

# REGULATORY COMPLIANCE REPORT

**TITLE:** FCC & IC Test Report for Test Report for Part 101 & RSS-119 Device

**AUTHOR:** Jeff Gilbert

| REV | CCO | DESCRIPTION OF CHANGE | DATE | APPROVALS   |                |
|-----|-----|-----------------------|------|-------------|----------------|
| 1   |     | INITIAL RELEASE       |      | Engineering | Jeff Gilbert   |
|     |     |                       |      | Engineering | Drew Rosenberg |

## REVISION HISTORY

|  |  |  |  |             |  |
|--|--|--|--|-------------|--|
|  |  |  |  | Engineering |  |
|  |  |  |  | Engineering |  |
|  |  |  |  | Engineering |  |

**Test Data Summary**

FCC Part 101  
RSS-119 Transmitter  
952MHz – 960MHz  
Device Model: DCU5000  
Serial Number: 6320156  
OATS Registration Number: FCC 90716, IC 5615

| Rule                               | Description                            | Max. Reading | Pass/Fail |
|------------------------------------|----------------------------------------|--------------|-----------|
| Part 101.113 / RSS-119 sec. 6.2    | Fundamental Emissions                  | 5.16 W       | Pass      |
| Part 101.111 / RSS-119 Sec. 6.4(d) | Transmit Mask                          | N/A          | Pass      |
| Part 101.109 / RSS-119 Table 1     | Occupied Bandwidth                     | 10.78 kHz    | Pass      |
| Part 101.111 / RSS-119 Sec. 6.4(d) | EIRP of Transmitter Spurious Emissions | -22.91 dBm   | Pass      |
| Part 101.107 / RSS-119 Table 5     | Frequency Stability                    | -733 Hz      | Pass      |
| RSS-119 Sec. 8                     | Receiver spurious emissions            | Noise Floor  | Pass      |

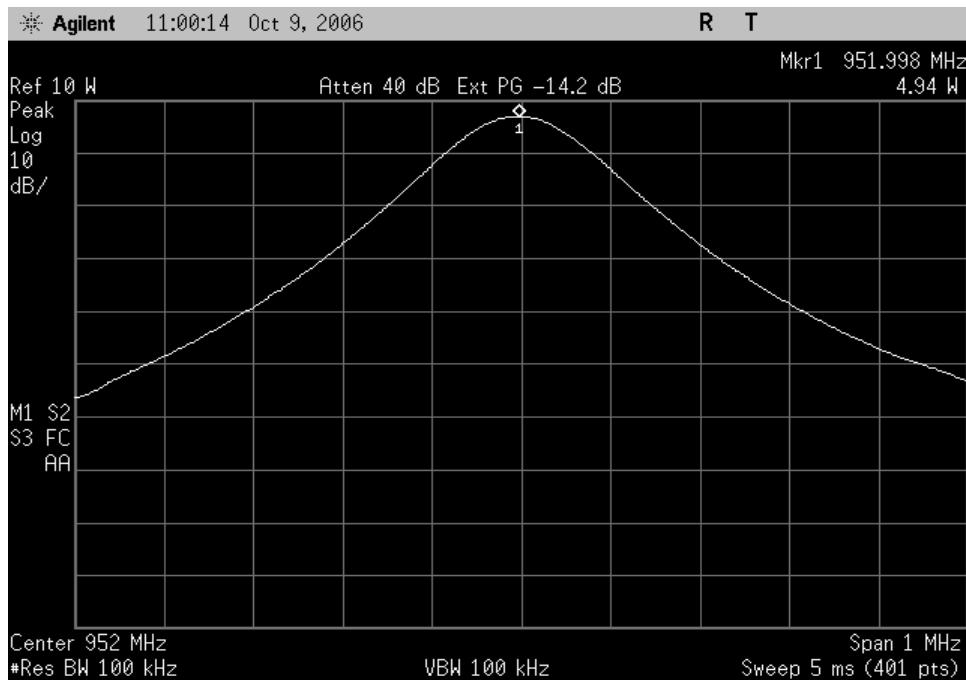
Rule versions: FCC Part 1 (10-2006), FCC Part 2 (10-2006), FCC Part 101 (10-2006), RSS-102 (11-2005), RSS-119 Issue 8 (09-2006), RSS-Gen Issue 1 (09-2005).

Reference docs: ANSI C63.4-2003, TIA-603-C (08-2004).

| Cognizant Personnel    |                              |
|------------------------|------------------------------|
| Name<br>Mark Kvamme    | Title<br>Test Technician     |
| Name<br>Jeff Gilbert   | Title<br>Regulatory Engineer |
| Name<br>Drew Rosenberg | Title<br>Project Lead        |

**FCC Part 101.113/RSS-119 Sec. 6.2***Output Power Limits*

Canada:


1. Output power must be +/-1dB of rated power.
2. Output power must be less than 10,000 Watts (40dBW)


| Equipment Used    | Model Number | Serial Number | Cal Due Date |
|-------------------|--------------|---------------|--------------|
| Spectrum Analyzer | E4408B       | US40240538    | March/07     |
| Power Meter       | 437B         | 3125U11553    | Nov/06       |
| Power Sensor      | 8481D        | 3318A08626    | Nov/06       |

| Date       | Temp/Humidity<br>°F / % | Tested by   |
|------------|-------------------------|-------------|
| 10/19/2006 | 54/60                   | Mark Kvamme |

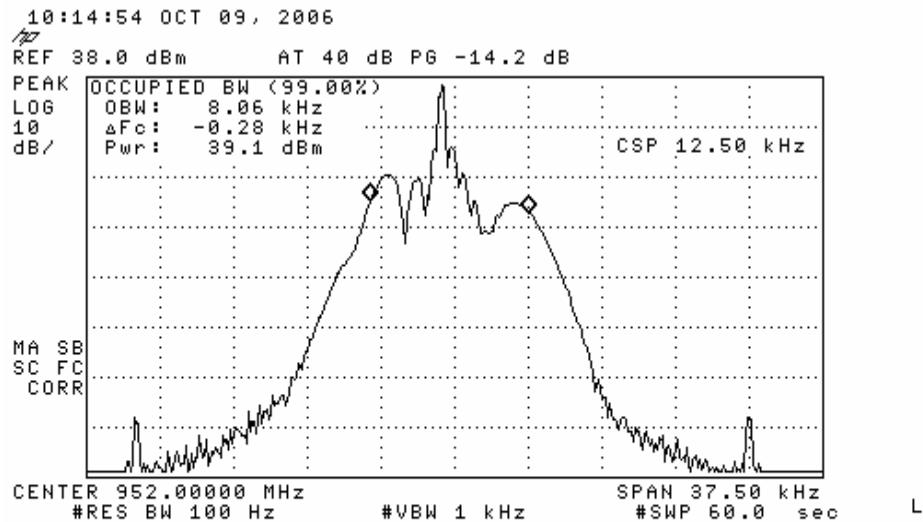
Loss in the 10 dB attenuator and cable is 14.2 dB. The loss was entered as an external power gain of -14.2 dB.

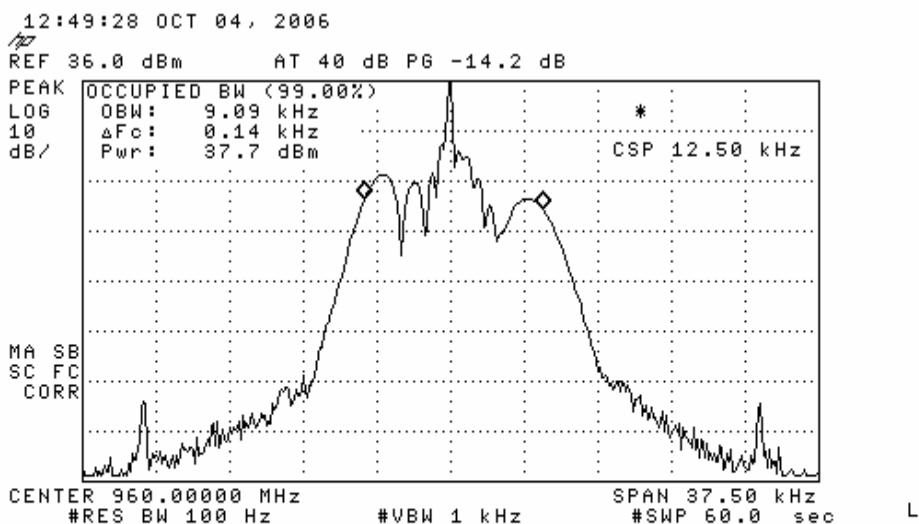
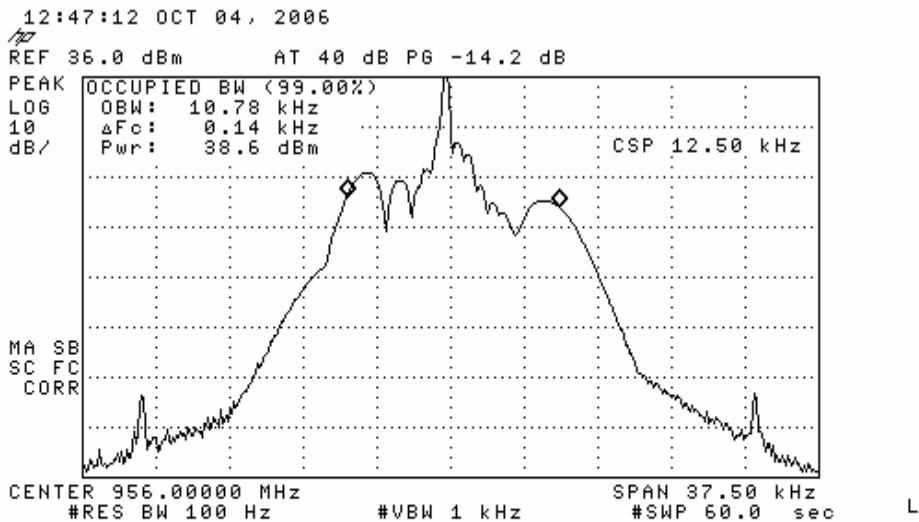
| Frequency | Reading (Watts) | Rated Power (Watts) | Deviation (dB) |
|-----------|-----------------|---------------------|----------------|
| 952       | 4.94            | 5                   | -0.05          |
| 956       | 5.16            | 5                   | 0.14           |
| 960       | 4.83            | 5                   | -0.15          |





## Part 101.109 / RSS-119 Table 1


### Occupied Bandwidth



Measure the occupied bandwidth (99% bandwidth). The Occupied bandwidth may not exceed 11.25 kHz (Canada).

| Equipment Used    | Model Number | Serial Number | Cal Due Date |
|-------------------|--------------|---------------|--------------|
| Spectrum Analyzer | 8594E        | 3710A04999    | Feb/07       |

| Date      | Temp/Humidity<br>°F / % | Tested by   |
|-----------|-------------------------|-------------|
| 10/4/2006 | 77/43                   | Mark Kvamme |
| 10/9/2006 | 55/60                   | Mark Kvamme |

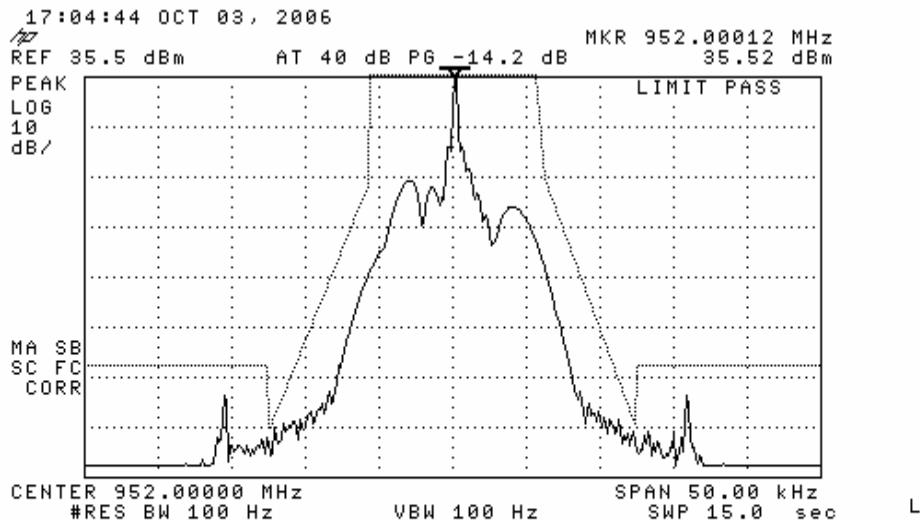
| Frequency | Occupied Bandwidth (Khz) | Limit (Khz) | pass fail |
|-----------|--------------------------|-------------|-----------|
| 952       | 8.06                     | 11.25       | Pass      |
| 956       | 10.78                    | 11.25       | Pass      |
| 960       | 9.09                     | 11.25       | Pass      |

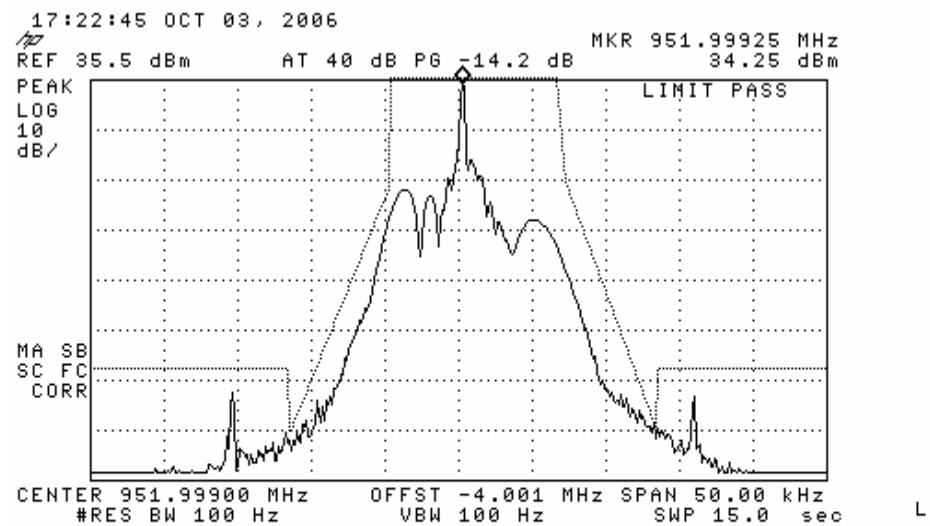
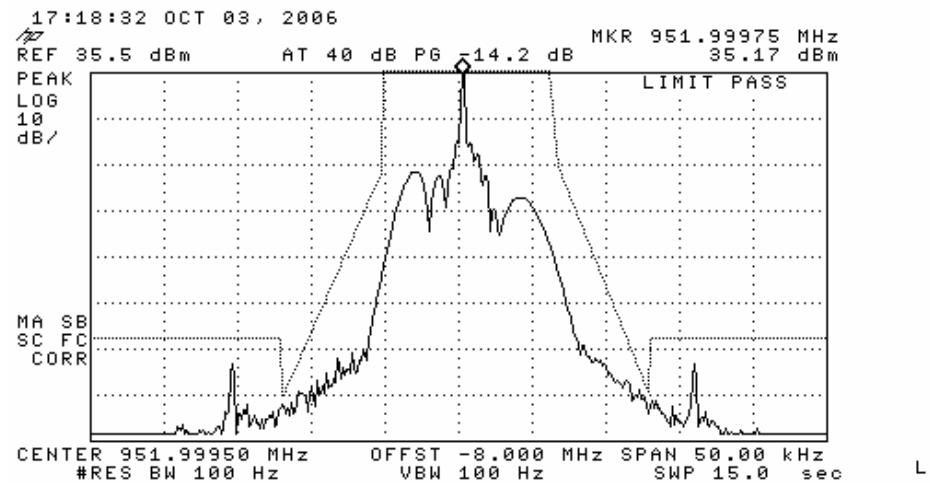




## Part 101.111 / RSS-119 Sec. 6.4(d)

## Transmitter Mask


Measure the transmitter mask, referenced to an unmodulated carrier, according to the following schedule ( per Part 101.111 (a) (1) (i), (ii), and (iii)):



| Minimum Displacement Frequency (kHz) | Maximum Displacement Frequency (kHz) | Attenuation below unmodulated carrier (dB) |
|--------------------------------------|--------------------------------------|--------------------------------------------|
| 0                                    | 5.625                                | 0                                          |
| 5.625                                | 12.5                                 | 7.27*(fd-2.88)                             |
| 12.5                                 | > 12.5                               | 50+log(P) or 70                            |

| Equipment Used    | Model Number | Serial Number | Cal Due Date |
|-------------------|--------------|---------------|--------------|
| Spectrum Analyzer | 8594E        | 3710A04999    | Feb/07       |

| Date      | Temp/Humidity °F / % | Tested by   |
|-----------|----------------------|-------------|
| 10/3/2006 | 73/50                | Mark Kvamme |

$$50+\log(P) = 50+\log(5.16\text{watts}) = 57 > 70\text{dB}$$





**FCC Part 101.111 / RSS-119 Sec. 6.4(d)*****Spurious Emissions***

Measure the EIRP of all transmitter spurious emissions that are >15 kHz away from the center of the fundamental peak. The EIRP of these emissions may not exceed 50+log(P) or 70dB below the EIRP of the fundamental (measured in test 1). Use the antenna substitution procedure to perform these measurements (appendix A).

| Equipment Used       | Model Number | Serial Number | Cal Due Date |
|----------------------|--------------|---------------|--------------|
| Spectrum Analyzer    | E4408B       | US40240538    | March/07     |
| Substitution Antenna | 6412         | 9508-4550     | Mar/08       |
| Receive Antenna      | 16256        | 9205-3878     | N/A          |

| Date      | Temp/Humidity<br>°F / % | Tested by   |
|-----------|-------------------------|-------------|
| 10/9/2006 | 56/50                   | Mark Kvamme |

$$50+\log(P) = 50+\log(5.16\text{Watts}) = 57\text{dB} > 70\text{dB}$$

From Test 1: Fundamental EIRP = 37.1 dBm

$$\text{Limit} = 37.1\text{dBm} - 57\text{dB} = -19.9\text{ dBm}$$

| Frequency (Mhz) | Polarity | Analyzer Reading of Device Emissions (dBm) | Analyzer Reading of Generator Emissions (dBm) | Difference (add to ERP reading) | Substitution Antenna Gain (dBi) | Generator Output (dBm) | EIRP (dBm) |
|-----------------|----------|--------------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------|------------------------|------------|
| 1912.00         | V        | -62.04                                     | -62.10                                        | 0.06                            | 8.7                             | -59.83                 | -51.07     |
| 1912.00         | H        | -57.43                                     | -57.50                                        | 0.07                            | 7.6                             | -56.70                 | -49.03     |
| 2868.00         | V        | -42.24                                     | -42.10                                        | -0.14                           | 9.6                             | -53.40                 | -43.94     |
| 2868.00         | H        | -40.36                                     | -40.30                                        | -0.06                           | 9.6                             | -51.93                 | -42.39     |
| 3824.00         | V        | -25.11                                     | -25.10                                        | -0.01                           | 9.6                             | -32.50                 | -22.91     |
| 3824.00         | H        | -25.64                                     | -25.60                                        | -0.04                           | 9.3                             | -33.20                 | -23.94     |
| 4780.00         | V        | -32.48                                     | -32.60                                        | 0.12                            | 10.5                            | -41.10                 | -30.48     |
| 4780.00         | H        | -35.97                                     | -36.15                                        | 0.18                            | 9.9                             | -43.46                 | -33.38     |

## Part 101.107 / RSS-119 Table 5

Section 2.1055 Measurements required: Frequency stability.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
  - (1) From -30 degrees to +50 degrees centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
  - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
  - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
  - (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

### 7.2 Test Technical Standard

Section 101.107 Frequency tolerance.

- (a) The carrier frequency of each transmitter authorized in these services must be maintained within the percentage of the reference frequency except as otherwise provided in paragraph (b) of this section or in the applicable subpart of this part (unless otherwise specified in the instrument of station authorization the reference frequency will be deemed to be the assigned frequency):

...

952 to 960 (7) .....

...

- (7) For private operational fixed point-to-point microwave systems, with a channel greater than or equal to 50 KHz bandwidth,  $\pm 0.0005\%$ ; for multiple address master stations, regardless of bandwidth,  $\pm 0.00015\%$ ; for multiple address remote stations with 12.5 KHz bandwidths or less,  $\pm 0.00015\%$ ; for multiple address remote stations with channels greater than 12.5 KHz bandwidth,  $\pm 0.0005\%$ .

Limit =  $\pm 0.00015\% * 951,000,000 \text{ Hz} = \pm 1426 \text{ Hz}$ .

**Test Results**

Temperature soak time: 1 hour

| Temperature<br>(degrees Celsius) | Frequency<br>(MHz) | Delta to<br>reference<br>(Hz) | Drift from<br>reference<br>(PPM) | Frequency<br>(MHz) | Delta to<br>reference<br>(Hz) | Drift from<br>reference<br>(PPM) | Frequency<br>(MHz) | Delta to<br>reference<br>(Hz) | Drift from<br>reference<br>(PPM) |
|----------------------------------|--------------------|-------------------------------|----------------------------------|--------------------|-------------------------------|----------------------------------|--------------------|-------------------------------|----------------------------------|
| -30                              | 951.000098         | 66                            | 0.07                             | 954.500092         | 61                            | 0.06                             | 962.000086         | 52                            | 0.05                             |
| -20                              | 950.999935         | -97                           | -0.10                            | 954.499935         | -96                           | -0.10                            | 961.999937         | -97                           | -0.10                            |
| -10                              | 951.000153         | 121                           | 0.13                             | 954.500152         | 121                           | 0.13                             | 962.000154         | 120                           | 0.12                             |
| 0                                | 950.999910         | -122                          | -0.13                            | 954.499913         | -118                          | -0.12                            | 961.999909         | -125                          | -0.13                            |
| 10                               | 950.999953         | -79                           | -0.08                            | 954.499953         | -78                           | -0.08                            | 961.999951         | -83                           | -0.09                            |
| 20                               | 951.000032         | Reference                     | 0.00                             | 954.500031         | Reference                     | 0.00                             | 962.000034         | Reference                     | 0.00                             |
| 30                               | 950.999689         | -343                          | -0.36                            | 954.499686         | -345                          | -0.36                            | 961.999685         | -349                          | -0.36                            |
| 40                               | 950.999467         | -565                          | -0.59                            | 954.499465         | -566                          | -0.59                            | 961.999461         | -573                          | -0.60                            |
| 50                               | 950.999308         | -724                          | -0.76                            | 954.499306         | -725                          | -0.76                            | 961.999301         | -733                          | -0.76                            |

**RSS-119 Sec. 8***Receiver Spurious Emissions*

Receiver spurious emissions may not exceed the following limits:

| Frequency (MHz) | Field Strength (uV/m) |
|-----------------|-----------------------|
| 30-88           | 100                   |
| 88-216          | 150                   |
| 216-960         | 200                   |
| 960-1610        | 500                   |
| > 1610          | 1000                  |

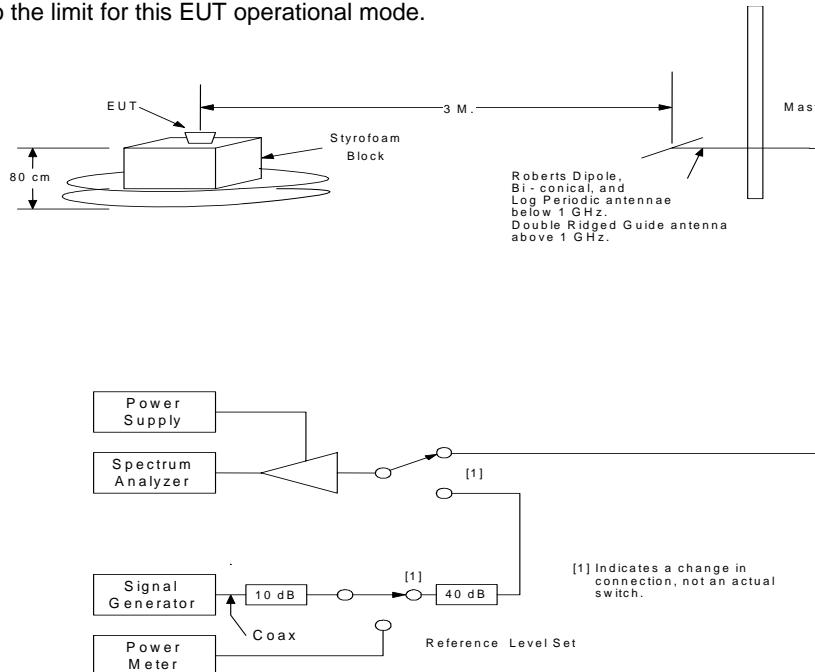
| Equipment Used    | Model Number | Serial Number | Cal Due Date |
|-------------------|--------------|---------------|--------------|
| Spectrum Analyzer | E4408B       | US40240538    | March/07     |
| Antenna           | 3110B        | 9807-3129     | Sept/07      |
| Power Meter       | 437B         | 3125U11553    | Nov/06       |
| Power Sensor      | 8481D        | 3318A08626    | Nov/06       |

| Date      | Temp/Humidity °F / % | Tested by   |
|-----------|----------------------|-------------|
| 10/9/2006 | 56/50                | Mark Kvamme |

| Freq MHz | Ant. Pos. | Antenna Height/ Table Azimuth |      | Level dBm | Level dBuV | Amplifier Gain dB | Ant. Factor dB | Cable Loss dB | Corrected |      |       |
|----------|-----------|-------------------------------|------|-----------|------------|-------------------|----------------|---------------|-----------|------|-------|
|          |           | Level                         | dBm  |           |            |                   |                |               | Level     | dBuV | Limit |
| 4070     | V         | 1000                          | -720 | P         | 350        | 31.1              | 11.0           | 0.5           | 154       | 40   | 246   |
| 7320     | V         | 100/300                       | -630 | P         | 440        | 301               | 88             | 0.5           | 232       | 40   | 168   |
| 11920    | V         | 1000                          | -685 | P         | 385        | 293               | 11.8           | 0.5           | 215       | 435  | 220   |

The local oscillator of the receiver is 916MHz. When measured off of the antenna port, the receiver could not be found. An attempt was made to perform this measurement at the three meter site. Again, the receiver could not be found.

Below are the details in tabular format:


| Freq. (MHz) | Measurement Type | Pol. | Reading (dBm) | Reading (dBuV) | ACF  | Cable Loss | Amp. Gain | Final Reading |
|-------------|------------------|------|---------------|----------------|------|------------|-----------|---------------|
| 851         | Conducted (NF)   | N/A  | -87.4         | -              | -    | 0          | 29.3      | -116.7dBm     |
| 851         | Radiated (NF)    | N/A  | -87.4         | 19.69          | 29.8 | 1.55       | 29.3      | 21.74 dBuV/m  |

\*NF = Noise floor

## Appendix A – Antenna Substitution Method of EIRP Measurement

This test measures the field strength of radiated emissions using a spectrum analyzer and a receiving antenna in accordance with ANSI C63.4-2003. During the test, the EUT is to be placed on a non-conducting support at 80 cm above the horizontal ground plane of the OATS. The horizontal distance between the antenna and the EUT is to be exactly 3 meters. Levels below 1 GHz are to be measured with the spectrum analyzer resolution bandwidth at 120 kHz and levels at or above 1 GHz are to be measured with the spectrum analyzer resolution bandwidth at 1 MHz.

- 1) Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- 2) If appropriate, manipulate the system cables to produce the highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- 3) Rotate the EUT 360° to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat step 2). Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- 4) Move the antenna over its fully allowed range of travel to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to step 2) with the antenna fixed at this height. Otherwise, move the antenna to the height that repeats the highest amplitude observation and proceed.
- 5) Change the polarity of the antenna and repeat step 2), step 3), and step 4). Compare the resulting suspected highest amplitude signal with that found for the other polarity. Select and note the higher of the two signals.
- 6) The transmitter shall be replaced by a substitution antenna.
- The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter. The substitution antenna shall be connected to a calibrated signal generator. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 7) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 8) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 9) The input level to the substitution antenna shall be recorded as power level, corrected for any change of input attenuator setting of the measuring receiver.
- 10) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- 11) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.

