

Itron, Inc.

TEST REPORT FOR

Mobile Collection Device, MC4 Model: DCU53104C

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247
(FHSS 902-928 MHz)

Report No.: 104623-11

Date of issue: January 12, 2021

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate # 803.01

This report contains a total of 35 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	12
15.247(b)(2) Output Power	12
15.247(d) Radiated Spurious Emissions	16
15.35(c) Duty Cycle Correction Factor	26
Supplemental Information	34
Measurement Uncertainty	34
Emissions Test Details	34

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Ittron, Inc.
2111 N. Molter Road
Liberty Lake, WA 99019

Representative: Jay Holcomb
Customer Reference Number: 226650

REPORT PREPARED BY:

Kim Romero
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 104623

DATE OF EQUIPMENT RECEIPT:
DATE(S) OF TESTING:

December 2, 2020
December 2, 9, 14, and 16, 2020

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <https://standards.gov/cabs/designations.html>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NP
15.247(a)(1)	Carrier Separation	NA	NP
15.247(a)(1)(i)	Number of Hopping Channels	NA	NP
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	NP
15.247(d)	Radiated Spurious Emissions	NA	Pass
15.247(d)	Band Edge (Radiated)	NA	NP
15.207	AC Conducted Emissions	NA	NA1

NA = Not Applicable

NA1 = Not applicable because the EUT is connected to 12V car battery and shall not be connected to public utility AC power line.

NP = Not performed because CKC Laboratories was not contracted to perform testing.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

The manufacturer declares that MC4Pro (with optional receivers) is the worst case of MC4Core (without optional receivers)

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1 (MC4Pro+tablet)

Equipment Tested:

Device	Manufacturer	Model #	S/N
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Automobile Adapter	Lind Electronics, Inc.	PA1555-2155 FB	NA
Tablet	Panasonic	FZ-G1	NA
5dBi Antenna	PCTEL	Generic	NA
Mobile Collection Device, MC4	Itron, Inc.	DCU53104C	74007941

Support Equipment:

Device	Manufacturer	Model #	S/N
Power Supply	Extech Instruments	382225	P99250026

Configuration 2 (MC4Pro+laptop)

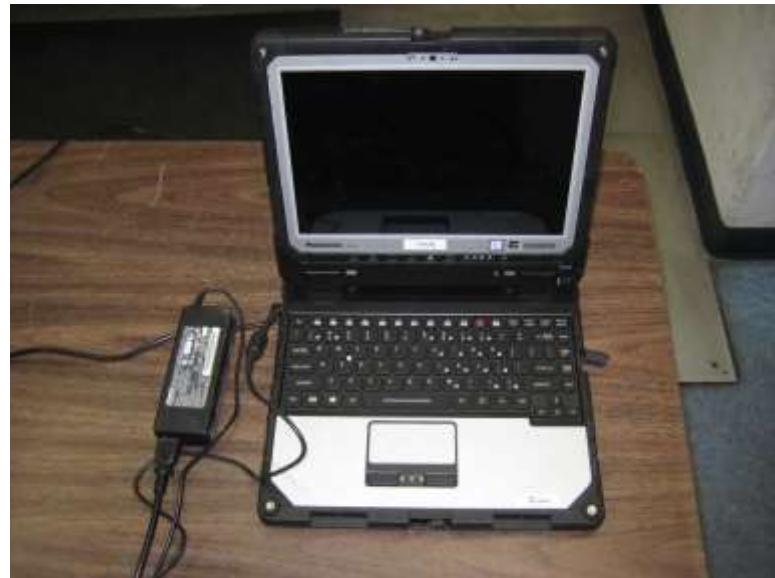
Equipment Tested:

Device	Manufacturer	Model #	S/N
Receiver Antenna	PCTEL	SUB-0275-001/H	S15180005
Power Supply	Panasonic	CF-AA5713A M3	5713AM314Z14641A
Laptop	Panasonic	CF-VEK33	T1126Z
5dBi Antenna	PCTEL	Generic	NA
Mobile Collection Device, MC4	Itron, Inc.	DCU53104C	74007941

Support Equipment:

Device	Manufacturer	Model #	S/N
Power Supply	Extech Instruments	382225	P99250026

General Product Information:



Product Information		Manufacturer-Provided Details
Equipment Type:		Stand-Alone Equipment
Type of Wideband System:		FHSS
Operating Frequency Range:		908-924MHz
Number of Hopping Channels:		81
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.	
Modulation Type(s):	12.5kbps FM	
Maximum Duty Cycle:	45mS	
Number of TX Chains:	1	
Antenna Type(s) and Gain:	External / 5dbi	
Beamforming Type:	NA	
Antenna Connection Type:	External Connector	
Nominal Input Voltage:	13.8Vdc from car battery / 5Vdc charger	
Firmware / Software used for Test:	Arm Version: 7.66.00.01 DSP Version: 5.70.00.00 FPGA Version: 3.02 PSoC Version: 3.01 MC3 SuperRaptor Test ver.4.0.3.5	

EUT and Accessory Photo(s)

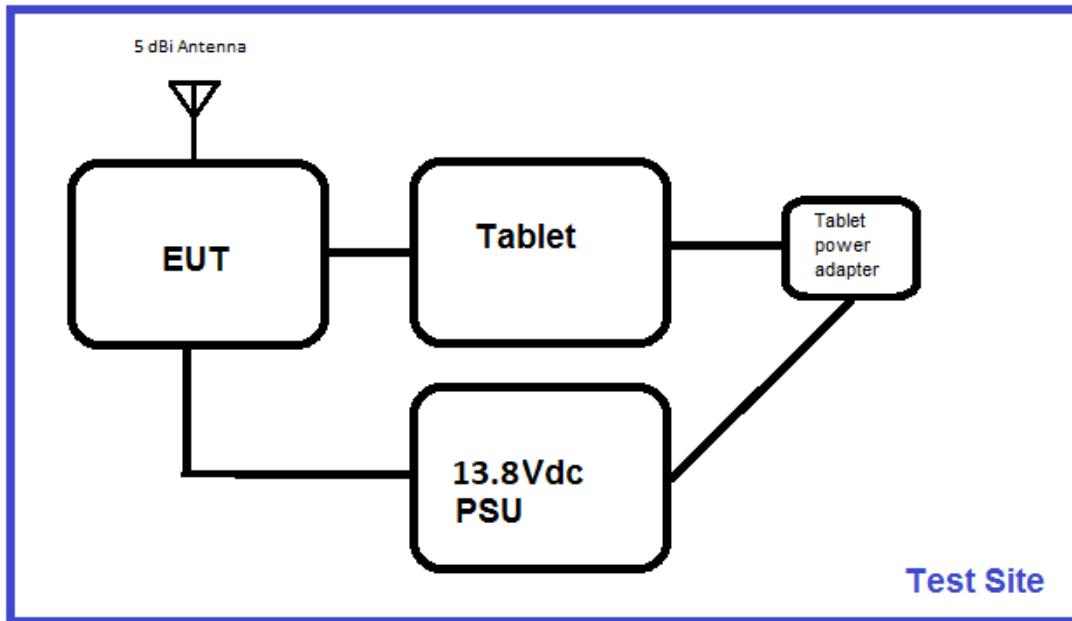
MC4Pro

Laptop and Power Adapter

Tablet

Tablet Power Adapter

Antennas


Support Equipment Photo(s)

12V Power Supply

Block Diagram of Test Setup(s)

Test Setup Block Diagram

FCC Part 15 Subpart C

15.247(b)(2) Output Power

Test Setup/Conditions			
Test Location:	Brea Lab A	Test Engineer:	Don Nguyen
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/2/2020
Configuration:	1		
Test Setup:	The EUT is placed on test bench. Input voltage is 13.8Vdc from external power supply. USB port is connected to a touchscreen tablet. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5 The EUT is set to continuously transmit. Operating frequency: 908-924MHz Frequency of measurement: 902-928MHz RBW=300kHz VBW=910kHz		
Note: Power output is verified for c2pc.			

Environmental Conditions			
Temperature (°C)	25	Relative Humidity (%):	30

Test Equipment					
Asset #	Description	Manufacturer	Model	Cal Date	Cal Due
03643	Spectrum Analyzer	Agilent	E4440A	5/20/2020	5/20/2022
03432	Attenuator	Aeroflex/Weinschel	90-30-34	10/22/2019	10/22/2021
P07246	Cable	H&S	32022-29094K-29094K-24TC	5/29/2020	5/29/2022

Test Data Summary - Voltage Variations					
Frequency (MHz)	Modulation	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)
908	12.5kbps FM	NA	29.40	NA	NA
916	12.5kbps FM	NA	29.78	NA	NA
924	12.5kbps FM	NA	29.46	NA	NA

Test performed using operational mode with the highest output power, representing worst case.

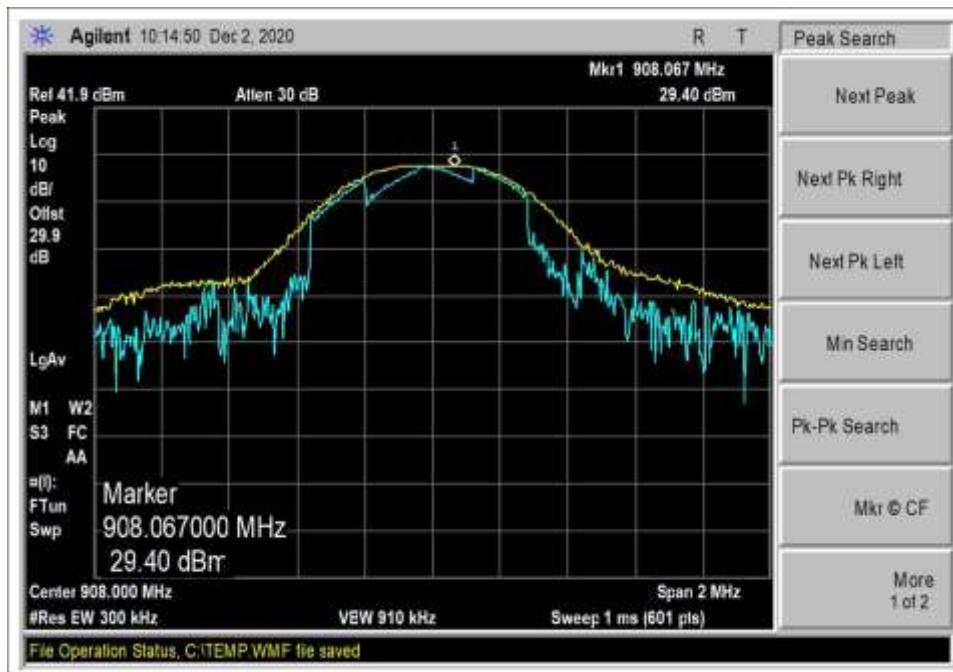
NA: This equipment is battery powered. Power output tests were performed using an external power supply to simulate a fresh battery.

Parameter Definitions:

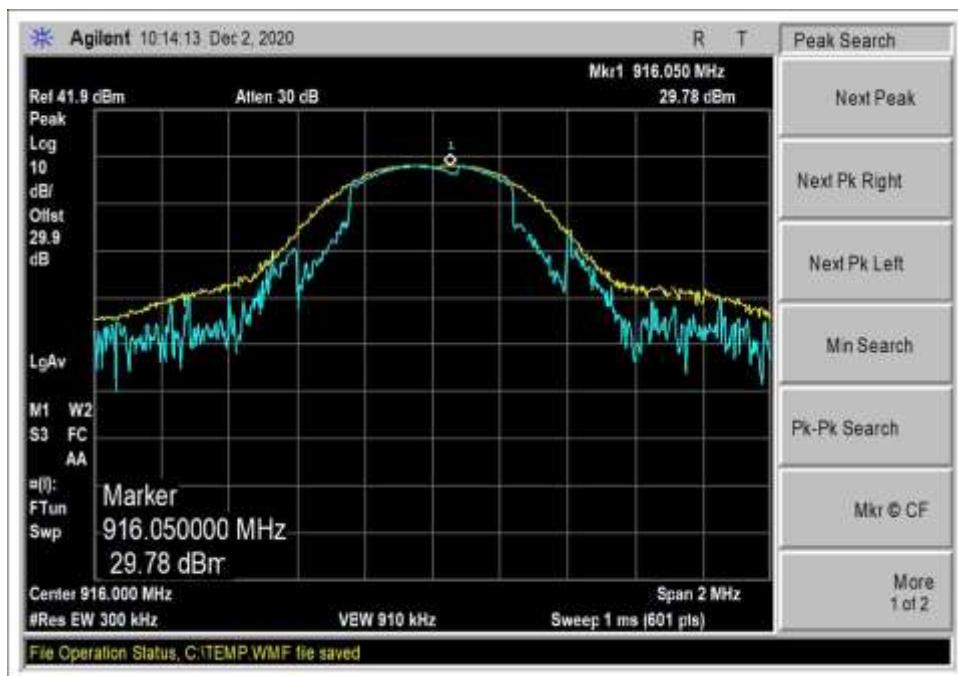
Measurements performed at input voltage $V_{\text{Nominal}} \pm 15\%$.

Parameter	Value
V_{Nominal} :	13.8
V_{Minimum} :	NA
V_{Maximum} :	NA

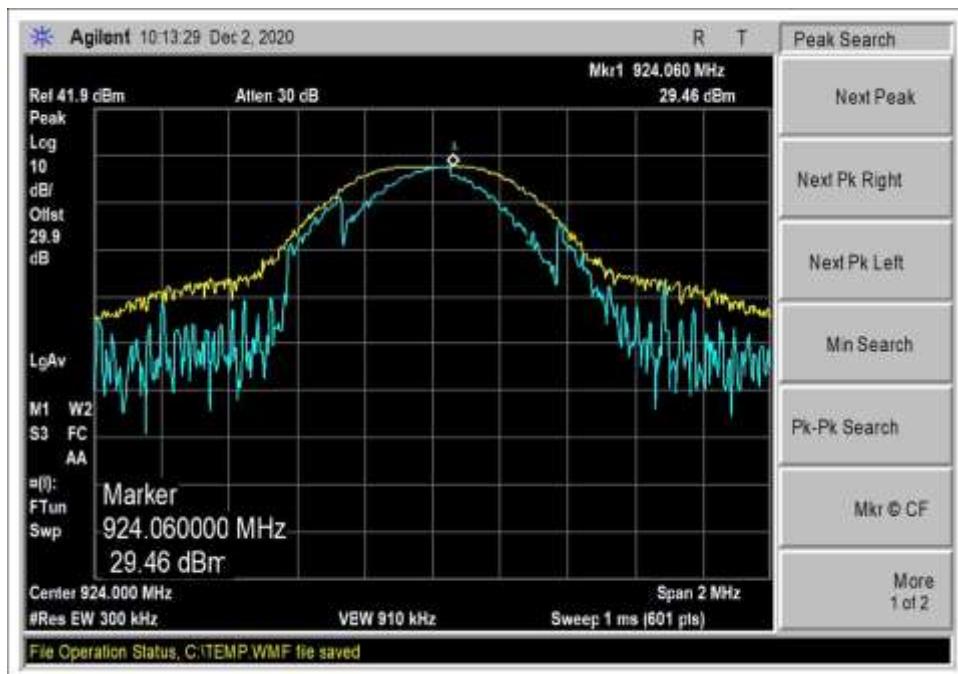
NA: This equipment is battery powered. Power output tests were performed using an external power supply to simulate a fresh battery.


Test Data Summary - Voltage Variations

This equipment is battery powered. Power output tests were performed using an external power supply to simulate a fresh battery.


Test Data Summary - RF Conducted Measurement

Limit = $\begin{cases} 30\text{dBm Conducted}/36\text{dBm EIRP} & | \geq 50 \text{ Channels} \\ 24\text{dBm Conducted}/30\text{dBm EIRP} & | < 50 \text{ Channels} \text{ (min 25)} \end{cases}$


Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results
908	12.5kbps FM	5	29.40	≤ 30	Pass
916	12.5kbps FM	5	29.78	≤ 30	Pass
924	12.5kbps FM	5	29.46	≤ 30	Pass

Plots

Low Channel, Power

Middle Channel, Power

High Channel, Power

Test Setup Photo(s)

15.247(d) Radiated Spurious Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
 Customer: **Itron, Inc.**
 Specification: **15.247(d) / 15.209 Radiated Spurious Emissions**
 Work Order #: **104623** Date: 12/9/2020
 Test Type: **Maximized Emissions** Time: 11:54:14
 Tested By: Don Nguyen Sequence#: 2
 Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

The EUT is placed on turn table. Input voltage is 13.8Vdc from external power supply. GPS, L/R receiver, and main antenna ports are connected to an external antenna. USB port is connected to a touchscreen computer. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5. The EUT is set into transmitter mode. The EUT is rotated in three orthogonal orientation. Data represents the worst case orientation. The antenna of the EUT is mounted to a 52" diameter aluminum plate to represent a vehicle roof. The aluminum plate is supported by foam blocks. The EUT is directly below the plate, on the test table.

Operating Frequency: 908-924MHz

Frequency of Measurement: 9k-9280MHz

9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz

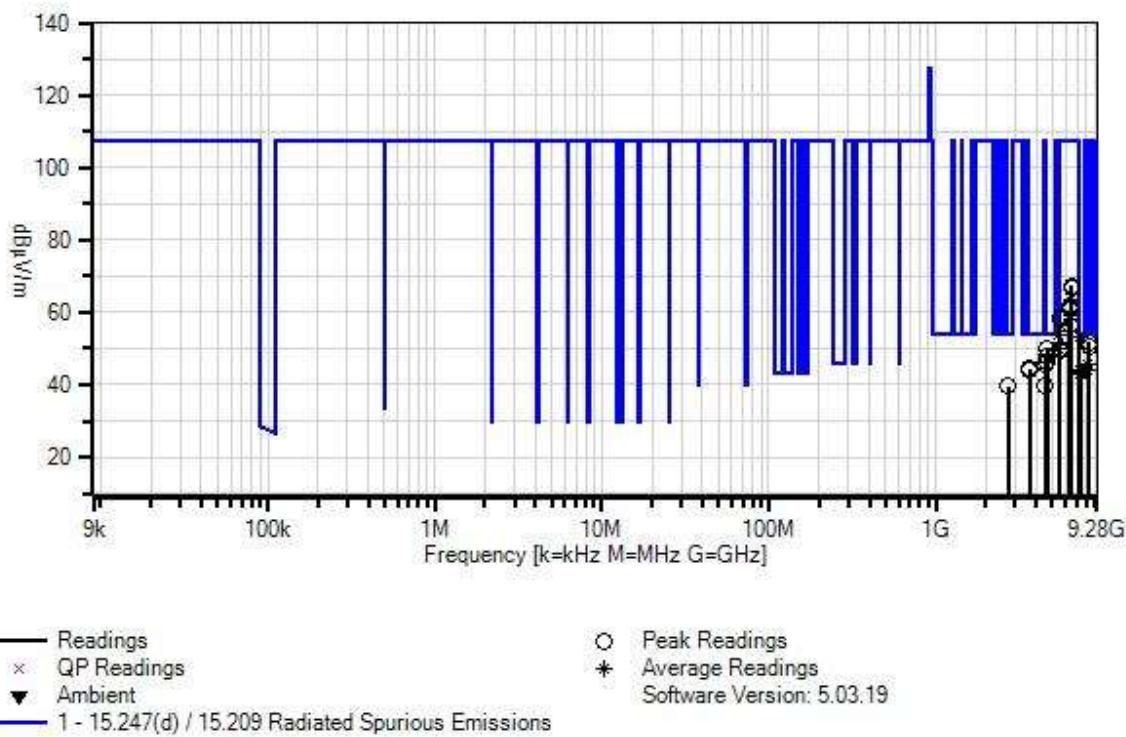
150kHz to 30MHz RBW=9kHz, VBW=27kHz

30-1000MHz, RBW=120kHz, VBW=360kHz

1000-9280MHz, RBW=1MHz, VBW=3MHz

Test Environment Conditions:

Temperature: 24°C


Relative Humidity: 22%

Site A

Duty correction factor is applied to RSM readings above 1GHz per KDB 558074 clause 9.b

Correction factor = $20\log(44.67\text{ms}/100\text{ms}) = -7.0\text{dB}$

Note: Per manufacturer, installation manual shall state that a minimum of 12" of separation between the omni TX antenna and receiver antennas is required and the receiver antenna side-lookers are to be mounted "parallel" to the omni TX antenna.

Itron, Inc. WO#: 104623 Sequence#: 2 Date: 12/9/2020
 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022
	AN00309	Preamp	8447D	12/24/2019	12/24/2021
	ANP05281	Attenuator	1B	4/7/2020	4/7/2022
	ANP05050	Cable	RG223/U	12/24/2018	12/24/2020
	ANP01911	Cable-Amplitude +15C to +45C (dB)	RG214/U	1/2/2020	1/2/2022
	AN01993	Biconilog Antenna	CBL6111C	6/11/2019	6/11/2021
	ANDuty Cycle Correction Factor	Test Data Adjustment		2/19/2020	2/19/2022
T1	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
T2	AN00786	Preamp	83017A	5/20/2020	5/20/2022
T3	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
T4	ANP06360	Cable	L1-PNMNNM-48	8/8/2019	8/8/2021
T5	ANP07246	Cable	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022
T6	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021

Measurement Data:			Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1 T5	T2 T6	T3	T4	Dist	Corr	Spec	Margin	Polar
			MHz	dB μ V	dB	dB	dB	Table	dB μ V/m	dB μ V/m	
											Ant
1	5448.300M	57.9	+0.0 Ave	-37.2 +0.7	+34.1 +0.2	+5.1	+0.0	53.8	54.0	-0.2	Horiz
^	5448.300M	59.4	+0.0 +0.7	-37.2 +0.2	+34.1	+5.1	+0.0	62.3	54.0	+8.3	Horiz
^	5448.300M	57.9	+0.0 +0.7	-37.2 +0.2	+34.1	+5.1	+0.0	60.8	54.0	+6.8	Horiz
4	7263.592M	54.5	+0.0 Ave	-37.2 +0.8	+36.0 +0.2	+6.1	+0.0	53.4	54.0	-0.6	Vert
^	7263.592M	56.1	+0.0 +0.8	-37.2 +0.2	+36.0	+6.1	+0.0	62.0	54.0	+8.0	Vert
^	7263.592M	54.5	+0.0 +0.8	-37.2 +0.2	+36.0	+6.1	+0.0	60.4	54.0	+6.4	Vert
7	7263.617M	54.4	+0.0 Ave	-37.2 +0.8	+36.0 +0.2	+6.1	+0.0	53.3	54.0	-0.7	Horiz
^	7263.617M	55.7	+0.0 +0.8	-37.2 +0.2	+36.0	+6.1	+0.0	61.6	54.0	+7.6	Horiz
^	7263.617M	54.4	+0.0 +0.8	-37.2 +0.2	+36.0	+6.1	+0.0	60.3	54.0	+6.3	Horiz
10	8244.450M	44.3	+0.0 +0.9	-37.2 +0.3	+36.9	+6.5	+0.0	51.7	54.0	-2.3	Vert
11	8316.433M	42.8	+0.0 +0.9	-37.2 +0.4	+37.0	+6.5	+0.0	50.4	54.0	-3.6	Vert
12	5448.400M	54.2	+0.0 Ave	-37.2 +0.7	+34.1 +0.2	+5.1	+0.0	50.1	54.0	-3.9	Vert
^	5448.400M	55.7	+0.0 +0.7	-37.2 +0.2	+34.1	+5.1	+0.0	58.6	54.0	+4.6	Vert
^	5448.400M	54.2	+0.0 +0.7	-37.2 +0.2	+34.1	+5.1	+0.0	57.1	54.0	+3.1	Vert
15	4619.817M	49.4	+0.0 +0.6	-37.4 +0.2	+32.7	+4.5	+0.0	50.0	54.0	-4.0	Vert
16	4580.133M	47.5	+0.0 +0.6	-37.4 +0.2	+32.6	+4.5	+0.0	48.0	54.0	-6.0	Vert
17	4619.850M	45.5	+0.0 +0.6	-37.4 +0.2	+32.7	+4.5	+0.0	46.1	54.0	-7.9	Horiz
18	4579.850M	45.5	+0.0 +0.6	-37.4 +0.2	+32.6	+4.5	+0.0	46.0	54.0	-8.0	Horiz
19	4539.767M	45.3	+0.0 +0.6	-37.4 +0.2	+32.6	+4.5	+0.0	45.8	54.0	-8.2	Horiz
20	8172.517M	45.4	+0.0 Ave	-37.2 +0.9	+36.8 +0.3	+6.4	+0.0	45.6	54.0	-8.4	Vert
^	8172.517M	48.5	+0.0 +0.9	-37.2 +0.3	+36.8	+6.4	+0.0	55.7	54.0	+1.7	Vert
^	8172.517M	45.4	+0.0 +0.9	-37.2 +0.3	+36.8	+6.4	+0.0	52.6	54.0	-1.4	Vert
23	3664.017M	45.6	+0.0 +0.7	-38.1 +0.2	+32.0	+4.0	+0.0	44.4	54.0	-9.6	Horiz

24	8171.483M	44.0	+0.0	-37.2	+36.8	+6.4	+0.0	44.2	54.0	-9.8	Horiz
	Ave		+0.9	+0.3							
^	8171.483M	47.4	+0.0	-37.2	+36.8	+6.4	+0.0	54.6	54.0	+0.6	Horiz
			+0.9	+0.3							
^	8171.483M	44.0	+0.0	-37.2	+36.8	+6.4	+0.0	51.2	54.0	-2.8	Horiz
			+0.9	+0.3							RMS
27	3663.833M	45.4	+0.0	-38.1	+32.0	+4.0	+0.0	44.2	54.0	-9.8	Vert
			+0.7	+0.2							
28	7328.450M	45.1	+0.0	-37.3	+36.2	+6.1	+0.0	44.1	54.0	-9.9	Vert
	Ave		+0.8	+0.2							
^	7328.450M	49.2	+0.0	-37.3	+36.2	+6.1	+0.0	55.2	54.0	+1.2	Vert
			+0.8	+0.2							
^	7328.450M	45.1	+0.0	-37.3	+36.2	+6.1	+0.0	51.1	54.0	-2.9	Vert
			+0.8	+0.2							RMS
31	7392.250M	44.1	+0.0	-37.3	+36.3	+6.1	+0.0	43.3	54.0	-10.7	Vert
	Ave		+0.9	+0.2							
^	7392.250M	47.0	+0.0	-37.3	+36.3	+6.1	+0.0	53.2	54.0	-0.8	Vert
			+0.9	+0.2							
^	7392.250M	44.1	+0.0	-37.3	+36.3	+6.1	+0.0	50.3	54.0	-3.7	Vert
			+0.9	+0.2							RMS
34	7328.450M	44.0	+0.0	-37.3	+36.2	+6.1	+0.0	43.0	54.0	-11.0	Horiz
	Ave		+0.8	+0.2							
^	7328.450M	48.0	+0.0	-37.3	+36.2	+6.1	+0.0	54.0	54.0	+0.0	Horiz
			+0.8	+0.2							
^	7328.450M	44.0	+0.0	-37.3	+36.2	+6.1	+0.0	50.0	54.0	-4.0	Horiz
			+0.8	+0.2							RMS
37	7391.600M	43.6	+0.0	-37.3	+36.3	+6.1	+0.0	42.8	54.0	-11.2	Horiz
	Ave		+0.9	+0.2							
^	7391.600M	47.3	+0.0	-37.3	+36.3	+6.1	+0.0	53.5	54.0	-0.5	Horiz
			+0.9	+0.2							
^	7391.600M	43.6	+0.0	-37.3	+36.3	+6.1	+0.0	49.8	54.0	-4.2	Horiz
			+0.9	+0.2							RMS
40	4539.733M	39.1	+0.0	-37.4	+32.6	+4.5	+0.0	39.6	54.0	-14.4	Vert
			+0.6	+0.2							
41	2723.808M	44.5	+0.0	-38.5	+29.6	+3.4	+0.0	39.6	54.0	-14.4	Vert
			+0.4	+0.2							
42	6468.283M	63.5	+0.0	-37.2	+34.4	+5.8	+0.0	67.4	107.2	-39.8	Horiz
			+0.7	+0.2							
43	6468.383M	62.9	+0.0	-37.2	+34.4	+5.8	+0.0	66.8	107.2	-40.4	Vert
			+0.7	+0.2							
44	6411.500M	57.8	+0.0	-37.1	+34.4	+5.8	+0.0	61.8	107.2	-45.4	Vert
			+0.7	+0.2							
45	6412.450M	57.3	+0.0	-37.1	+34.4	+5.8	+0.0	61.3	107.2	-45.9	Horiz
			+0.7	+0.2							
46	6356.350M	56.5	+0.0	-37.1	+34.4	+5.7	+0.0	60.5	107.2	-46.7	Horiz
			+0.8	+0.2							

47	5496.083M	55.8	+0.0 +0.7	-37.2 +0.2	+34.1	+5.1	+0.0	58.7	107.2	-48.5	Vert
48	5496.400M	55.2	+0.0 +0.7	-37.2 +0.2	+34.1	+5.1	+0.0	58.1	107.2	-49.1	Horiz
49	6356.192M	52.7	+0.0 +0.8	-37.1 +0.2	+34.4	+5.7	+0.0	56.7	107.2	-50.5	Vert
50	5543.817M	47.2	+0.0 +0.7	-37.3 +0.2	+34.1	+5.1	+0.0	50.0	107.2	-57.2	Vert
51	5543.633M	46.7	+0.0 +0.7	-37.3 +0.2	+34.1	+5.1	+0.0	49.5	107.2	-57.7	Horiz

Test Location: CKC Laboratories Inc. • 110 N. Olinda Pl. • Brea, CA 92823 • 714-993-6112
 Customer: **Itron, Inc.**
 Specification: **15.247(d) / 15.209 Radiated Spurious Emissions**
 Work Order #: **104623** Date: 12/14/2020
 Test Type: **Maximized Emissions** Time: 14:47:29
 Tested By: Don Nguyen Sequence#: 3
 Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 2			

Test Conditions / Notes:

The EUT is placed on turn table. Input voltage is 13.8Vdc from external power supply. GPS, L/R receiver, and main antenna ports are connected to external antennas. USB port is connected to a touchscreen computer. The computer is sending command to the EUT using software MC3 SuperRaptor Test ver.4.0.3.5. The EUT is set into transmitter mode. The EUT is rotated in three orthogonal orientation. Data represents the worst case orientation. The antenna of the EUT is mounted to a 52" diameter aluminum plate to represent a vehicle roof. The aluminum plate is supported by foam blocks. The EUT is directly below the plate, on the test table.

Operating Frequency: 908-924MHz

Frequency of Measurement: 9k-9280MHz

9kHz to 150kHz RBW=0.2kHz, VBW=0.6kHz

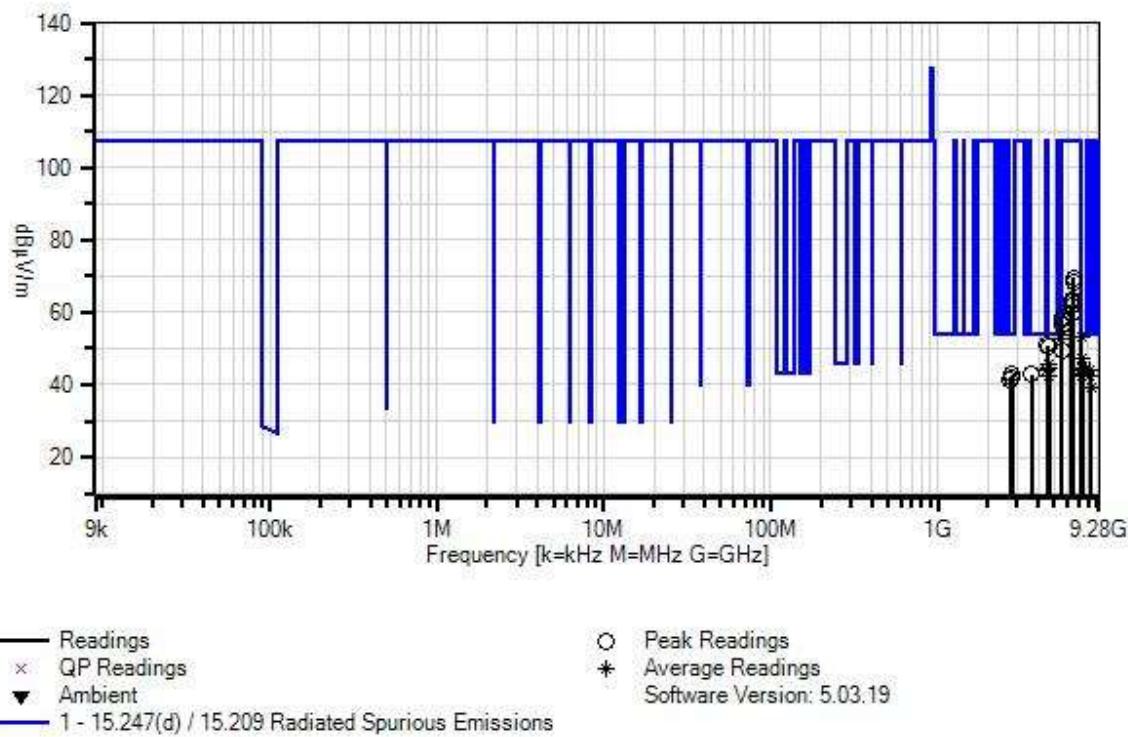
150kHz to 30MHz RBW=9kHz, VBW=27kHz

30-1000MHz, RBW=120kHz, VBW=360kHz

1000-9280MHz, RBW=1MHz, VBW=3MHz

Test Environment Conditions:

Temperature: 24°C


Relative Humidity: 22%

Site A

Duty correction factor is applied to RSM readings above 1GHz per KDB 558074 clause 9.b

Correction factor = $20\log(44.67\text{ms}/100\text{ms}) = -7.0\text{dB}$

Note: Per manufacturer, installation manual shall state that a minimum of 12" of separation between the omni TX antenna and receiver antennas is required and the receiver antenna side-lookers are to be mounted "parallel" to the omni TX antenna.

Itron, Inc. WO#: 104623 Sequence#: 3 Date: 12/14/2020
 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN00314	Loop Antenna	6502	4/13/2020	4/13/2022
	AN00309	Preamp	8447D	12/24/2019	12/24/2021
	ANP05281	Attenuator	1B	4/7/2020	4/7/2022
	ANP05050	Cable	RG223/U	12/24/2018	12/24/2020
	ANP01911	Cable-Amplitude +15C to +45C (dB)	RG214/U	1/2/2020	1/2/2022
	AN01993	Biconilog Antenna	CBL6111C	6/11/2019	6/11/2021
T1	AN03643	Test Data Correction Factor		2/19/2020	2/19/2022
T2	AN03643	Spectrum Analyzer	E4440A	5/20/2020	5/20/2022
T3	AN00786	Preamp	83017A	5/20/2020	5/20/2022
T4	AN00849	Horn Antenna	3115	3/17/2020	3/17/2022
T5	ANP06360	Cable	L1-PNMNNM-48	8/8/2019	8/8/2021
T6	ANP07246	Cable	32022-29094K- 29094K-24TC	5/29/2020	5/29/2022
T7	AN03169	High Pass Filter	HM1155-11SS	5/8/2019	5/8/2021

Measurement Data:			Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7		Table	dB μ V/m	dB μ V/m		
			MHz	dB μ V	dB	dB	dB			dB	Ant
1	5448.350M	58.0	-7.0	+0.0	-37.2	+34.1	+0.0	53.9	54.0	-0.1	Horiz
	Ave		+5.1	+0.7	+0.2						
^	5448.350M	59.1	+0.0	+0.0	-37.2	+34.1	+0.0	62.0	54.0	+8.0	Horiz
			+5.1	+0.7	+0.2						
^	5448.350M	58.0	+0.0	+0.0	-37.2	+34.1	+0.0	60.9	54.0	+6.9	Horiz
			+5.1	+0.7	+0.2						RMS
4	7263.517M	54.3	-7.0	+0.0	-37.2	+36.0	+0.0	53.2	54.0	-0.8	Horiz
	Ave		+6.1	+0.8	+0.2						
^	7263.517M	55.9	+0.0	+0.0	-37.2	+36.0	+0.0	61.8	54.0	+7.8	Horiz
			+6.1	+0.8	+0.2						
^	7263.517M	54.3	+0.0	+0.0	-37.2	+36.0	+0.0	60.2	54.0	+6.2	Horiz
			+6.1	+0.8	+0.2						RMS
7	5448.283M	56.6	-7.0	+0.0	-37.2	+34.1	+0.0	52.5	54.0	-1.5	Vert
	Ave		+5.1	+0.7	+0.2						
^	5448.283M	57.6	+0.0	+0.0	-37.2	+34.1	+0.0	60.5	54.0	+6.5	Vert
			+5.1	+0.7	+0.2						
^	5448.283M	56.6	+0.0	+0.0	-37.2	+34.1	+0.0	59.5	54.0	+5.5	Vert
			+5.1	+0.7	+0.2						RMS
10	4539.783M	50.5	+0.0	+0.0	-37.4	+32.6	+0.0	51.0	54.0	-3.0	Vert
			+4.5	+0.6	+0.2						
11	4580.117M	49.8	+0.0	+0.0	-37.4	+32.6	+0.0	50.3	54.0	-3.7	Vert
			+4.5	+0.6	+0.2						
12	7264.350M	48.2	-7.0	+0.0	-37.2	+36.0	+0.0	47.1	54.0	-6.9	Vert
	Ave		+6.1	+0.8	+0.2						
^	7264.350M	50.6	+0.0	+0.0	-37.2	+36.0	+0.0	56.5	54.0	+2.5	Vert
			+6.1	+0.8	+0.2						
^	7264.350M	48.2	+0.0	+0.0	-37.2	+36.0	+0.0	54.1	54.0	+0.1	Vert
			+6.1	+0.8	+0.2						RMS
15	4580.200M	52.4	-7.0	+0.0	-37.4	+32.6	+0.0	45.9	54.0	-8.1	Horiz
	Ave		+4.5	+0.6	+0.2						
^	4580.200M	54.0	+0.0	+0.0	-37.4	+32.6	+0.0	54.5	54.0	+0.5	Horiz
			+4.5	+0.6	+0.2						
^	4580.200M	52.4	+0.0	+0.0	-37.4	+32.6	+0.0	52.9	54.0	-1.1	Horiz
			+4.5	+0.6	+0.2						RMS
18	4619.750M	50.9	-7.0	+0.0	-37.4	+32.7	+0.0	44.5	54.0	-9.5	Vert
	Ave		+4.5	+0.6	+0.2						
^	4619.750M	52.9	+0.0	+0.0	-37.4	+32.7	+0.0	53.5	54.0	-0.5	Vert
			+4.5	+0.6	+0.2						
^	4619.750M	50.9	+0.0	+0.0	-37.4	+32.7	+0.0	51.5	54.0	-2.5	Vert
			+4.5	+0.6	+0.2						RMS
21	7328.450M	45.5	-7.0	+0.0	-37.3	+36.2	+0.0	44.5	54.0	-9.5	Vert
	Ave		+6.1	+0.8	+0.2						
^	7328.450M	48.5	+0.0	+0.0	-37.3	+36.2	+0.0	54.5	54.0	+0.5	Vert
			+6.1	+0.8	+0.2						
^	7328.450M	45.5	+0.0	+0.0	-37.3	+36.2	+0.0	51.5	54.0	-2.5	Vert
			+6.1	+0.8	+0.2						RMS

24	7392.483M	45.1	-7.0	+0.0	-37.3	+36.3	+0.0	44.3	54.0	-9.7	Horiz
	Ave		+6.1	+0.9	+0.2						
^	7392.483M	48.5	+0.0	+0.0	-37.3	+36.3	+0.0	54.7	54.0	+0.7	Horiz
			+6.1	+0.9	+0.2						
^	7392.483M	45.1	+0.0	+0.0	-37.3	+36.3	+0.0	51.3	54.0	-2.7	Horiz
			+6.1	+0.9	+0.2						RMS
27	4539.750M	50.8	-7.0	+0.0	-37.4	+32.6	+0.0	44.3	54.0	-9.7	Horiz
	Ave		+4.5	+0.6	+0.2						
^	4539.750M	52.3	+0.0	+0.0	-37.4	+32.6	+0.0	52.8	54.0	-1.2	Horiz
			+4.5	+0.6	+0.2						
^	4539.750M	50.8	+0.0	+0.0	-37.4	+32.6	+0.0	51.3	54.0	-2.7	Horiz
			+4.5	+0.6	+0.2						RMS
30	8171.508M	44.1	-7.0	+0.0	-37.2	+36.8	+0.0	44.3	54.0	-9.7	Vert
	Ave		+6.4	+0.9	+0.3						
^	8171.508M	47.6	+0.0	+0.0	-37.2	+36.8	+0.0	54.8	54.0	+0.8	Vert
			+6.4	+0.9	+0.3						
^	8171.508M	44.1	+0.0	+0.0	-37.2	+36.8	+0.0	51.3	54.0	-2.7	Vert
			+6.4	+0.9	+0.3						RMS
33	3664.000M	44.0	+0.0	+0.0	-38.1	+32.0	+0.0	42.8	54.0	-11.2	Vert
			+4.0	+0.7	+0.2						
34	2772.067M	47.4	+0.0	+0.0	-38.5	+29.7	+0.0	42.7	54.0	-11.3	Vert
			+3.5	+0.4	+0.2						
35	7392.383M	43.5	-7.0	+0.0	-37.3	+36.3	+0.0	42.7	54.0	-11.3	Vert
	Ave		+6.1	+0.9	+0.2						
^	7392.383M	47.4	+0.0	+0.0	-37.3	+36.3	+0.0	53.6	54.0	-0.4	Vert
			+6.1	+0.9	+0.2						
^	7392.383M	43.5	+0.0	+0.0	-37.3	+36.3	+0.0	49.7	54.0	-4.3	Vert
			+6.1	+0.9	+0.2						RMS
38	4620.250M	48.7	-7.0	+0.0	-37.4	+32.7	+0.0	42.3	54.0	-11.7	Horiz
	Ave		+4.5	+0.6	+0.2						
^	4620.250M	51.0	+0.0	+0.0	-37.4	+32.7	+0.0	51.6	54.0	-2.4	Horiz
			+4.5	+0.6	+0.2						
^	4620.250M	48.7	+0.0	+0.0	-37.4	+32.7	+0.0	49.3	54.0	-4.7	Horiz
			+4.5	+0.6	+0.2						RMS
41	7327.600M	43.3	-7.0	+0.0	-37.3	+36.2	+0.0	42.3	54.0	-11.7	Horiz
	Ave		+6.1	+0.8	+0.2						
^	7327.600M	47.0	+0.0	+0.0	-37.3	+36.2	+0.0	53.0	54.0	-1.0	Horiz
			+6.1	+0.8	+0.2						
^	7327.600M	43.3	+0.0	+0.0	-37.3	+36.2	+0.0	49.3	54.0	-4.7	Horiz
			+6.1	+0.8	+0.2						RMS
44	8171.517M	42.0	-7.0	+0.0	-37.2	+36.8	+0.0	42.2	54.0	-11.8	Horiz
	Ave		+6.4	+0.9	+0.3						
^	8171.517M	46.2	+0.0	+0.0	-37.2	+36.8	+0.0	53.4	54.0	-0.6	Horiz
			+6.4	+0.9	+0.3						
^	8171.517M	42.0	+0.0	+0.0	-37.2	+36.8	+0.0	49.2	54.0	-4.8	Horiz
			+6.4	+0.9	+0.3						RMS
47	2772.000M	46.7	+0.0	+0.0	-38.5	+29.7	+0.0	42.0	54.0	-12.0	Horiz
			+3.5	+0.4	+0.2						
48	2748.000M	46.8	+0.0	+0.0	-38.5	+29.7	+0.0	42.0	54.0	-12.0	Vert
			+3.4	+0.4	+0.2						
49	2724.050M	46.3	+0.0	+0.0	-38.5	+29.6	+0.0	41.4	54.0	-12.6	Vert
			+3.4	+0.4	+0.2						

50	8244.550M	38.8	-7.0	+0.0	-37.2	+36.9	+0.0	39.2	54.0	-14.8	Vert
	Ave		+6.5	+0.9	+0.3						
^	8244.550M	43.7	+0.0	+0.0	-37.2	+36.9	+0.0	51.1	54.0	-2.9	Vert
			+6.5	+0.9	+0.3						
^	8244.550M	38.8	+0.0	+0.0	-37.2	+36.9	+0.0	46.2	54.0	-7.8	Vert
			+6.5	+0.9	+0.3						RMS
53	6467.717M	65.6	+0.0	+0.0	-37.2	+34.4	+0.0	69.5	107.2	-37.7	Horiz
			+5.8	+0.7	+0.2						
54	6467.667M	64.6	+0.0	+0.0	-37.2	+34.4	+0.0	68.5	107.2	-38.7	Vert
			+5.8	+0.7	+0.2						
55	6411.467M	59.3	+0.0	+0.0	-37.1	+34.4	+0.0	63.3	107.2	-43.9	Horiz
			+5.8	+0.7	+0.2						
56	6412.500M	58.9	+0.0	+0.0	-37.1	+34.4	+0.0	62.9	107.2	-44.3	Vert
			+5.8	+0.7	+0.2						
57	6355.833M	58.0	+0.0	+0.0	-37.1	+34.4	+0.0	62.0	107.2	-45.2	Horiz
			+5.7	+0.8	+0.2						
58	6356.467M	55.9	+0.0	+0.0	-37.1	+34.4	+0.0	59.9	107.2	-47.3	Vert
			+5.7	+0.8	+0.2						
59	5495.533M	55.5	+0.0	+0.0	-37.2	+34.1	+0.0	58.4	107.2	-48.8	Horiz
			+5.1	+0.7	+0.2						
60	5496.267M	55.2	+0.0	+0.0	-37.2	+34.1	+0.0	58.1	107.2	-49.1	Vert
			+5.1	+0.7	+0.2						
61	5543.650M	53.8	+0.0	+0.0	-37.3	+34.1	+0.0	56.6	107.2	-50.6	Vert
			+5.1	+0.7	+0.2						
62	5543.700M	46.6	+0.0	+0.0	-37.3	+34.1	+0.0	49.4	107.2	-57.8	Horiz
			+5.1	+0.7	+0.2						

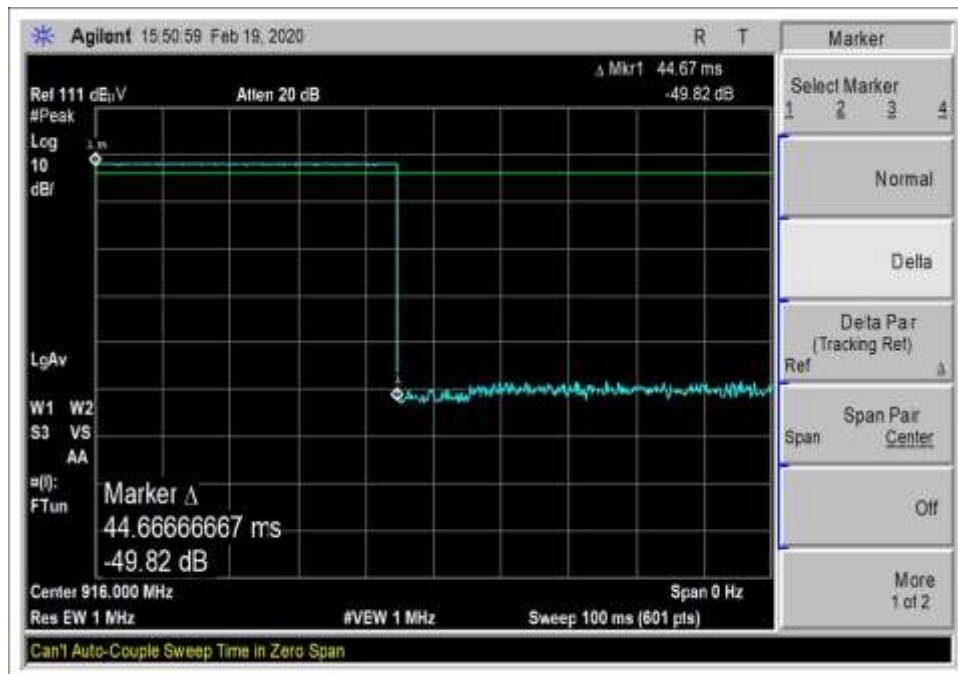
15.35(c) Duty Cycle Correction Factor

Test Data Summary			
Antenna Port	Operational Mode	Measured On Time (mS / P _{obs})	Calculated DCCF (dB)
1	Hopping	44.67	-7.0

Observation Period, P_{obs} is the duration of the pulse train or maximum 100ms

Measured results are calculated as follows:

$$On\ Time = \left(\sum_{Bursts} RF\ Burst\ On\ Time + \sum_{Control} Control\ Signal\ On\ time \right) \Big|_{P_{obs} \text{ (max 100ms)}}$$


Measured Values:

Parameter	Value
Observation Period (P _{obs}):	100ms
Number of RF Bursts / P _{obs} :	1
On time of RF Burst:	44.67ms
Number of Control or other signals / P _{obs} :	0
On time of Control or other Signals:	0
Total Measured On Time:	44.67

Duty Cycle Correction Factor (DCCF) is calculated in accordance with ANSI C63.10:

$$DCCF = 20 \cdot \log \left(\frac{On\ Time}{P_{obs}} \right)$$

Test Plot(s)

Duty Cycle 100ms

Test Setup Photo(s)

Below 1GHz; Configuration 1

Below 1GHz; Configuration 1

Below 1GHz; Configuration 2

Below 1GHz; Configuration 2

Above 1GHz; Configuration 1

Above 1GHz; Configuration 1

Above 1GHz; Configuration 2

Above 1GHz; Configuration 2

X Axis; Configuration 1 and 2

Y Axis; Configuration 1 and 2

Z Axis; Configuration 1 and 2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS	
Meter reading	(dB μ V)
+ Antenna Factor	(dB/m)
+ Cable Loss	(dB)
- Distance Correction	(dB)
- Preamplifier Gain	(dB)
= Corrected Reading	(dB μ V/m)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.