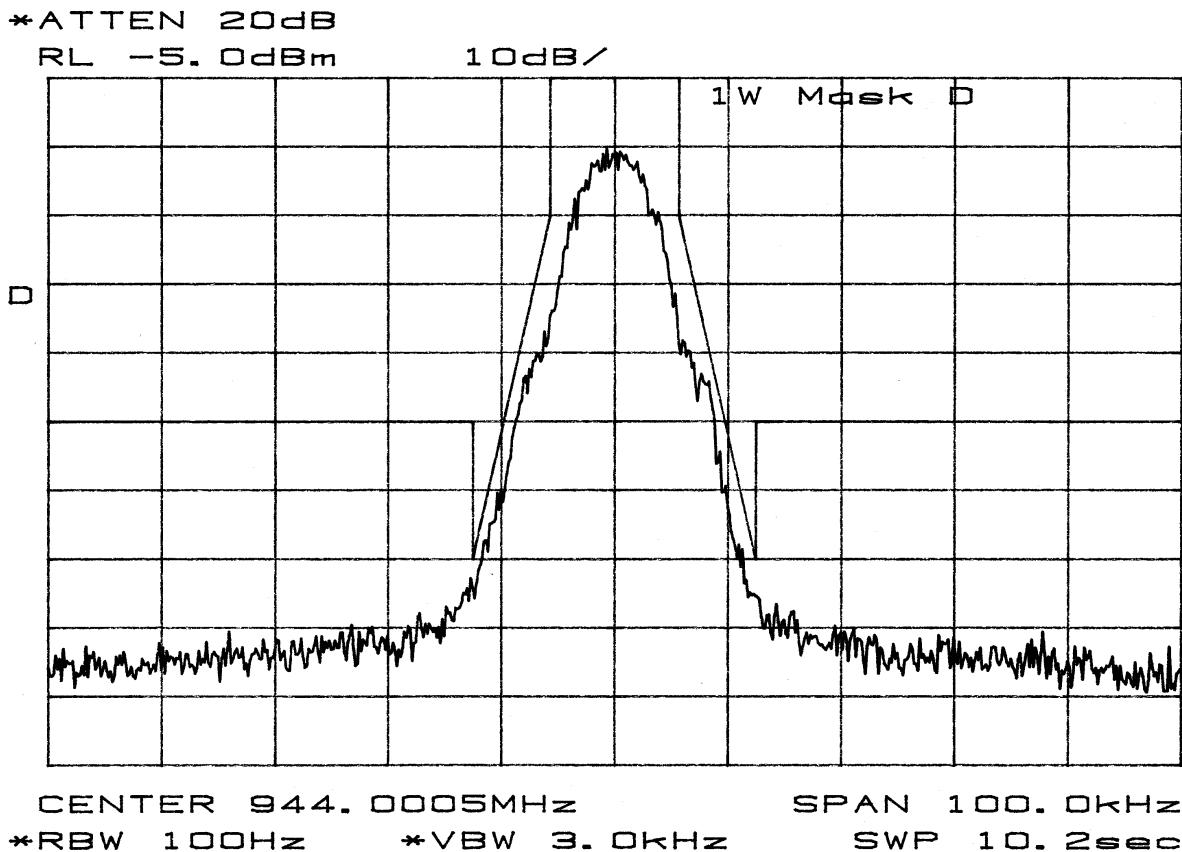
**PEAK DEVIATION = 2500 Hz**

**SPAN = 100 kHz**

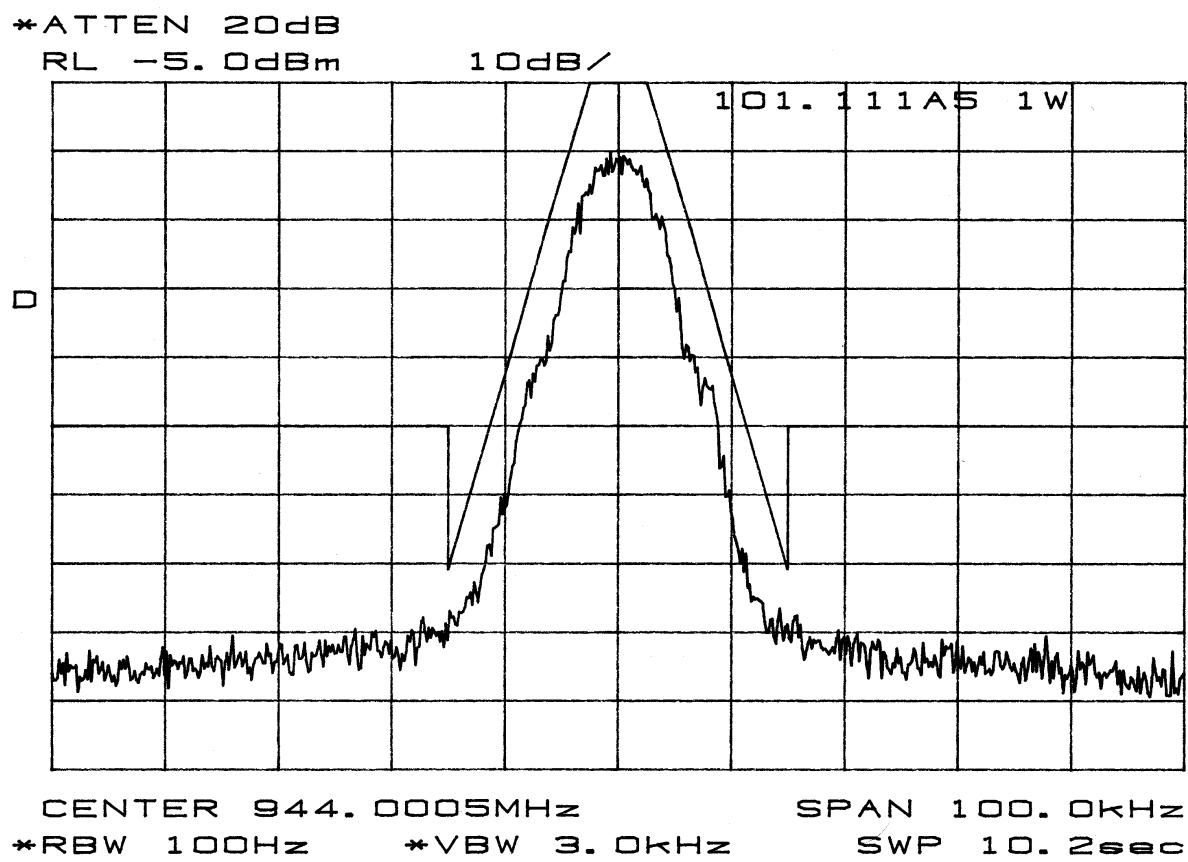



**MASK: 101.111a5,5W****SPECTRUM FOR EMISSION 9K30F1D**

OUTPUT POWER: 5 Watts


9600 bps

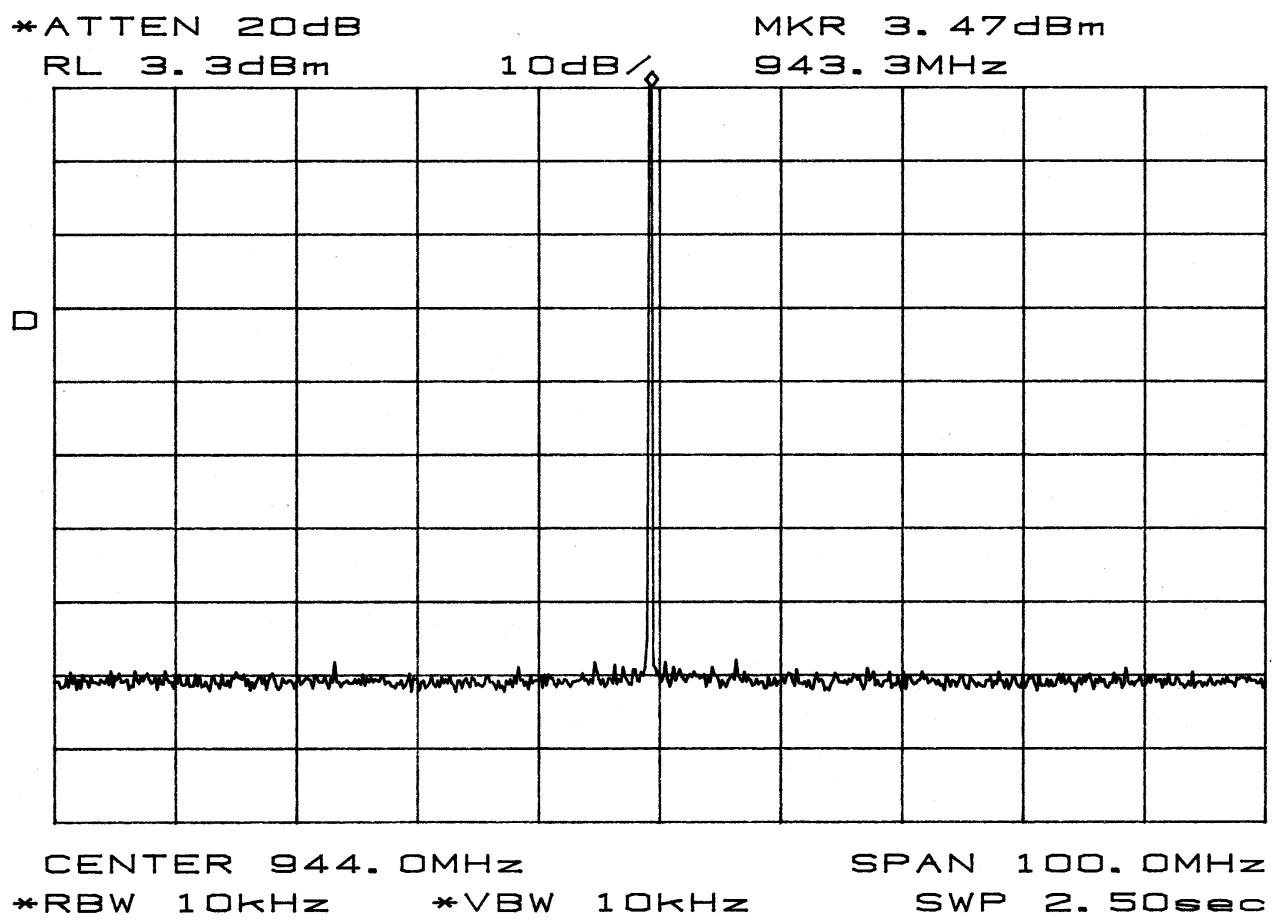
PEAK DEVIATION = 2500 Hz


SPAN = 100 kHz

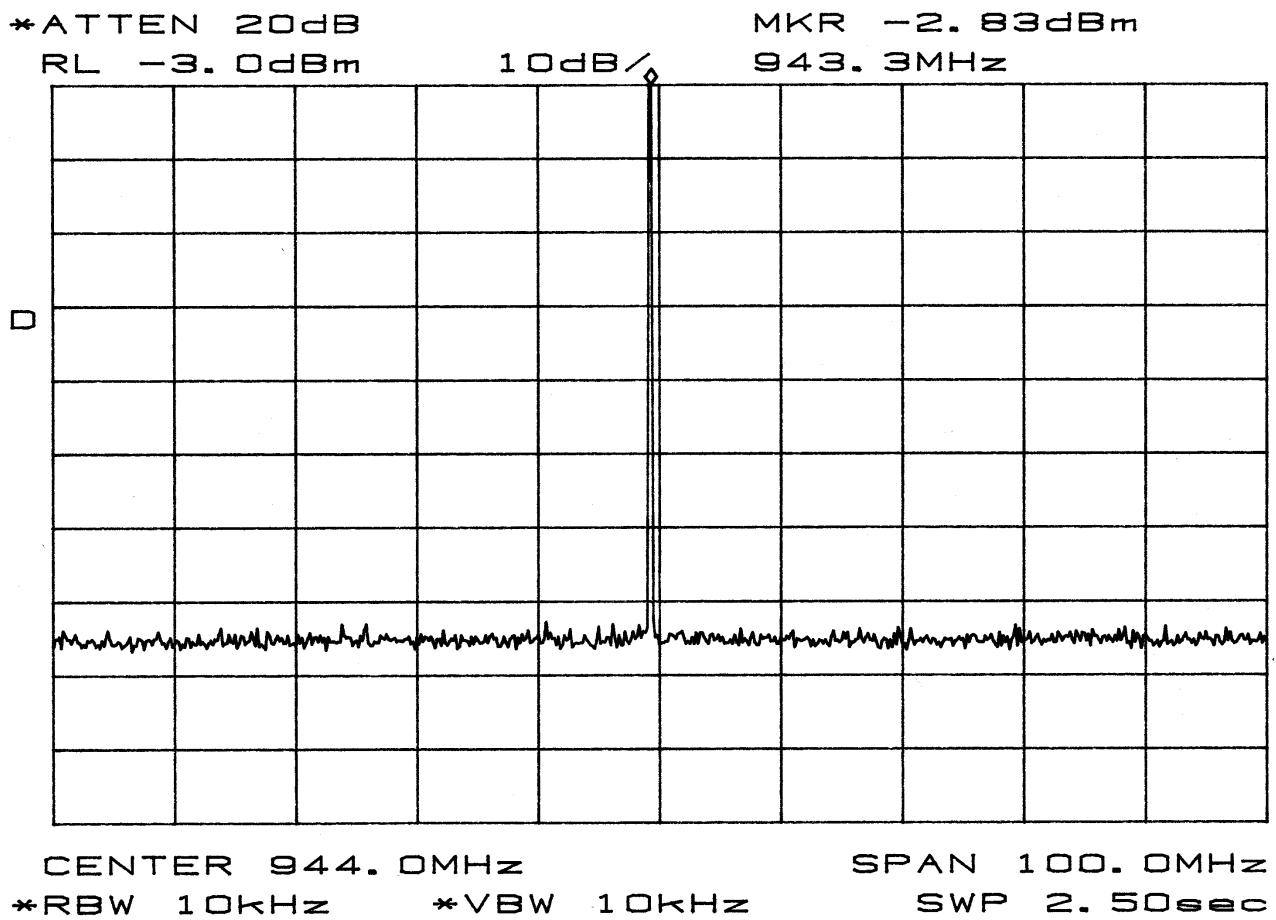


**MASK: D,1W**  
**SPECTRUM FOR EMISSION 9K30F1D**  
**OUTPUT POWER: 1 Watts**  
**9600 bps**  
**PEAK DEVIATION = 2500 Hz**  
**SPAN = 100 kHz**




**MASK: 101.111a5,1W**  
**SPECTRUM FOR EMISSION 9K30F1D**  
**OUTPUT POWER: 1 Watts**  
**9600 bps**  
**PEAK DEVIATION = 2500 Hz**  
**SPAN = 100 kHz**




WIDE SPAN = 100 MHz

RULE PART NUMBER: 2.1049(h)  
90.210 (m), 101.111 for emission limitations

OUTPUT POWER: 5 Watts



WIDE SPAN = 100 MHz  
OUTPUT POWER: 1 Watt



NAME OF TEST: Transmitter Occupied Bandwidth

**INTEGRA Modem at 19.2 Kbps**

In Support of Emission Designator **15K3F1D**

RULE PART NUMBER: 2.1049(h)  
90.209(b)(5), 101.109(c), 90.210 (d), 101.111 (a)(5)-authorized bandwidth and  
emission limitations

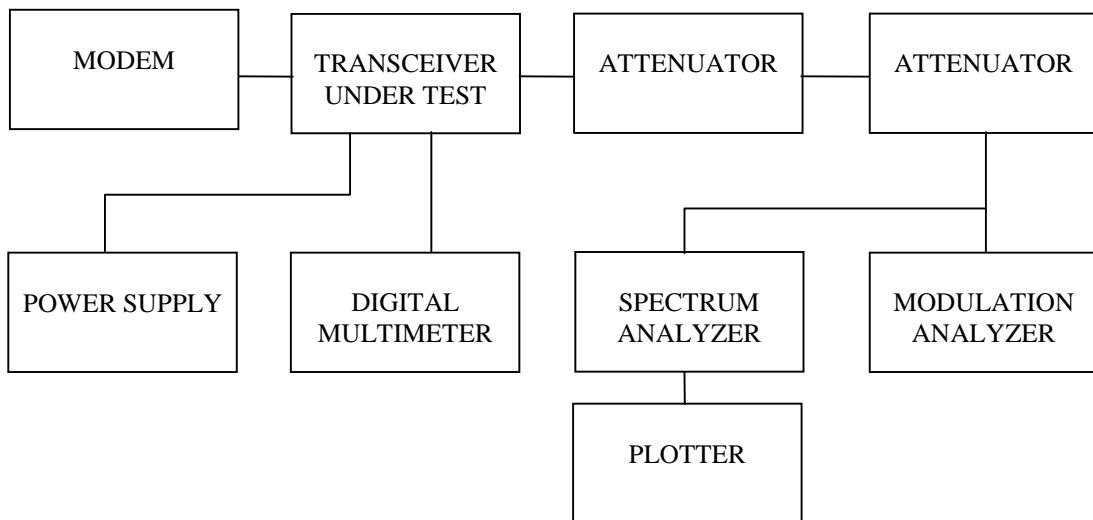
MINIMUM STANDARD: 90.210 (c)-Mask C  
Sidebands and Spurious [Rule 90.210 (C),  
Authorized Bandwidth = 20 kHz [Rule 90.209(b) (5)]  
From 5 kHz to 10 kHz, down  $83\log(fd/5)$ .  
From 10 kHz to 250% auth BW, down  $29\log(fd^2/11)$  dB or 50dB minimum.  
Greater than 50 kHz, down  $43+10\log(P)$  dB minimum.  
> 50 kHz, Attenuation = 50 dB minimum (5 watts)  
> 50 kHz, Attenuation = 43 dB minimum (1 watt)

Mask 101.111(a)(6)  
Sidebands and Spurious [Rule 101.111(a)(6), P = 5 Watts]  
Authorized Bandwidth = 25 kHz [Rule 101.109]  
From Fo to 5.0 kHz, down 0 dB.  
Greater than 5.0 kHz to 250% auth BW, down  $116\log(fd/6.1)$   
or  $50+10\log(P)$  or 70 dB.  
Greater than 250% auth BW,  $43+10\log_{10}(P)$  or 80 dB.  
Values:  
Attenuation = 0 db at Fo to 5 kHz  
Attenuation = 25 dB at 10 kHz  
Attenuation = 57 dB at 18.91 kHz  
Attenuation = 50 dB at > 62.5 kHz


TEST RESULTS: Meets minimum standard (see data on the following pages)

TEST CONDITIONS: Standard Test Conditions, 25 C

TEST EQUIPMENT: Attenuator, BIRD Model / 9715 / 50-A-MFN-06 / 6 dB / 50 Watt  
Attenuator, BIRD Model / 9716 / 25-A-MFN-20 / 20 dB / 25 Watt  
Digital Voltmeter, Fluke Model 8012A  
DC Power Source, Model HP6284A  
Modulation Analyzer, Model HP8901A  
Spectrum Analyzer, Model HP8563E  
Plotter, HP7470A


PERFORMED BY:

Allen Frederick



DATE: 8/4/99

## TEST SET-UP:



## MODULATION SOURCE DESCRIPTION:

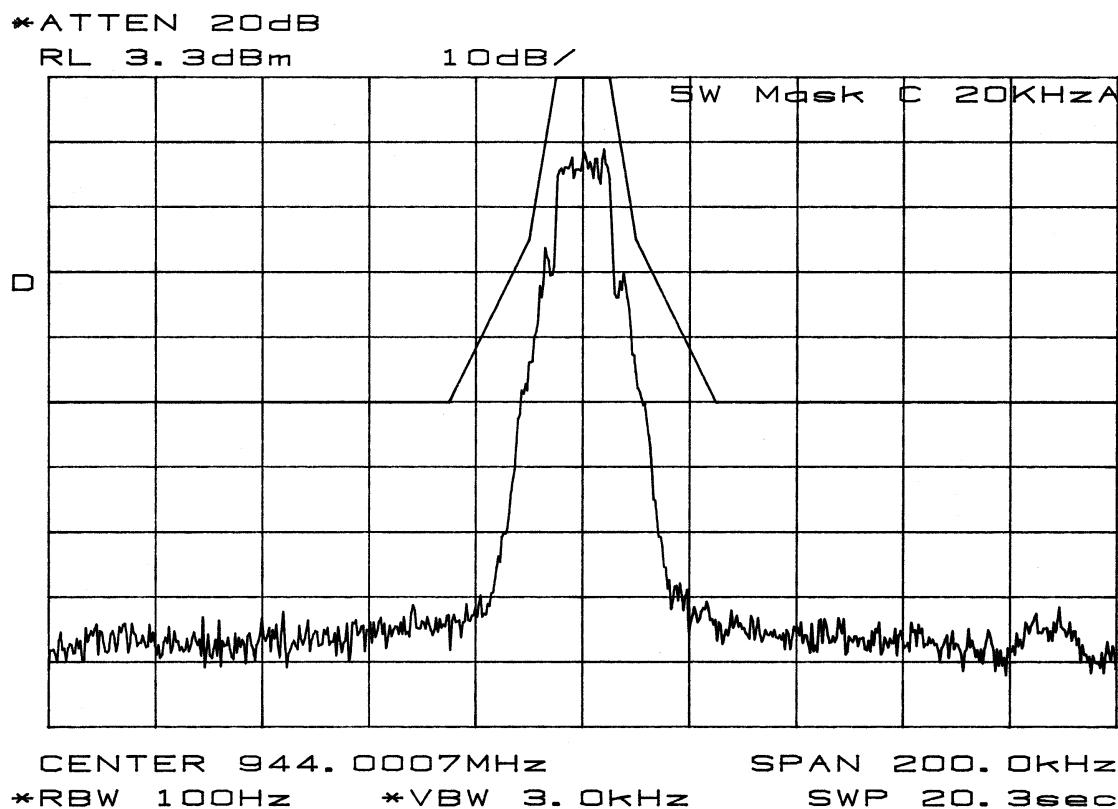
See page 9 of the report for modulation source description

## NECESSARY BANDWIDTH (Bn) CALCULATION

See page 13 for Emission Designator determination.

The corresponding emission designator prefix for necessary bandwidth = **15K3**

TEST DATA: Refer to the following graphs:


**MASK: C,5W****SPECTRUM FOR EMISSION 15K3F1D**

OUTPUT POWER: 5 Watts

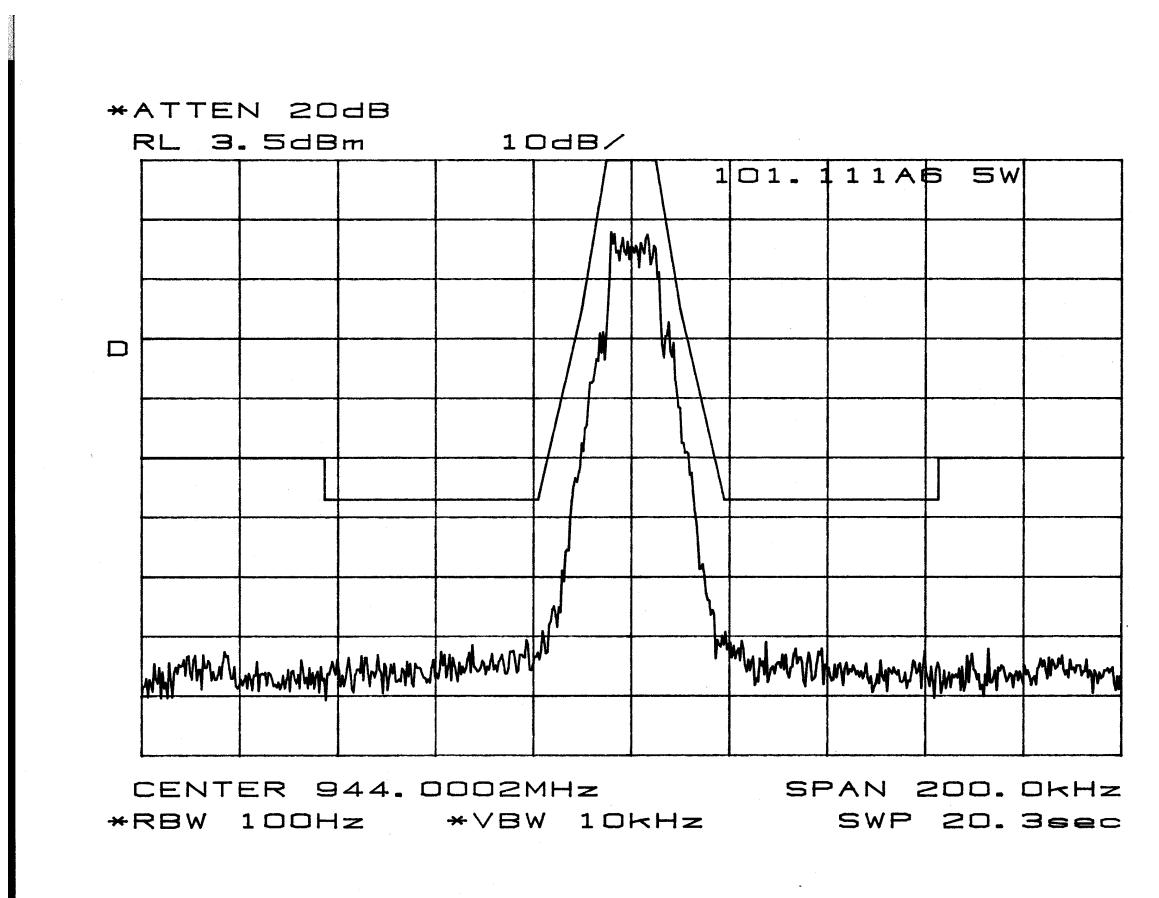
19200 bps

PEAK DEVIATION = 4000 Hz

SPAN = 200 kHz



**MASK: 101.111a6,5W**


**SPECTRUM FOR EMISSION 15K3F1D**

**OUTPUT POWER: 5 Watts**

**19200 bps**

**PEAK DEVIATION = 4000 Hz**

**SPAN = 200 kHz**



**MASK: C,1W**

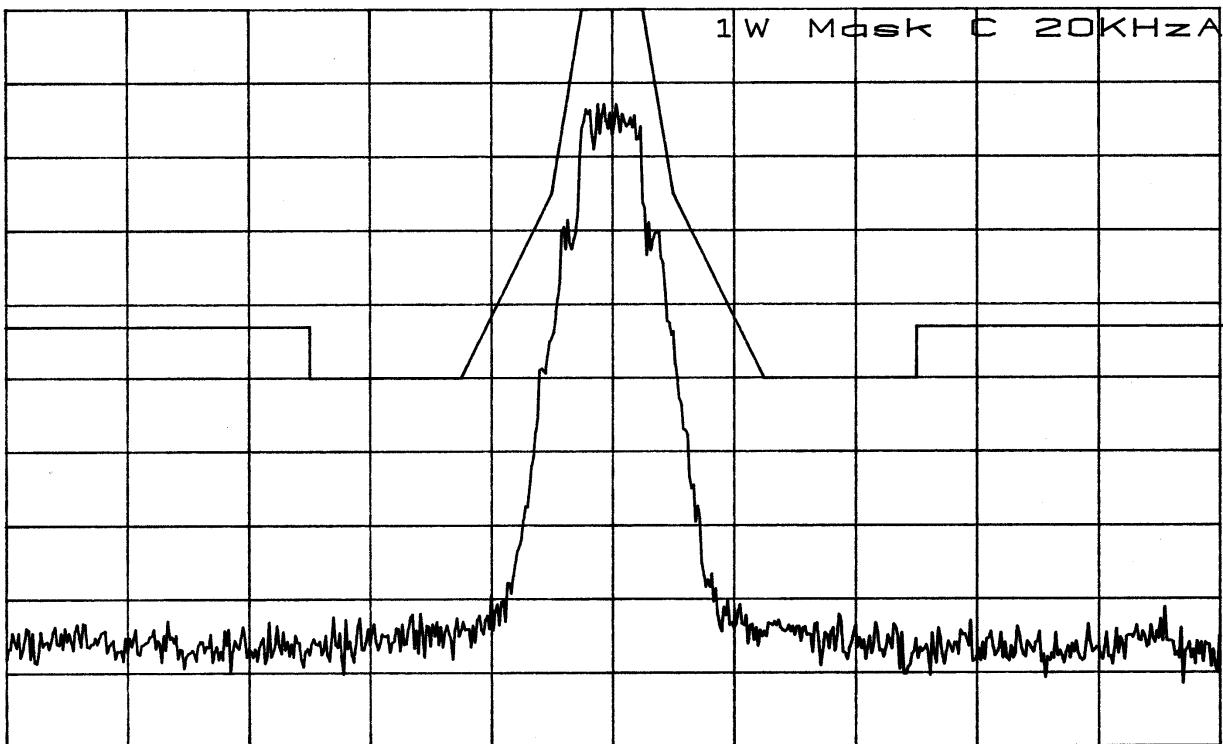
**SPECTRUM FOR EMISSION 15K3F1D**

**OUTPUT POWER: 1 Watts**

**19200 bps**

**PEAK DEVIATION = 4000 Hz**

**SPAN = 200 kHz**


**\*ATTEN 20dB**

**RL -2.7 dBm**

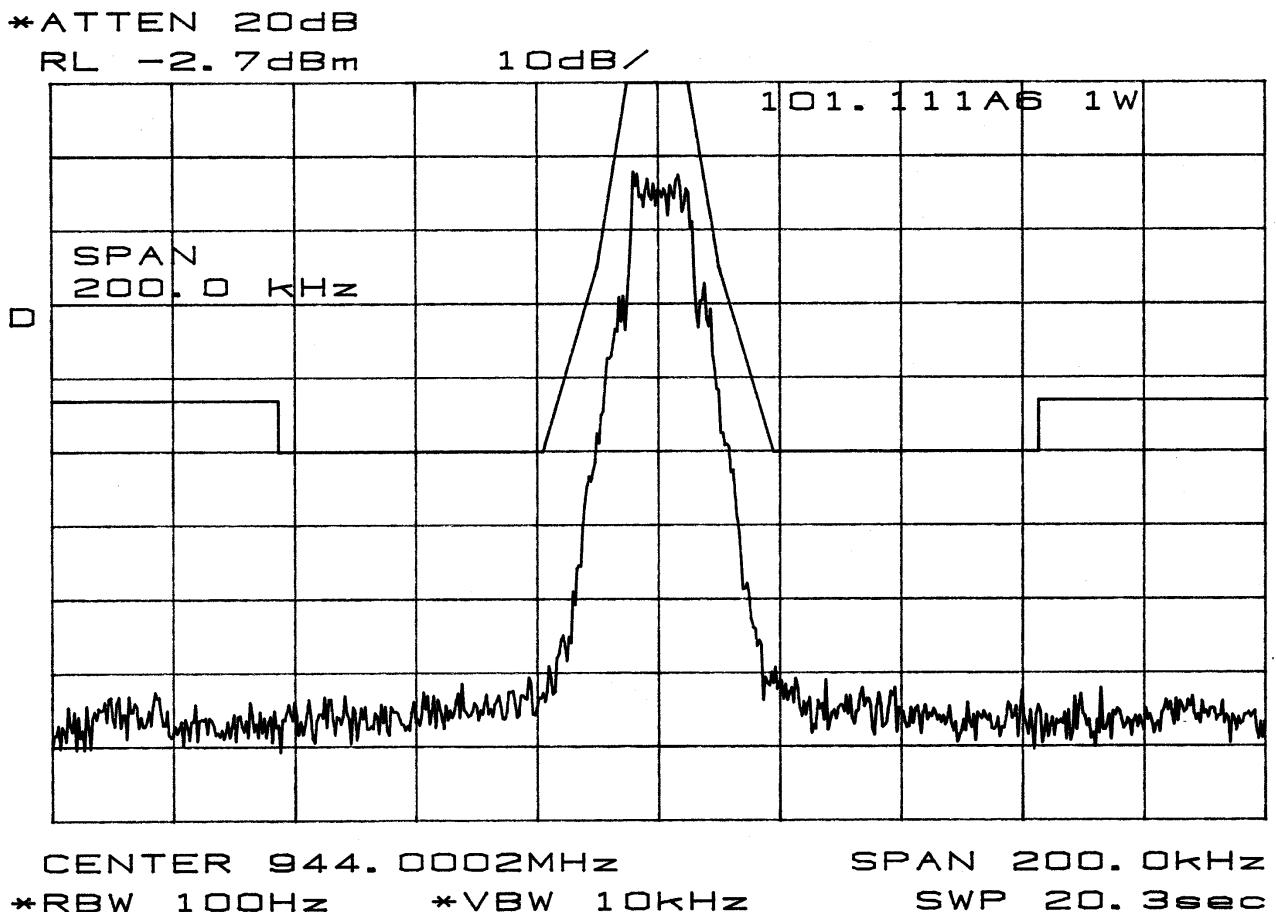
**10dB/**

**D**

**1W Mask C 20KHzA**



**CENTER 944.0010MHz**


**SPAN 200.0kHz**

**\*RBW 100Hz**

**\*VBW 3.0kHz**

**SWP 20.3sec**

**MASK: 101.111 a6,1W**  
**SPECTRUM FOR EMISSION 15K3F1D**  
**OUTPUT POWER: 1 Watts**  
**19200 bps**  
**PEAK DEVIATION = 4000 Hz**  
**SPAN = 200 kHz**



## Transmitter Spurious and Harmonic Outputs

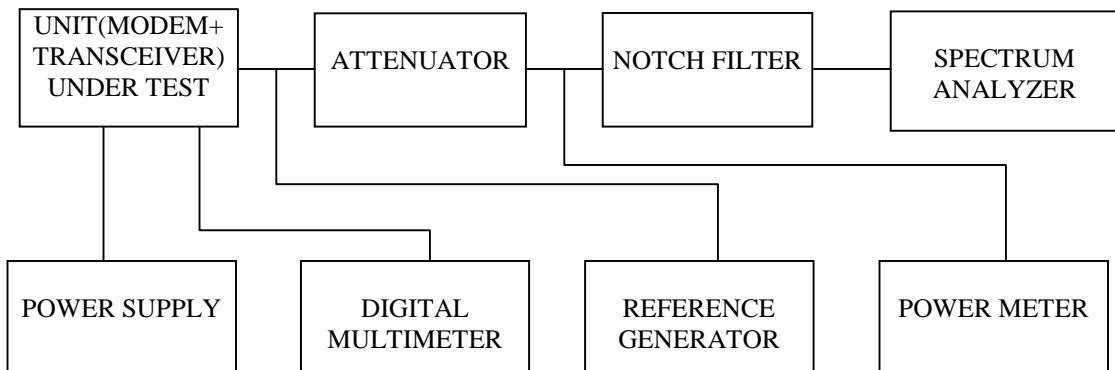
RULE PART NUMBER: 2.1041, 2.1051, 90.210 (d)(3)

MINIMUM STANDARD: For 5 Watt;  $50 + 10\log_{10}(5 \text{ Watts}) = -57 \text{ dBc}$   
or -70 dBc whichever is the lesser attenuation.


TEST RESULTS: Meets minimum standard (see data on the following page)

TEST CONDITIONS: Standard Test Conditions, 25 C  
RF voltage measured at antenna terminals

TEST PROCEDURE: TIA/EIA - 603, 2.2.13


TEST EQUIPMENT: Attenuator, Tenuline Model 8340 / 20 dB / 25 Watt  
Power Supply, Model HP-6284A  
Audio Generator, Model HP8903B  
Digital Voltmeter, Fluke Model 8012A  
Reference Generator, Model HP83732A  
Spectrum Analyzer, Model HP8563E  
Power Meter, Model HP436A

PERFORMED BY:

  
Allen Frederick

DATE: 07/21/99

TEST SET-UP:



NAME OF TEST: Transmitter Spurious and Harmonic Outputs  
(Continued)

## MEASUREMENT PROCEDURE:

1. The transmitter carrier output frequency is 928.000, 944.000 and 960.000 MHz. The reference oscillator frequency is 17.5000 MHz.
2. After carrier reference was established on spectrum analyzer, the notch filter was adjusted to null the carrier Fc to extend the range of the spectrum analyzer for harmonic measurements.
3. At each spurious frequency, Generator substitution was used to establish the true spurious level.
4. The spectrum was scanned to the 10th harmonic.

## TEST DATA:

$F_o = 928.000$  MHz

5 Watts = 37dBm Transmitter Spurious and Harmonics

| Frequency (MHz) | Relation | Level (dBm) | Level Relative to Carrier (dBc) |
|-----------------|----------|-------------|---------------------------------|
| 1856            | $2 F_o$  | -37.5       | -74.5                           |
| 2784            | $3 F_o$  | -47.5       | -84.5                           |
| 3712            | $4 F_o$  | -55.0       | -92.0                           |
| 4640            | $5 F_o$  | -47.0       | -84.0                           |
| 5568            | $6 F_o$  | -45.5       | -82.5                           |
| 6496            | $7 F_o$  | -69.0*      | -106.0                          |
| 7424            | $8 F_o$  | -61.0*      | -98.0                           |
| 8352            | $9 F_o$  | -60.0       | -97.0                           |
| 9280            | $10 F_o$ | -54.5       | -91.5                           |

NOTE: \* means spectrum analyzer could not read any lower, the level specified is the RF level of the substitution generator at the point where the signal was submersed in noise on the spectrum analyzer.

$F_o = 944.000$  MHz

5 Watts = 37dBm Transmitter Spurious and Harmonics

| Frequency (MHz) | Relation | Level (dBm) | Level Relative to Carrier (dBc) |
|-----------------|----------|-------------|---------------------------------|
| 1888            | $2 F_o$  | -32         | -69                             |
| 2832            | $3 F_o$  | -33         | -70                             |
| 3776            | $4 F_o$  | -31         | -68                             |
| 4720            | $5 F_o$  | -58         | -95                             |
| 5664            | $6 F_o$  | -31         | -68                             |
| 6608            | $7 F_o$  | -47         | -84                             |
| 7552            | $8 F_o$  | -37         | -74                             |
| 8496            | $9 F_o$  | -50         | -87                             |
| 9440            | $10 F_o$ | -60         | -97                             |

NAME OF TEST: Transmitter Spurious and Harmonic Outputs  
(Continued)

$F_o = 960.000$  MHz

5 Watts = 37dBm Transmitter Spurious and Harmonics

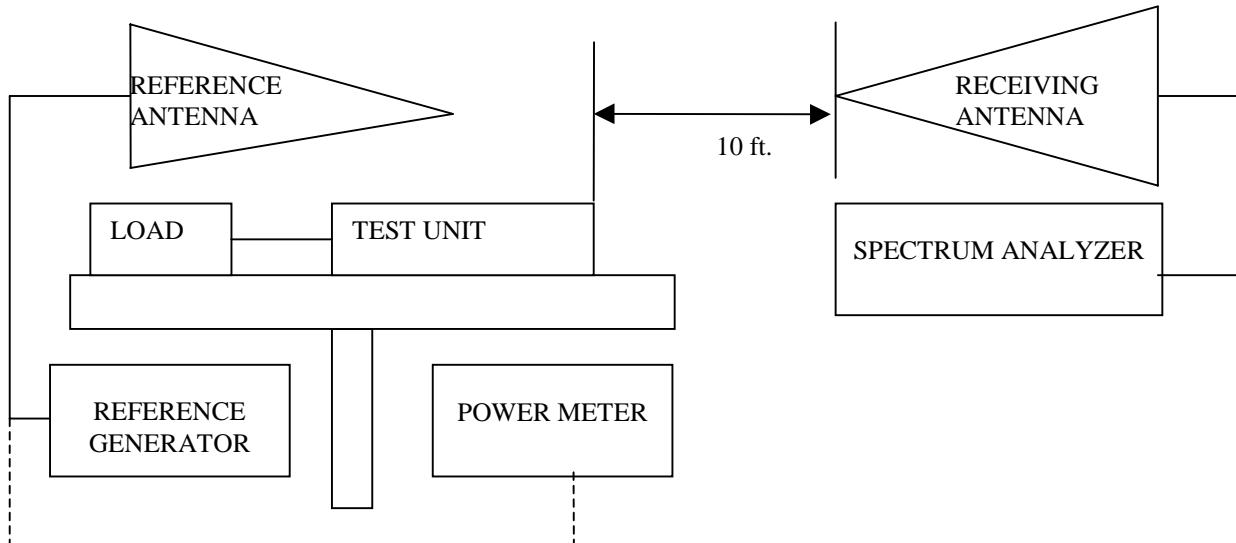
| <u>Frequency (MHz)</u> | <u>Relation</u> | <u>Level (dBm)</u> | <u>Level Relative to Carrier (dBc)</u> |
|------------------------|-----------------|--------------------|----------------------------------------|
| 1920                   | $2 F_o$         | -41.5              | -78.5                                  |
| 2880                   | $3 F_o$         | -45.0              | -82.0                                  |
| 3840                   | $4 F_o$         | -56.5              | -93.5                                  |
| 4800                   | $5 F_o$         | -47.0              | -84.0                                  |
| 5760                   | $6 F_o$         | -48.0              | -85.0                                  |
| 6720                   | $7 F_o$         | -54.5              | -91.5                                  |
| 7680                   | $8 F_o$         | -55.5              | -92.5                                  |
| 8640                   | $9 F_o$         | -60.5              | -97.5                                  |
| 9600                   | $10 F_o$        | -64.0              | -101.0                                 |

## Field Strength of Spurious Radiation

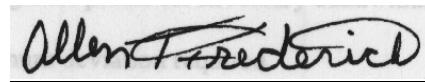
RULE PART NUMBER: 2.1041, 2.1053

MINIMUM STANDARD: For 5 Watts;  $50 + 10\log_{10}(5) = -57$  dBc

TEST RESULTS: Meets minimum standard (see data on the following page)


TEST CONDITIONS: Standard Test Conditions, 25 C

TEST PROCEDURE: TIA/EIA - 603, 2.2.12


TEST EQUIPMENT:  
 Log Spiral Antenna, Model 93491-2  
 Log Periodic Antenna, Model LPA-112  
 Reference Generator, Model HP83732A  
 Load, Lucas Weinschel 58-30-43  
 Spectrum Analyzer, Model HP8563E  
 Power Meter, Model HP436A  
 Power Supply, Model HP-6284A

MEASUREMENT PROCEDURE: Radiated spurious attenuation was measured according to  
 TIA/EIA Standard 603 Section 2.2.12

TEST SET-UP:



PERFORMED BY:

  
 Allen Frederick

DATE: 8/2/99

NAME OF TEST: Field Strength of Spurious Radiation (Continued)

Frequency:

928 MHz

Power: 5 Watts= 37.0 dBm

| Spurious Frequency (MHz) | Polarization (Horz/Vert) | Spurious Level (dBm) | Substitution Generator (dBm) | Cable Loss (dB) | Antenna Gain (dBd) | Circular Polarization Correction (dB) | Spurious Attenuation dBc |
|--------------------------|--------------------------|----------------------|------------------------------|-----------------|--------------------|---------------------------------------|--------------------------|
| 1856                     | H                        | -85.83               | -41.50                       | 7.00            | 1.20               | 3.00                                  | -87.30                   |
|                          |                          | -84.83               | -39.50                       | 7.00            | 1.20               | 3.00                                  | -85.30                   |
| 2784                     | H                        | -74.33               | -23.50                       | 9.00            | 1.20               | 3.00                                  | -71.30                   |
|                          |                          | -72.33               | -16.00                       | 9.00            | 1.20               | 3.00                                  | -63.80                   |
| 3712                     | H                        | -92.67               | -41.50                       | 11.00           | 1.20               | 3.00                                  | -91.30                   |
|                          |                          | -92.00               | -37.50                       | 11.00           | 1.20               | 3.00                                  | -87.30                   |
| 4640                     | H                        | -82.50               | -28.00                       | 12.33           | 1.20               | 3.00                                  | -79.13                   |
|                          |                          | -86.33               | -30.00                       | 12.33           | 1.20               | 3.00                                  | -81.13                   |
| 5568                     | H                        | -88.50               | -29.00                       | 14.00           | 1.20               | 3.00                                  | -81.80                   |
|                          |                          | -93.00               | -28.50                       | 14.00           | 1.20               | 3.00                                  | -81.30                   |
| 6496                     | H                        | -89.00               | -27.00                       | 15.83           | 1.20               | 3.00                                  | -81.63                   |
|                          |                          | -94.50               | -30.00                       | 15.83           | 1.20               | 3.00                                  | -84.63                   |
| 7424                     | H                        | -98.50               | -28.00                       | 17.50           | 1.10               | 3.00                                  | -84.40                   |
|                          |                          | -103.00              | -24.50                       | 17.50           | 1.10               | 3.00                                  | -80.90                   |
| 8352                     | H                        | <-113                | -28.00                       | 20.00           | 0.50               | 3.00                                  | -87.50                   |
|                          |                          | <-115                | -29.00                       | 20.00           | 0.50               | 3.00                                  | -88.50                   |
| 9280                     | H                        | <-116                | -38.00                       | 22.50           | 0.50               | 3.00                                  | -100.00                  |
|                          |                          | <-116                | -37.00                       | 22.50           | 0.50               | 3.00                                  | -99.00                   |

Frequency:

944 MHz

Power: 5 Watts= 37.0 dBm

| Spurious Frequency (MHz) | Polarization (Horz/Vert) | Spurious Level (dBm) | Substitution Generator (dBm) | Cable Loss (dB) | Antenna Gain (dBd) | Circular Polarization Correction (dB) | Spurious Attenuation dBc |
|--------------------------|--------------------------|----------------------|------------------------------|-----------------|--------------------|---------------------------------------|--------------------------|
| 1888                     | H                        | -83.00               | -39.50                       | 6.83            | 1.20               | 3.00                                  | -85.13                   |
|                          |                          | -78.50               | -32.50                       | 6.83            | 1.20               | 3.00                                  | -78.13                   |
| 2832                     | H                        | -71.30               | -19.00                       | 9.67            | 1.20               | 3.00                                  | -67.47                   |
|                          |                          | -70.83               | -13.00                       | 9.67            | 1.20               | 3.00                                  | -61.47                   |
| 3776                     | H                        | -88.00               | -32.50                       | 11.00           | 1.20               | 3.00                                  | -82.30                   |
|                          |                          | -87.00               | -32.00                       | 11.00           | 1.20               | 3.00                                  | -81.80                   |
| 4720                     | H                        | -87.67               | -34.00                       | 12.50           | 1.20               | 3.00                                  | -85.30                   |
|                          |                          | -84.50               | -29.00                       | 12.50           | 1.20               | 3.00                                  | -80.30                   |
| 5664                     | H                        | -83.83               | -18.50                       | 13.83           | 1.20               | 3.00                                  | -71.13                   |
|                          |                          | -91.00               | -25.50                       | 13.83           | 1.20               | 3.00                                  | -78.13                   |
| 6608                     | H                        | -88.83               | -24.00                       | 16.17           | 1.20               | 3.00                                  | -78.97                   |
|                          |                          | -91.83               | -28.00                       | 16.17           | 1.20               | 3.00                                  | -82.97                   |
| 7552                     | H                        | -107.00              | -30.50                       | 17.67           | 1.10               | 3.00                                  | -87.07                   |
|                          |                          | -102.50              | -32.50                       | 17.67           | 1.10               | 3.00                                  | -89.07                   |
| 8496                     | H                        | -108.30              | -21.50                       | 20.33           | 0.50               | 3.00                                  | -81.33                   |
|                          |                          | -108.30              | -27.50                       | 20.33           | 0.50               | 3.00                                  | -87.33                   |
| 9440                     | H                        | -111.00              | -24.50                       | 22.83           | 0.50               | 3.00                                  | -86.83                   |
|                          |                          | -108.70              | -18.50                       | 22.83           | 0.50               | 3.00                                  | -80.83                   |

NAME OF TEST: Field Strength of Spurious Radiation (Continued)

| Frequency:               |                          | 960 MHz              |                              | Power: 5 Watts= 37.0 dBm |                    |                                       |                          |
|--------------------------|--------------------------|----------------------|------------------------------|--------------------------|--------------------|---------------------------------------|--------------------------|
| Spurious Frequency (MHz) | Polarization (Horz/Vert) | Spurious Level (dBm) | Substitution Generator (dBm) | Cable Loss (dB)          | Antenna Gain (dBd) | Circular Polarization Correction (dB) | Spurious Attenuation dBc |
| 1920                     | H                        | -83.2                | -38.0                        | 8.83                     | 1.20               | 3.00                                  | -85.63                   |
|                          | V                        | -79.2                | -33.5                        | 8.83                     | 1.20               | 3.00                                  | -81.13                   |
| 2880                     | H                        | -73.8                | -20.5                        | 11.33                    | 1.20               | 3.00                                  | -70.63                   |
|                          | V                        | -69.3                | -15.0                        | 11.33                    | 1.20               | 3.00                                  | -65.13                   |
| 3840                     | H                        | -93.0                | -40.0                        | 12.67                    | 1.20               | 3.00                                  | -91.47                   |
|                          | V                        | -86.9                | -30.5                        | 12.67                    | 1.20               | 3.00                                  | -81.97                   |
| 4800                     | H                        | -89.7                | -37.5                        | 13.67                    | 1.20               | 3.00                                  | -89.97                   |
|                          | V                        | -87.8                | -32.5                        | 13.67                    | 1.20               | 3.00                                  | -84.97                   |
| 5760                     | H                        | -101.0               | -37.5                        | 16.00                    | 1.20               | 3.00                                  | -92.30                   |
|                          | V                        | -99.3                | -30.0                        | 16.00                    | 1.20               | 3.00                                  | -84.80                   |
| 6720                     | H                        | -92.7                | -28.0                        | 17.67                    | 1.20               | 3.00                                  | -84.47                   |
|                          | V                        | -95.7                | -27.0                        | 17.67                    | 1.20               | 3.00                                  | -83.47                   |
| 7680                     | H                        | -103.7               | -25.0                        | 20.00                    | 1.10               | 3.00                                  | -83.90                   |
|                          | V                        | -106.5               | -31.5                        | 20.00                    | 1.10               | 3.00                                  | -90.40                   |
| 8640                     | H                        | -106.3               | -28.0                        | 23.67                    | 0.50               | 3.00                                  | -91.17                   |
|                          | V                        | -105.0               | -18.5                        | 23.67                    | 0.50               | 3.00                                  | -81.67                   |
| 9600                     | H                        | < -123               | -40.5                        | 27.67                    | 0.50               | 3.00                                  | -107.67                  |
|                          | V                        | < -126               | -41.0                        | 27.67                    | 0.50               | 3.00                                  | -108.17                  |

## CALCULATIONS FOR FIELD STRENGTH OF SPURIOUS RADIATION TESTS:

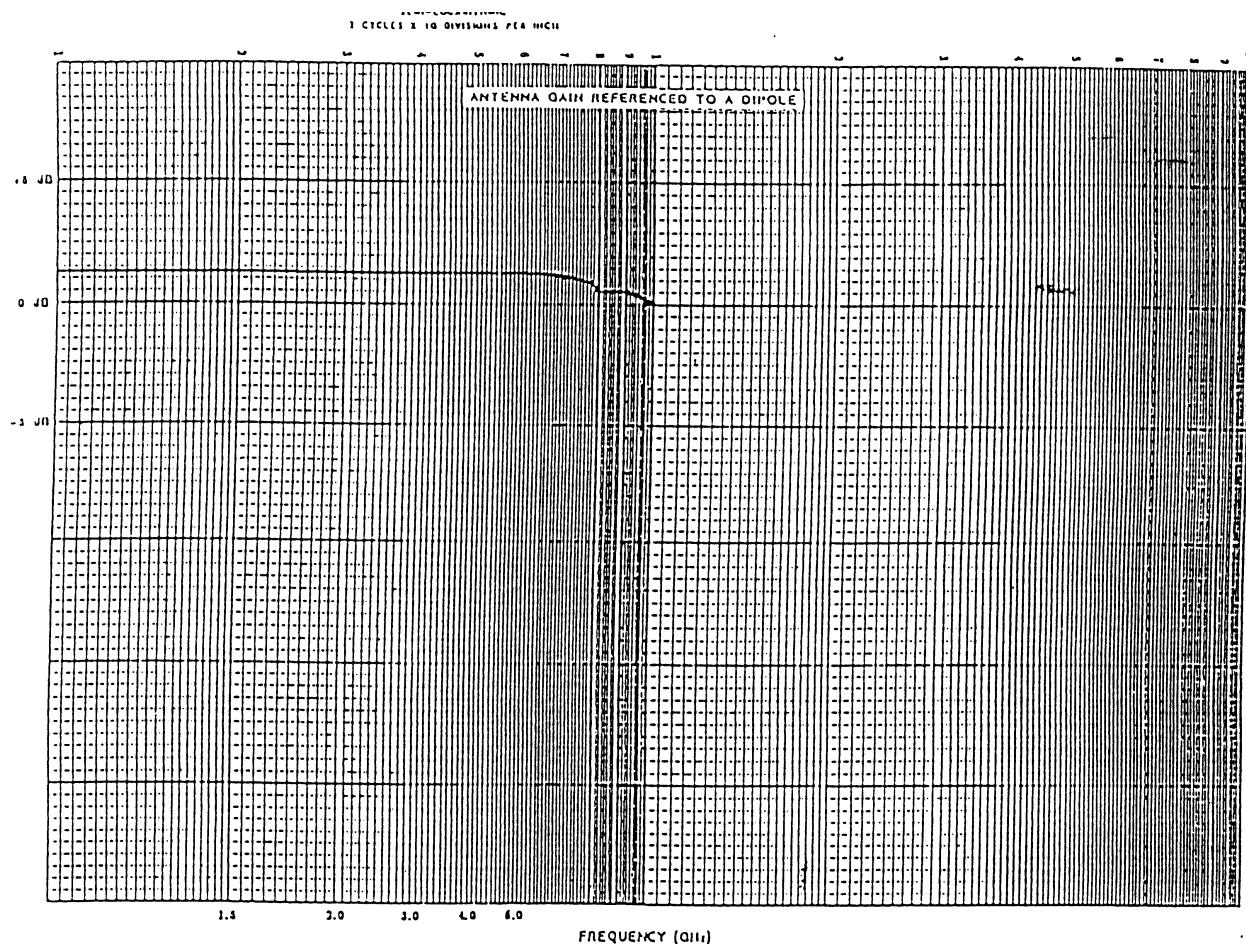
Since the reference antenna used above 1 GHz has gain that differed from a dipole, the generator output was corrected for antenna gain at each spurious frequency. The power was measured directly at the reference antenna and therefore requires no coaxial cable loss correction. An additional correction was made for the 3 dB polarization loss in the reference path.

## EXAMPLE:

At 1856 MHz, 5 Watts and horizontal polarization.

|                                         |        |
|-----------------------------------------|--------|
| R - Reference Generator (dBm)           | -41.50 |
| A - Antenna Gain (dB)                   | +1.2   |
| P - Polarization Correction Factor (dB) | 3.0    |
| Cl-Cable loss (dB)                      | 7.0    |

R' - Corrected Reference (dBm)


$$R' = R + A - P - Cl = -41.50 + 1.2 - 3.0 - 7.0 = -50.30 \text{ dBm}$$

Po - Radiated Carrier Power (dBm)

$$5 \text{ Watts} = 37 \text{ dBm}$$

$$\text{Radiated Spurious Emission (dBc)} = Po - R' = -50.30 - (+37.0) = -87.30 \text{ dB}$$

NAME OF TEST: Field Strength of Spurious Radiation (Continued)



ANTENNA GAIN GRAPH

Frequency Stability**part 1. According with Variation in Ambient Temperature**

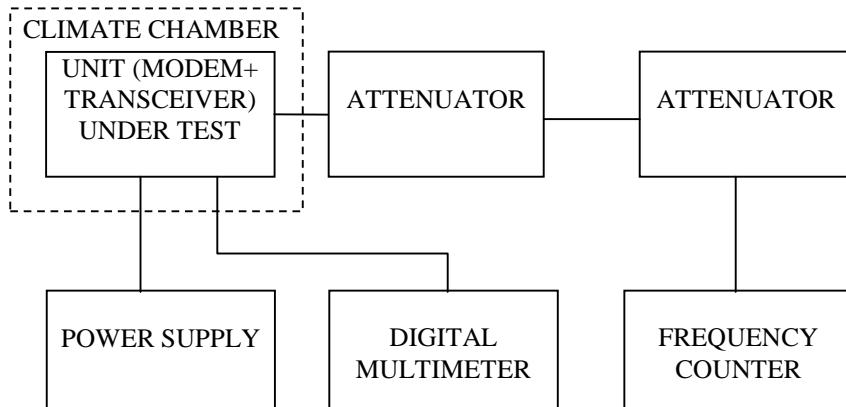
RULE PART NUMBER: 2.1055 (a)(1), 90.213 (a) (7), 101.107(a)

MINIMUM STANDARD: 90.213 (a): Shall not exceed  $\pm 0.000150\%$  from test frequency, or 1.50 ppm  
101.107 (a): the worst case: shall not exceed  $\pm 0.000150\%$  from test frequency, or 1.50 ppm

TEST RESULTS: Meets minimum standard, see data on following page

TEST CONDITIONS: Standard Test Conditions, 25 C

TEST EQUIPMENT: Attenuator, Tenuline Model 8340 / 20 dB / 25 Watt  
Attenuator, Tenuline Model 8340 / 10 dB / 25 Watt  
Frequency Counter, Fluke Model 1920A  
Power Supply, Model HP-6284A  
Digital Voltmeter, Fluke Model 8012A  
Thermometer, Fluke Model 80T-150U  
Climate Chamber, Thermotron Model SM-8C


PERFORMED BY:



DATE: 7/23/99

Allen Frederick

TEST SET-UP:



(Test data on next page)

NAME OF TEST: Frequency Stability with Variation in Ambient Temperature  
 (Continued)

Channel Frequency: 944.000000 MHz

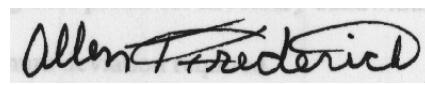
Tolerance Requirement: 1.50 ppm

Highest Variation: 0.698 ppm

| Temperature<br>(Deg C) | Measured<br>Frequency<br>(Hz) | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) |
|------------------------|-------------------------------|----------------------------|-----------------------------|
| -30                    | 944000659                     | 659                        | 0.698                       |
| -20                    | 944000409                     | 409                        | 0.433                       |
| -10                    | 944000129                     | 129                        | 0.137                       |
| 0                      | 943999994                     | -6                         | 0.006                       |
| 10                     | 944000058                     | 58                         | 0.061                       |
| 20                     | 944000099                     | 99                         | 0.105                       |
| 30                     | 943999800                     | -200                       | 0.212                       |
| 40                     | 943999947                     | -53                        | 0.056                       |
| 50                     | 944000020                     | 20                         | 0.021                       |
| 60                     | 944000061                     | 61                         | 0.065                       |

**part 2. According with Variation in Supply Voltage**

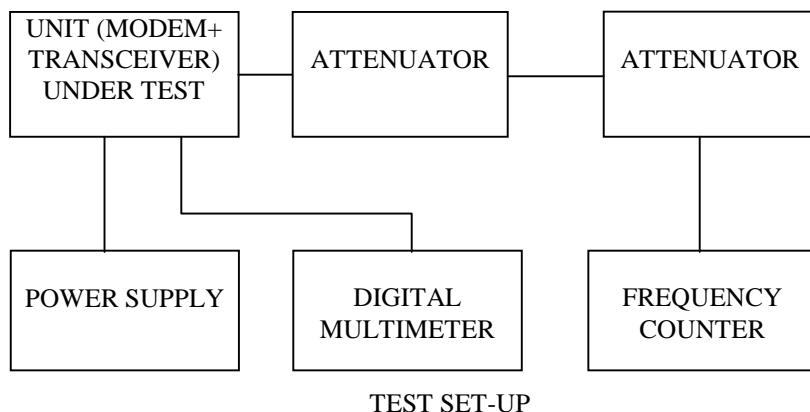
RULE PART NUMBER: 2.1055 (a)(1), 90.213 (a) (7), 101.107(a)


MINIMUM STANDARD: 90.213 (a): Shall not exceed  $\pm 0.000150\%$  from test frequency, or 1.50 ppm  
101.107 (a): the worst case: shall not exceed  $\pm 0.000150\%$  from test frequency, or 1.50 ppm

TEST RESULTS: Meets minimum standard, see data on following page

TEST CONDITIONS: Standard Test Conditions, 25 C

TEST EQUIPMENT: Attenuator, Tenuline Model 8340 / 20 dB / 25 Watt  
Attenuator, Tenuline Model 8340 / 10 dB / 25 Watt  
Frequency Counter, Fluke Model 1920A  
Digital Voltmeter, Fluke Model 8012A  
DC Power Source, Model HP6624A


PERFORMED BY:



DATE: 7/23/99

Allen Frederick

TEST SET-UP:



(Test data on next page)

NAME OF TEST: Frequency Stability with Variation in Supply Voltage  
(Continued)

MEASUREMENTS TAKEN:

1.5 ppm Reference Oscillator

Frequency Reference Set at 25° C: 944.00008 MHz

Tolerance Requirement: 0.00015 %

Highest Variation (%): 0.00000000 %

Highest Variation (ppm): 0.000 ppm

| SUPPLY<br>VDC | FREQUENCY<br>MHz | DELT FREQ<br>% of assigned f | SPEC LIMIT<br>% of assigned f | ppm from assigned<br>frequency |
|---------------|------------------|------------------------------|-------------------------------|--------------------------------|
| 10            | 944.00008        | 0.00000000                   | 0.00015                       | 0.000                          |
| 13            | 944.00008        | 0.00000000                   | 0.00015                       | 0.000                          |
| 16            | 944.00008        | 0.00000000                   | 0.00015                       | 0.000                          |

**Attachments:****Description of Circuitry, Attachment A**

File operatio.doc

**Schematics, Attachment B**

D3315  
DL 3492 transceiver board -file :\3492sch.dxf

**Photographs, Attachment C**

External photograph -file:\ext\_phot.doc  
Internal photograph - file:\int\_phot.doc  
Label photograph and affix description- file:\lab\_phot.doc

**Technical manual, Attachment D**

File:\ intt100.doc