

UPS AVIATION TECHNOLOGIES TEST REPORT

FOR THE

MODE S DATA LINK TRANSPONDER, AT7000

FCC PART 87 SUBPART D COMPLIANCE

DATE OF ISSUE: SEPTEMBER 5, 2001

PREPARED FOR:

PREPARED BY:

UPS Aviation Technologies 2345 Turner Road SE Salem, OR 97302 Joyce Walker CKC Laboratories, Inc. 5473A Clouds Rest

Mariposa, CA 95338

P.O. No.: 220750 W.O. No.: 77446 Date of test: August 20-21, 2001

Report No.: FC01-059

This report contains a total of 33 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

Page 1 of 33 Report No.: FC01-059

TABLE OF CONTENTS

Administrative Information	3
Summary of Results	
Modifications Required for Compliance	4
Approvals	
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	
Temperature and Humidity During Testing	5
2.1033(c)(1) Manufacturer	
2.1033(c)(2) Identification.	6
2.1033(c)(3) User's Manual	6
2.1033(c)(4) Type of Emissions	6
2.1033(c)(5) Frequency Range	6
2.1033(c)(6) Operating Power	
2.1033(c)(7) Maximum Power Rating	6
2.1033(c)(8) DC Voltages	
2.1033(c)(9) Tune-Up Procedure	7
2.1033(c)(10) Schematics and Circuitry Description	7
2.1033(c)(11) Label and Placement	8
2.1033(c)(12) Submittal Photos	
2.1033(c)(13) Modulation Information	
2.1033(c)(14)/2.1046/87.139 - RF Power Output	9
2.1033(c)(14)/2.1047 - Modulation Characteristics	20
2.1033(c)(14)/2.1049(i)/87.135 - Occupied Bandwidth	22
2.1033(c)(14)/2.1051/87.139 - Spurious Emissions at Antenna Terminal	24
2.1033(c)(14)/2.1053/87.139 - Field Strength of Spurious Radiation	30
2.1033(c)(14)/2.1055/87.133 - Frequency Stability	32

Page 2 of 33 Report No.: FC01-059

CKC Laboratories, Inc. has received Certificates of Accreditation from the following agencies:

A2LA (USA); DATech (Germany); BSMI (Taiwan); Nemko (Norway); and GOST (Russia).

CKC Laboratories, Inc has received test site Registration Acceptance from the following agencies:

FCC (USA); VCCI (Japan); and Industry Canada.

CKC Laboratories, Inc. has received Letters of Acceptance through an MRA for the following agencies:

ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); Radio Communications Agency (RA); HOKLAS (Hong Kong); Bakom (Swiss); BIPT (Belgium); Denmark Telestyrelsen; RvA (Netherlands); SEE (Luxembourg) SITTEL (Bolivia); and UKAS (UK).

ADMINISTRATIVE INFORMATION

DATE OF TEST: August 20-21, 2001

DATE OF RECEIPT: August 20, 2001

PURPOSE OF TEST: To demonstrate the compliance of the Mode S Data

Link Transponder, AT7000 with the requirements

for FCC Part 87 Subpart D devices.

TEST METHOD: FCC Part 87

MANUFACTURER: UPS Aviation Technologies

> 2345 Turner Road SE Salem, OR 97302

REPRESENTATIVE: George Cooley

TEST LOCATION: CKC Laboratories, Inc.

> 22105 Wilson River Hwy Tillamook, OR 97141

> > Page 3 of 33

Report No.: FC01-059

SUMMARY OF RESULTS

As received, the UPS Aviation Technologies Mode S Data Link Transponder, AT7000 was found to be fully compliant with the following standards and specifications:

United States

FCC Part 87 Subpart D

The results in this report apply only to the items tested, as identified herein.

MODIFICATIONS REQUIRED FOR COMPLIANCE

No modifications were necessary for compliance.

APPROVALS

QUALITY ASSURANCE:	TEST PERSONNEL:
Dannie Ward	while Wichin
Dennis Ward, Quality Manager	Mike Wilkinson, Test Engineer

Page 4 of 33 Report No.: FC01-059

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The Mode S Transponder tested by CKC Laboratories was a pre-production unit conformed to production drawings.

EQUIPMENT UNDER TEST

	Mode S Data I	Link Transponde	r AT7000	Install Kit
--	---------------	-----------------	----------	-------------

Manuf: UPS Aviation Technologies Manuf: UPS Technologies

Model: AT7000 Model: TBD Serial: P0008 Serial: None FCC ID: EOJAT7000 FCC ID: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

DC Power Supply

Manuf: Astron Model: RS-12M Serial: 98110031 FCC ID: DoC

<u>Transponder I/O Test Interface</u> <u>Computer</u>

Manuf: II Morrow Manuf: BSI

Model: None Model: TANY385F11 Serial: None Serial: 1006943

FCC ID: None FCC ID: MQMTD86125P

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

Page 5 of 33 Report No.: FC01-059

2.1033(c)(1) MANUFACTURER

UPS Aviation Technologies A Subsidiary of United Parcel Service 2345 Turner Road Salem, OR 97302

2.1033(c)(2) IDENTIFICATION

Model: AT7000

FCC ID: EOJAT7000

2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document, 560-0405-00 AT7000 Mode S Data Link Transponder Installation Manual.

2.1033(c)(4) TYPE OF EMISSIONS

20MO M1D

2.1033(c)(5) FREQUENCY RANGE

1090 MHz

2.1033(c)(6) OPERATING POWER

No means are provided for varying the operating power level.

2.1033(c)(7) MAXIMUM POWER RATING

Maximum P_o: 500 Watts PEP (4.766 W Avg.)

500 W PEP Max.

Average Power = P_0 PEP x (no. Pulse groups/ sec) x (pulses / group) x (pulse width)

 $= 500 \times 94 \times 116 \times 500E-9 => 2.726$ watts long mode S replies

 $+500 \times 31 \times 60 \times 500E-9 => 0.465$ watts short mode S replies

 $+500 \times 500 \times 14 \times 450E-9 => 1.575$ watts ATCRABS replies

= 4.766 watts total average power

Page 6 of 33 Report No.: FC01-059

2.1033(c)(8) DC VOLTAGES

The DC voltage to the final stage is 50 volts.

2.1033(c)(9) TUNE-UP PROCEDURE

There are no tune-up procedures required by the operator. The transmitter is tuned-up during the manufacturing process and requires no adjustments by the user.

2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

Schematics are contained in a separate document.

(a) Frequency Stabilization

A 20MHz oscillator is used as the reference oscillator for the time base for the synthesizers. The oscillator, #S125-0024-016, is a 100ppm part rated for operation over the temperature range of -40°C to +85°C. At 100ppm, the reply frequency falls within 109KHz of 1090MHz. This is well within the +/- 1 MHz limits required by TSO-C112. Reference oscillator schematics are on SCH3070 page 6.

(b) Spurious Radiation Suppression

Spurious emissions are suppressed by controlling the rise-times and fall times of the pulse by a high level modulator. The modulator schematics are depicted on SCH3070 page 7. Low pass filters between the transmitter output and the two antenna ports (top and bottom) further attenuates harmonics. Low Pass Filter schematics, one for each port, are shown on SCH3071 page 2.

(c) Modulation Limiting

Pulse Position modulation is used. The modulator is described in the sections below and is depicted in SCH-3070 page 7.

(d) Power limiting

The modulator limits the power. The +50V supply voltage that is controlled by the PA mod signal, depicted in SCH-3070 page 7, sets final output power.

Page 7 of 33 Report No.: FC01-059

2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

2.1033(c)(13) MODULATION INFORMATION

Six circuits are used synergistically to modulate the pulse train: 1) LO GATE, 2) BUFR_MOD, 3) GATE_MOD1, 4) GATE_MOD2, 5) DRVR_MOD, and 6) HL_MOD. All the circuits are located on the main receiver board assembly, and are depicted in schematic SCH-3070 page 7.

The LO Gate and DRVR_MOD are turned on during the entire reply pulse train. Individual pulses are gated on and off by the BUFR_MOD, GATE_MOD1, Gate_MOD2, and HL_MOD pulses.

The start-up sequence of events during a transmission is as follows. At T=0, the LO GATE is brought up and stays on for the entire pulse group. At T=50ns, the DRVR_MOD signal is brought up and propagates DC voltage to the driver transistor collector at T=100 nS and stays on for the entire pulse group.

Pulses are formed as follows. At T=300 nS the BUFR_MOD comes up, and the HL MOD starts up and reaches full voltage at T=400 nS. At T=350nS, GATE MOD 1 and GATE MOD 2 become active applying RF drive to the driver transistor and in turn to the final PA transistor, thus forming the leading edge of the RF output pulse. The drive signal is removed from the HL_MOD at T=750nS, causing HL_MOD voltage to ramp down between T=850ns and T=1000ns, thus forming the trailing edge of the RF output pulse. At T=1100ns BUFR_MOD, GATE_MOD1, and Gate MOD2 are shut down. This sequence is repeated beginning at T=300nS for each pulse in the train. Note: The trailing edge of the RF 50% point occurs at approximately 925 nS. The leading edge of the RF 50% point occurs at approximately 425 nS.

The LO GATE and DRVR_MOD are turned off after the entire pulse train is transmitted.

Page 8 of 33 Report No.: FC01-059

2.1033(c)(14)/2.1046/87.139 - RF POWER OUTPUT

Test Conditions / Notes:

The EUT is placed in an install kit and connected to the test equipment through cable harnesses. The losses of the harnesses, directional coupler, and attenuator were characterized. Interrogating the EUT with the 3 modulation modes in interlaced mode. The computer is used to setup the EUT operation, and then is not active. The Top antenna port of the EUT (AT7000) is connected to the ATC 1400A through a 3 meter cable and directional coupler, having a 1.6 dB and 0.3 dB loss respectively. The total loss is 1.9 dB. Peak power is measured on the ATC1400A and the cable loss is factored in to get the power at the EUT's terminals. Peak power was measured at 250 watts, which translates to 53.98 dBm. Factoring in the cable loss, actual power at the EUT's terminals is 55.88 dBm, which translates to 387.25 watts. Next we convert the unit's peak power out by adding 107 to 55.88 dBm to get 162.88 dBuV. We then take the average power output with 500 ATCRABS replies, and 125 mode S replies that are split between 94 long replies and 60 short replies, the average power calculation is as follows: Mode S long = (387.25 watts)*(94 groups/sec)*(116 pulses/group)*(511.6 nS/pulse) = 2.16 Watts Mode S short = (387.25 watts)*(31 groups/sec)*(60 pulses/group)*(511.6 nS/pulse) = 0.37Watts ATCRABS = (387.25 watts)*(500 groups/sec)*(14 pulses/group)*(457.9 nS/pulse) = 1.24 Watts Total Average power = Mode S long + Mode S short + ATCRABS = 3.77 watts. The 250 % spurious limit is 43 + 10log (average power) = -49 dBc = 113.9 dBuV. The EUT is then coupled to the spectrum analyzer through the 3 meter cable, incident port of the directional coupler and a 10 dB attenuator. The Spectrum Analyzer is adjusted to reflect the signal level of 162.88 dBuV measured with the ATC 1400A. The spec limit in the data sheet is adjusted for each RF port reading using the above. The temperature was 69°F, and the humidity was 40%. Investigated frequencies 20 MHz through 11 GHz.

Test Equipment:

1 est Equipment.				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A EMI Receiver	3010A01076	07/12/2001	07/12/2002	42
HP 84300-80037 1.5 GHz High Pass Filter	3643A00027	06/08/2001	06/08/2002	2116
Tektronix Oscilloscope TDS 3034	B018922	08/02/2001	08/02/2002	0
IFR S-1403A Mode S Test Set	6558	11/08/2000	11/08/2001	0
IFR ATC 1400A Mode A & C Test Set	204006626	11/08/2000	11/08/2001	0
HP 778D Directional Coupler	13454	08/20/2001	08/20/2002	0
10 dB Attenuator	None	09/21/2000	09/21/2001	2221

Page 9 of 33 Report No.: FC01-059

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: UPS Aviation Technologies, Inc

Specification: FCC 87.139 Top Port

 Work Order #:
 77446
 Date:
 08/21/2001

 Test Type:
 Maximized Emissions
 Time:
 11:39:58

Equipment: Mode S Data Link Transponder Sequence#: 2

Manufacturer: UPS Aviation Technologies Tested By: Mike Wilkinson

Model: AT-7000 S/N: P0008

Equipment Under Test (* = EUT):

Equipment Citater 1 cst (- D C 1)•		
Function	Manufacturer	Model #	S/N
Mode S Data Link	UPS Aviation Technologies	AT-7000	P0008
Transponder*			
AT-7000 Install Kit	UPS Technologies	TBD	None

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Astron	RS-12M	98110031
Transponder I/O Test	II Morrow	None	None
Interface			
Computer	BSI	TANY385F11	1006943

Reading listed by margin. Test Distance: None Measurement Data: Cable 1.5 G Coupl Freq Rdng Dist Corr Spec Margin Polar dΒμV dB $d\bar{B}\mu V$ MHzdB dB dB Table $dB\mu V$ dΒ Ant 1 1089.830M 131.6 +1.7+0.0+29.6 +0.0162.9 162.9 +0.0None

> Page 10 of 33 Report No.: FC01-059

Test Conditions / Notes:

The EUT is placed in an install kit and connected to the test equipment through cable harnesses. The losses of the harnesses, directional coupler, and attenuator were characterized. Interrogating the EUT with the 3 modulation modes in interlaced mode. The computer is used to setup the EUT operation, and then is not active. The Bottom antenna port of the EUT (AT7000) is connected to the ATC 1400A through a 3 meter cable and directional coupler, having a 1.8 dB and 0.3 dB loss respectively. The total loss is 2.1 dB. Peak power is measured on the ATC1400A and the cable loss is factored in to get the power at the EUT's terminals. Peak power was measured at 285 watts, which translates to 54.55 dBm. Factoring in the cable loss, actual power at the EUT's terminals is 56.65 dBm, which translates to 462.38 watts. Next we convert the unit's peak power out by adding 107 to 56.65 dBm to get 163.65 dBuV. We then take the average power output with 500 ATCRABS replies, and 125 mode S replies that are split between 94 long replies and 60 short replies, the average power calculation is as follows: Mode S long = (462.38 watts)*(94 groups/sec)*(116 pulses/group)*(511.6 nS/pulse) = 2.58 Watts Mode S short = (462.38 watts)*(31 groups/sec)*(60 pulses/group)*(511.6 nS/pulse) = 0.45Watts ATCRABS = (462.38 watts)*(500 groups/sec)*(14 pulses/group)*(457.9 nS/pulse) = 1.48 Watts Total Average power = Mode S long + Mode S short + ATCRABS = 4.51 watts. The 250 % spurious limit is 43 + 10log (average power) = -50 dBc = 113.7 dBuV. The EUT is then coupled to the spectrum analyzer through the 3 meter cable, incident port of the directional coupler and a 10 dB attenuator. The Spectrum Analyzer is adjusted to reflect the signal level of 163.65 dBuV measured with the ATC 1400A. The spec limit in the data sheet is adjusted for each RF port reading using the above. The temperature was 69°F, and the humidity was 40%. Investigated frequencies 20 MHz through 11 GHz.

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: **UPS Aviation Technologies, Inc**

Specification: FCC 87.139 Bottom Port

Work Order #: Date: 08/21/2001 77446 Test Type: **Maximized Emissions** Time: 16:38:54 Sequence#: 1

Equipment: Mode S Data Link Transponder

Tested By: Mike Wilkinson Manufacturer: **UPS** Aviation Technologies

Model: AT-7000 S/N: P0008

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mode S Data Link	UPS Aviation Technologies	AT-7000	P0008
Transponder*	_		
AT-7000 Install Kit	UPS Technologies	TBD	None

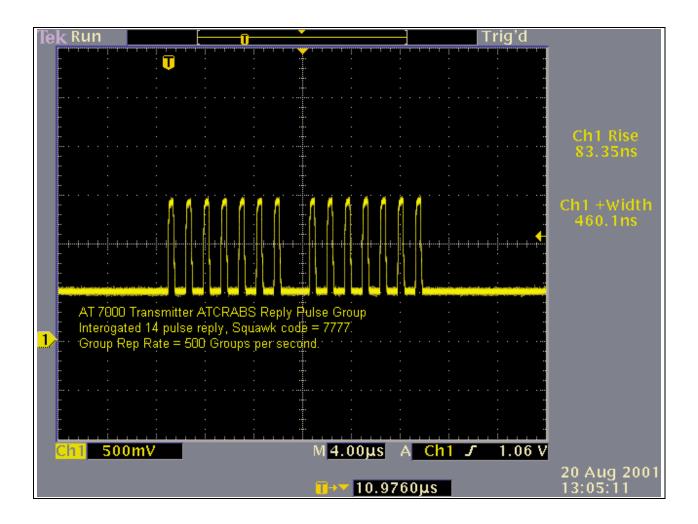
Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Astron	RS-12M	98110031
Transponder I/O Test	II Morrow	None	None
Interface			
Computer	BSI	TANY385F11	1006943

Measu	rement Data:	R	leading lis	ted by 1	margin.		Te	st Distance	e: None		
			Cable		1.5 G	Coupl					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1089.150M	132.1	+1.9		+0.0	+29.6	+0.0	163.6	163.6	+0.0	None

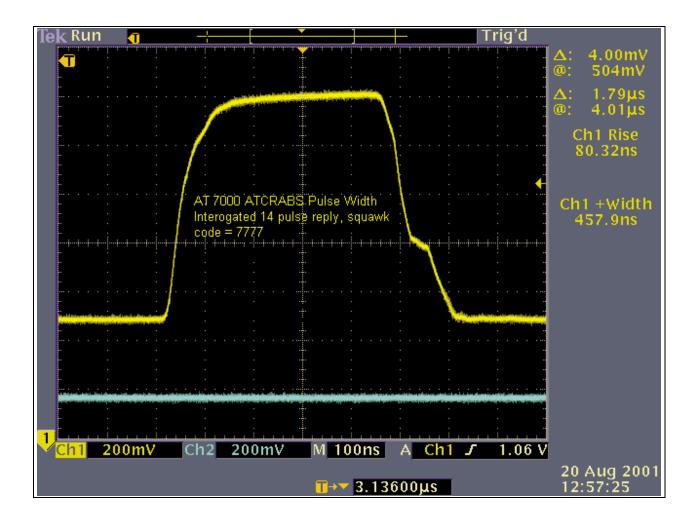
Page 11 of 33 Report No.: FC01-059

Test Setup - Front View

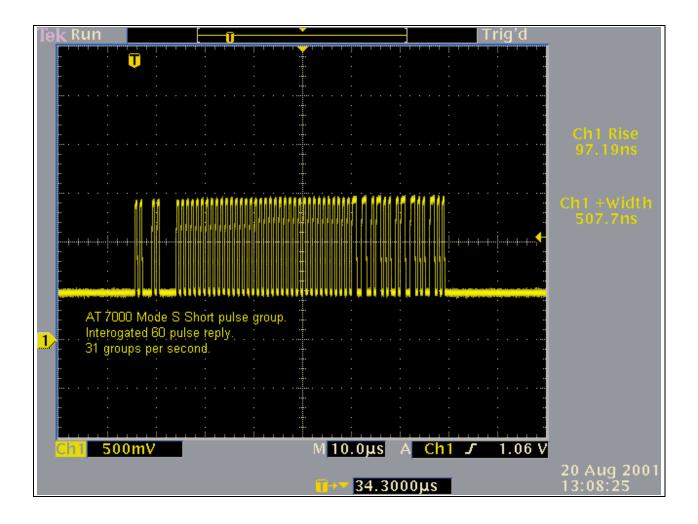


Test Setup – Back View

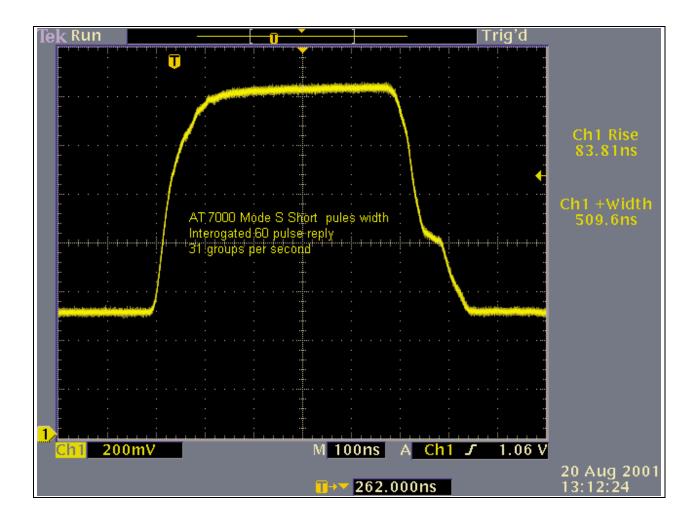
Page 12 of 33 Report No.: FC01-059


ATCRABS GROUP

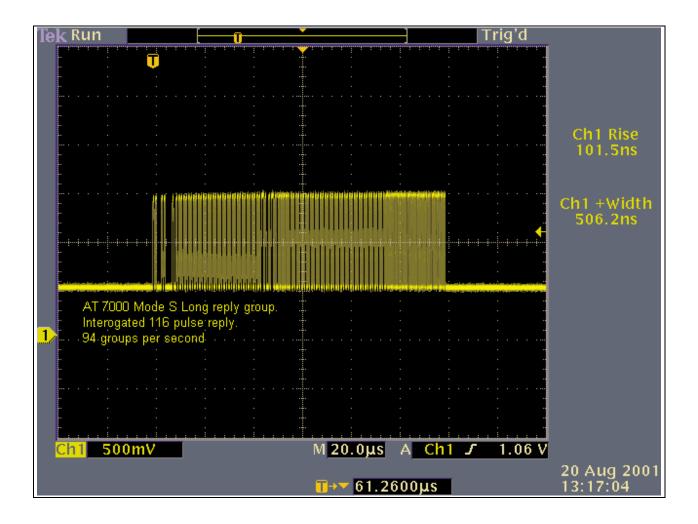
Page 13 of 33 Report No.: FC01-059


ATCRABS PULSE

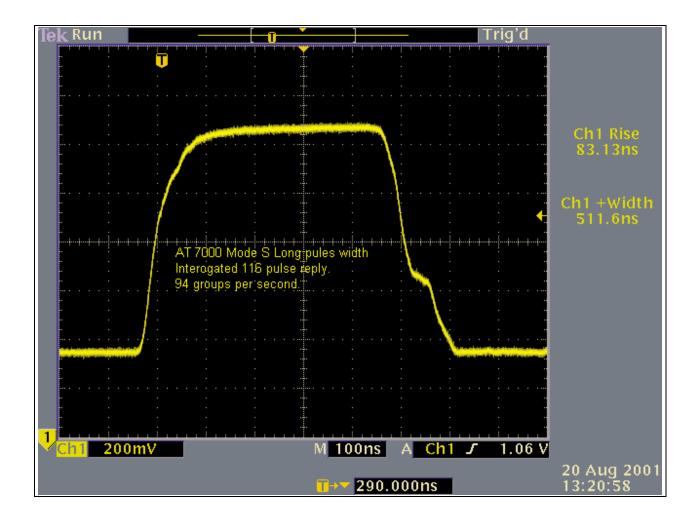
Page 14 of 33 Report No.: FC01-059


MODE S SHORT GROUP

Page 15 of 33 Report No.: FC01-059


MODE S SHORT PULSE

Page 16 of 33 Report No.: FC01-059


MODE S LONG GROUP

Page 17 of 33 Report No.: FC01-059

MODE S LONG PULSE

Page 18 of 33 Report No.: FC01-059

Test Setup of Pulse Width – Front View

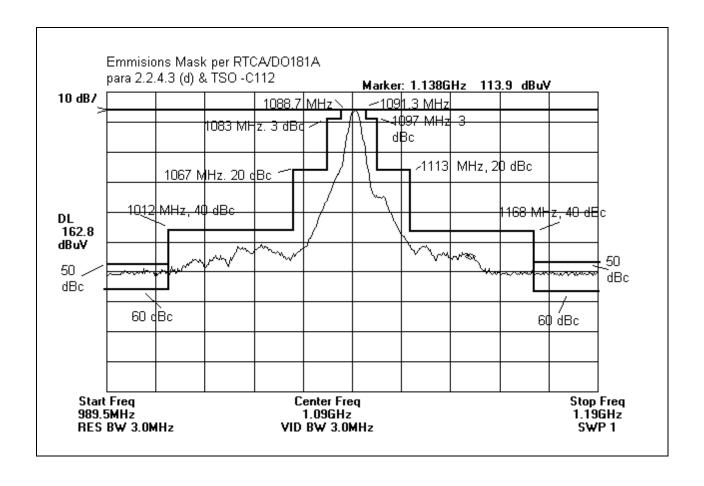
Test Setup of Pulse Width – Back View

2.1033(c)(14)/2.1047/ - MODULATION CHARACTERISTICS -

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A EMI Receiver	3010A01076	07/12/2001	07/12/2002	42
HP 84300-80037 1.5 GHz High Pass Filter	3643A00027	06/08/2001	06/08/2002	2116
IFR S-1403A Mode S Test Set	6558	11/08/2000	11/08/2001	0
IFR ATC 1400A Mode A & C Test Set	204006626	11/08/2000	11/08/2001	0
HP 778D Directional Coupler	13454	08/20/2001	08/20/2002	0
10 dB Attenuator	none	09/21/2000	09/21/2001	2221
Chase CBL6111C Bilog Antenna	2455	02/09/2001	02/09/2002	1992
HP 8447D Amplifier	2727A05392	08/17/2001	08/17/2002	10
EMCO 3115 1-18 GHz Horn Antenna	9006-3413	06/07/2001	06/07/2002	327
HP 83017A Amplifier 26GHz	0000009002	01/18/2001	01/18/2002	2114

Test Setup - Front View



Test Setup - Back View

Page 20 of 33 Report No.: FC01-059

TSO-C112 EMISSIONS MASK

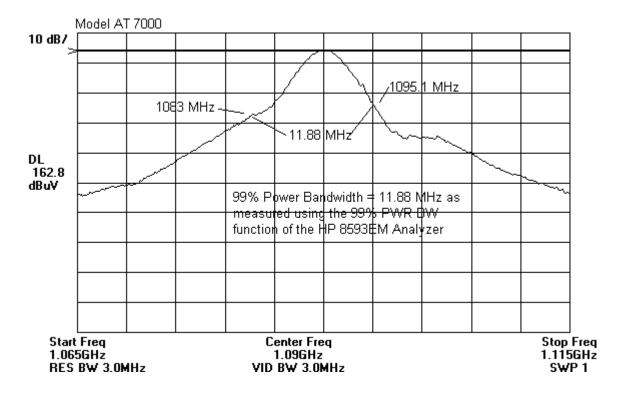
Page 21 of 33 Report No.: FC01-059

2.1033(c)(14)/2.1049(i)/87.135- OCCUPIED BANDWIDTH

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A EMI Receiver	3010A01076	07/12/2001	07/12/2002	42
HP 84300-80037 1.5 GHz High Pass Filter	3643A00027	06/08/2001	06/08/2002	2116
Tektronix Oscilloscope TDS 3034	B018922	08/02/2001	08/02/2001	0
IFR S-1403A Mode S Test Set	6558	11/08/2000	11/08/2001	0
IFR ATC 1400A Mode A & C Test Set	204006626	11/08/2000	11/08/2001	0
HP 778D Directional Coupler	13454	08/20/2001	08/20/2002	0

Test Setup - Front View



Test Setup – Back View

Page 22 of 33 Report No.: FC01-059

99% BANDWIDTH

Page 23 of 33 Report No.: FC01-059

2.1033(c)(14)/2.1051/87.139 - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Test Conditions / Notes:

The EUT is placed in an install kit and connected to the test equipment through cable harnesses. The losses of the harnesses, directional coupler, and attenuator were characterized. Interrogating the EUT with the 3 modulation modes in interlaced mode. The computer is used to setup the EUT operation, and then is not active. The Top antenna port of the EUT (AT7000) is connected to the ATC 1400A through a 3 meter cable and directional coupler, having a 1.6 dB and 0.3 dB loss respectively. The total loss is 1.9 dB. Peak power is measured on the ATC1400A and the cable loss is factored in to get the power at the EUT's terminals. Peak power was measured at 250 watts, which translates to 53.98 dBm. Factoring in the cable loss, actual power at the EUT's terminals is 55.88 dBm, which translates to 387.25 watts. Next we convert the unit's peak power out by adding 107 to 55.88 dBm to get 162.88 dBuV. We then take the average power output with 500 ATCRABS replies, and 125 mode S replies that are split between 94 long replies and 60 short replies, the average power calculation is as follows: Mode S long = (387.25 watts)*(94 groups/sec)*(116 pulses/group)*(511.6 nS/pulse) = 2.16 Watts Mode S short = (387.25 watts)*(31 groups/sec)*(60 pulses/group)*(511.6 nS/pulse) = 0.37Watts ATCRABS = (387.25 watts)*(500 groups/sec)*(14 pulses/group)*(457.9 nS/pulse) = 1.24 Watts Total Average power = Mode S long + Mode S short + ATCRABS = 3.77 watts. The 250 % spurious limit is 43 + 10log (average power) = -49 dBc = 113.9 dBuV. The EUT is then coupled to the spectrum analyzer through the 3 meter cable, incident port of the directional coupler and a 10 dB attenuator. The Spectrum Analyzer is adjusted to reflect the signal level of 162.88 dBuV measured with the ATC 1400A. The spec limit in the data sheet is adjusted for each RF port reading using the above. The temperature was 69°F, and the humidity was 40%. Investigated frequencies 20 MHz through 11 GHz.

Test Equipment:

= $ -$				
Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A EMI Receiver	3010A01076	07/12/2001	07/12/2002	42
HP 84300-80037 1.5 GHz High Pass Filter	3643A00027	06/08/2001	06/08/2002	2116
Tektronix Oscilloscope TDS 3034	B018922	08/02/2001	08/02/2001	0
IFR S-1403A Mode S Test Set	6558	11/08/2000	11/08/2001	0
IFR ATC 1400A Mode A & C Test Set	204006626	11/08/2000	11/08/2001	0
HP 778D Directional Coupler	13454	08/20/2001	08/20/2002	0
10 dB Attenuator	none	09/21/2000	09/21/2001	2221

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
20 MHz	30 MHz	9 kHz
30 MHz	1000 MHz	120 kHz
1000 MHz	11 GHz	3 MHz

Page 24 of 33 Report No.: FC01-059

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: UPS Aviation Technologies, Inc

Specification: FCC 87.139 Top Port

 Work Order #:
 77446
 Date:
 08/21/2001

 Test Type:
 Maximized Emissions
 Time:
 11:39:58

Equipment: Mode S Data Link Transponder Sequence#: 2

Manufacturer: UPS Aviation Technologies Tested By: Mike Wilkinson

Model: AT-7000 S/N: P0008

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Mode S Data Link	UPS Aviation Technologies	AT-7000	P0008
Transponder*	_		
AT-7000 Install Kit	UPS Technologies	TBD	None

Support Devices:

Function	Manufacturer	Model #	S/N
DC Power Supply	Astron	RS-12M	98110031
Transponder I/O Test	II Morrow	None	None
Interface			
Computer	BSI	TANY385F11	1006943

Measurement Data: Reading listed by margin. Test Distance: None Cable 1.5 G Coupl Dist Corr Margin Polar Freq Rdng Spec dΒμV MHz dBdB dBdBTable dBμV dBμV dΒ Ant 1 1089.830M 131.6 +1.7+0.0+29.6+0.0162.9 162.9 +0.0None 2 2178.730M +30.2 +0.0109.9 -4.0 77.0 +2.2+0.5113.9 None 3 4359.530M +30.1 +0.0104.3 113.9 -9.6 69.8 +4.1+0.3None 4 5449.580M 66.6 +4.1+0.2+30.2+0.0101.1 113.9 -12.8 None 5 7629.680M 50.3 +4.0+0.2+32.9+0.087.4 113.9 -26.5 None 6 8719.680M 47.8 +4.7+0.7+30.2+0.083.4 113.9 -30.5 None 7 3270.530M +2.5 +29.8 82.0 113.9 -31.9 49.4 +0.3+0.0None 8 6539.030M 47.7 +4.2+0.1+27.9+0.079.9 113.9 -34.0 None 44.4 +5.2 +28.1+0.079.1 113.9 -34.8 9 9809.330M +1.4None

> Page 25 of 33 Report No.: FC01-059

Test Conditions / Notes:

The EUT is placed in an install kit and connected to the test equipment through cable harnesses. The losses of the harnesses, directional coupler, and attenuator were characterized. Interrogating the EUT with the 3 modulation modes in interlaced mode. The computer is used to setup the EUT operation, and then is not active. The Bottom antenna port of the EUT (AT7000) is connected to the ATC 1400A through a 3 meter cable and directional coupler, having a 1.8 dB and 0.3 dB loss respectively. The total loss is 2.1 dB. Peak power is measured on the ATC1400A and the cable loss is factored in to get the power at the EUT's terminals. Peak power was measured at 285 watts, which translates to 54.55 dBm. Factoring in the cable loss, actual power at the EUT's terminals is 56.65 dBm, which translates to 462.38 watts. Next we convert the unit's peak power out by adding 107 to 56.65 dBm to get 163.65 dBuV. We then take the average power output with 500 ATCRABS replies, and 125 mode S replies that are split between 94 long replies and 60 short replies, the average power calculation is as follows: Mode S long = (462.38 watts)*(94 groups/sec)*(116 pulses/group)*(511.6 nS/pulse) = 2.58 Watts Mode S short = (462.38 watts)*(31 groups/sec)*(60 pulses/group)*(511.6 nS/pulse) = 0.45Watts ATCRABS = (462.38 watts)*(500 groups/sec)*(14 pulses/group)*(457.9 nS/pulse) = 1.48 Watts Total Average power = Mode S long + Mode S short + ATCRABS = 4.51 watts. The 250 % spurious limit is 43 + 10log (average power) = -50 dBc = 113.7 dBuV. The EUT is then coupled to the spectrum analyzer through the 3 meter cable, incident port of the directional coupler and a 10 dB attenuator. The Spectrum Analyzer is adjusted to reflect the signal level of 163.65 dBuV measured with the ATC 1400A. The spec limit in the data sheet is adjusted for each RF port reading using the above. The temperature was 69°F, and the humidity was 40%. Investigated frequencies 20 MHz through 11 GHz.

Test Location: CKC Laboratories, Inc. • 22105 Wilson River Hwy • Tillamook, Or 97141 • 503 842-5577

Customer: UPS Aviation Technologies, Inc

Specification: FCC 87.139 Bottom Port

 Work Order #:
 77446
 Date: 08/21/2001

 Test Type:
 Maximized Emissions
 Time: 16:38:54

Equipment: Mode S Data Link Transponder Sequence#: 1

Manufacturer: UPS Aviation Technologies Tested By: Mike Wilkinson

Model: AT-7000 S/N: P0008

Equipment Under Test (* = EUT):

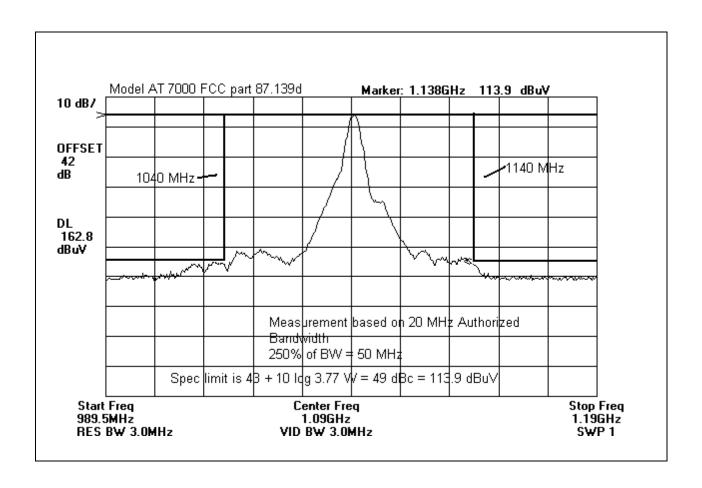
(
Function	Manufacturer	Model #	S/N
Mode S Data Link	UPS Aviation Technologies	AT-7000	P0008
Transponder*			
AT-7000 Install Kit	UPS Technologies	TBD	None

Support Devices:

Manufacturer	Model #	S/N
Astron	RS-12M	98110031
II Morrow	None	None
BSI	TANY385F11	1006943
	Astron II Morrow	Astron RS-12M II Morrow None

Measu	irement Data:	R	eading list	ted by n	nargin.		Te	st Distance	e: None		
			Cable		1.5 G	Coupl					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1089.150M	132.1	+1.9		+0.0	+29.6	+0.0	163.6	163.6	+0.0	None
2	2179.400M	78.6	+2.3		+0.5	+30.2	+0.0	111.6	113.7	-2.1	None

Page 26 of 33 Report No.: FC01-059



3 4	360.150M	72.0	+3.7	+0.3	+30.1	+0.0	106.1	113.7	-7.6	None
4 5	449.780M	57.9	+3.9	+0.2	+30.2	+0.0	92.2	113.7	-21.5	None
	117.700111	57.5	10.7	. 0.2	130.2	10.0	,2.2	113.7	21.5	110110
5 7	630.650M	52.3	+4.1	+0.2	+32.9	+0.0	89.5	113.7	-24.2	None
5 ,	050.050111	02.0		. 0.2	132.7	10.0	07.5	113.7	2 1.2	110110
6 6	5540.400M	57.3	+4.1	+0.1	+27.9	+0.0	89.4	113.7	-24.3	None
0 0		57.5		. 0.1	127.5	10.0	07.1	113.7	21.3	110110
7 3	268.400M	56.4	+2.6	+0.3	+29.8	+0.0	89.1	113.7	-24.6	None
, 3	200.100111	50.1	12.0	10.5	120.0	10.0	07.1	113.7	21.0	110110
8 8	720.279M	45.0	+4.8	+0.7	+30.2	+0.0	80.7	113.7	-33.0	None
0 0	,, 20.2, ,,111			10.7	155.2	. 0.0	55.7	113.7	23.0	1,0110

Page 27 of 33 Report No.: FC01-059

PART 87.139 EMISSIONS

Page 28 of 33 Report No.: FC01-059

Test Setup - Front View

Test Setup – Back View

Page 29 of 33 Report No.: FC01-059

2.1033(c)(14)/2.1053/87.139- FIELD STRENGTH OF SPURIOUS RADIATION

Test Conditions:

The EUT is placed on the OATS and in an install kit that is connected to the support equipment through cable harnesses. The support equipment is located under the ground plane. Interrogating the EUT with the 3 modulation modes in interlaced mode. The computer is used to setup the EUT operation, and then is not active. The Bottom antenna port of the EUT (AT7000) is connected to the ATC 1400A through a 3 meter cable and directional coupler. The Top antenna Port is connected to S-1403A through a 3 meter cable. The temperature was 69°F. and the humidity was 40%. Investigated frequencies 20 MHz through 11 GHz.

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
HP 8574A EMI Receiver	3010A01076	07/12/2001	07/12/2002	42
HP 84300-80037 1.5 GHz High Pass Filter	3643A00027	06/08/2001	06/08/2002	2116
IFR S-1403A Mode S Test Set	6558	11/08/2000	11/08/2001	0
IFR ATC 1400A Mode A & C Test Set	204006626	11/08/2000	11/08/2001	0
HP 778D Directional Coupler	13454	08/20/2001	08/20/2002	0
10 dB Attenuator	none	09/21/2000	09/21/2001	2221
Chase CBL6111C Bilog Antenna	2455	02/09/2001	02/09/2002	1992
HP 8447D Amplifier	2727A05392	08/17/2001	08/17/2002	10
EMCO 3115 1-18 GHz Horn Antenna	9006-3413	06/07/2001	06/07/2002	327
HP 83017A Amplifier 26GHz	0000009002	01/18/2001	01/18/2002	2114

Test Setup - Front View

Test Setup - Back View

Page 30 of 33 Report No.: FC01-059

VIDEO BANDWIDTH AND RESOLUTION BANDWIDTH SETTINGS:

BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
10 MHz	30 MHz	9 kHz
30 MHz	1000 MHz	120 kHz
1000 MHz	11 GHz	3 MHz

		Reading				High	Corrected				
		in	PreAmp	Cable	Horn	Pass	E			Spec Limit	Pass
Polarity	Freq(MHz)	dBuV/m	Factor	Factor	Antenna	Filter	(dBuV/M)	V/M	ERP (Watts)	Watts	or Fai
Vertical	2179.73	75.70	-42.00	7.70	29.20	0.5	71.1	0.003589219	0.000002357	0.00457W	Pass
Horizontal	2179.73	75.00	-42.00	7.70	29.20	0.5	70.4	0.003311311	0.000002006	0.00457W	Pass
Horizontal	4359.85	56.50	-37.40	13.50	32.60	0.3	65.5	0.001883649	0.000000649	0.00457W	Pass
Vertical	4360.30	49.90	-37.40	13.50	32.60	0.3	58.9	0.000881049	0.000000142	0.00457W	Pass
Horizontal	6539.70	45.80	-38.30	15.90	34.50	0.1	58.0	0.000794328	0.000000115	0.00457W	Pass
Vertical	6539.43	45.50	-38.30	15.90	34.50	0.1	57.7	0.000767361	0.00000108	0.00457W	Pass
Vertical	5449.73	47.70	-39.00	14.0	33.80	0.2	56.7	0.000683912	0.000000086	0.00457W	Pass
Horizontal	5449.50	47.50	-39.00	14.0	33.80	0.2	56.5	0.000668344	0.000000082	0.00457W	Pass
Vertical	3270.13	46.20	-39.30	10.10	31.60	0.3	48.9	0.000278612	0.00000014	0.00457W	Pass
Horizontal	3270.60	44.30	-39.30	10.10	31.60	0.3	47.0	0.000223872	0.000000009	0.00457W	Pass
Vertical	1035.25	54.70	-43.00	5.40	25.50	0.0	42.6	0.000134896	0.000000003	0.00457W	Pass
Vertical	60.01	47.50	-27.20	1.90	5.90	0.0	28.1	0.000025410	0.000000000	0.00457W	Pass
Horizontal	179.98	38.80	-26.80	3.20	8.90	0.0	24.1	0.000016032	0.000000000	0.00457W	Pass

Notes: Frequency range investigated was from 10MHz to 11.0GHz. All spurious and harmonic emissions were investigated. All emissions detected that were less than 20dB below the permissible value were reported. Rated Power output of transmitter at 462.38 Watts.

CALCULATIONS

Note: The data taken is relative to the radiated power of each spurious emission with reference to the rated mean power output of the $10 \log (462.38W/1mW) = 56.65 dBm$

56.6 dBm - 50 dBc = 6.6 dBm Inv Log (6.6 dBm/10) = 4.57 mW

Spec Limit = 0.00457 Watts

$ERP = (Ed)^2/30(G)$

E = V/m

d= distance

G = Gain of Antenna (numerical gain of half wave dipole antenna 1.64)

Conversion of dBuV/m to V/m

[invlog(Reading in dBuV/m/20)]*.000001 = V/m

Page 31 of 33 Report No.: FC01-059

2.1033(c)(14)/2.1055/87.133- FREQUENCY STABILITY

Calculations:

The mode S (TSO-C112) spec requires the reply frequency to be within \pm 1MHz of 1090 MHz, or 917ppm, for operations above 15,000 feet and within \pm 3 MHz of 1090 MHz for operations not exceeding 15,000 feet.

Paragraph 87.133 (d) of the FCC regulations requires that, "the frequency at which maximum emission occurs must be within the authorized frequency band and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth where T is the pulse duration in microseconds."

If the nominal 450 ns pulse width for the transponder is used, the frequency stability of the transmitter should be 3.33 MHz or less.

The maximum change in frequency observed over temperature and voltage variation was 30 kHz. This is within the 3.33 MHz FCC limit and the 1 MHz limit called out by TSO C112/DO181A.

Test Equipment:

z est zquipment				
Function	S/N	Cal Date	Cal Due	Asset #
HP 34970A Data Acquisition	34970A-04	12/14/00	12/14/01	
Meter/Thermocoupler				
IFR Model S-1403DL Mode S Test Set	6558, II Morrow # A00049134	11/8/00	11/8/01	
IFR Model ATC 1400A Mode A & C Test Set	204006626, II Morrow # A00049134	11/8/00	11/8/01	
Thorton Temp Chamber		9/15/00	9/15/01	1878

Page 32 of 33 Report No.: FC01-059

Test Setup

Temperature(°C)	Frequency(MHz) Vnominal 28.0 VDC	Frequency(MHz) Vminimum 23.8 VDC	Frequency(MHz) Vmaximum 32.2 VDC
-20°C	1089.94	1089.94	1089.94
-10°C	1089.94	1089.94	1089.94
0°C	1089.93	1089.93	1089.93
10°C	1089.92	1089.92	1089.92
20°C	1089.92	1089.92	1089.92
30°C	1089.91	1089.91	1089.91
40°C	1089.91	1089.91	1089.91
50°C	1089.91	1089.91	1089.91

Page 33 of 33 Report No.: FC01-059