

FCC RF Test Report

For
Transmitter

Brand Name : EXCALIBUR

Model Number : 119

FCC ID : ELVNTZF

Date of Receipt : June 9, 2025

Date of Report : July 31, 2025

Prepared for

Nutek Corporation

No.167, Lane 235, Bauchiau Rd., Xindian District, New Taipei City

Prepared by

Central Research Technology Co.

11, Lane 41, Fushuen St., Jungshan Chiu, Taipei 104, Taiwan

This report shall not be reproduced, except in full, without written approval of Central Research Technology Co.. It may be duplicated completely in its entirety for legal use with the permission of the applicant. The test result in this report is based on the information provided by manufacturer and applies only to the sample tested.

Verification of Compliance

Equipment under Test : Transmitter
Model No. : 119
FCC ID : ELVNTZF
Applicant : Nutek Corporation
Address : No.167, Lane 235, Bauchiau Rd., Xindian District, New Taipei City
Applicable Standards : 47 CFR part 15, Subpart C
ANSI C63.10:2020
Date of Testing : June 11 ~ July 30, 2025
Deviation : The method, configuration and arrangement of the tests are following the requirement of customer and the applicable standards cited above.
Condition of Test Sample : Mass Production

We, **Central Research Technology Co.**, hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

Prepared By : Weitin Chen **Date** : July.31.2025
(Weitin Chen / Report Producer)

Approved By : Sam Chien **Date** : July.31.2025
(Sam Chien / Authorized Signatory)

Contents

1	General Description	5
1.1	General Description of EUT.....	5
1.2	Applied standards	6
1.3	Test result	10
1.4	Calculation of average Factor	11
1.5	The Support Units	20
1.6	Layout of Setup	20
1.7	Test Instruments.....	21
1.8	Test Capability	23
1.9	Measurement Uncertainty	25
2	Technical requirements	26
2.1	Applied standard	26
2.2	Measurement Procedure	26
2.3	Test configuration	26
2.4	Test Data	27
3	Field strength of the fundamental emissions	28
3.1	Applied standard	28
3.2	Measurement Procedure	28
3.3	Test configuration	29
3.4	Test Data	30
4	Radiated Emission	32
4.1	Applied standard	32
4.2	Measurement Procedure	33
4.3	Test configuration	34
4.4	Test Data	36
5	Bandwidth of momentary signals	46
5.1	Applied Standard	46
5.2	Measurement Procedure	46
5.3	Test Configuration	46
5.4	Test Data	47
6	Conducted Emission Measurement.....	48
6.1	Limits for Emission Measurement	48

6.2	Test Procedures	48
6.3	Test Configurations.....	49
7	Antenna Requirement.....	50
7.1	Applied Standard	50
7.2	Atenna type.....	50

Attachment 1 – Photographs of the Test Configuration**Attachment 2 – External Photographs of EUT****Attachment 3 – Internal Photographs of EUT**

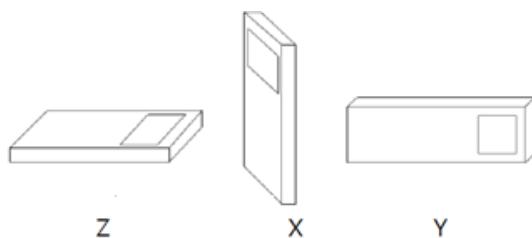
1 General Description

1.1 General Description of EUT

Equipment under Test : Transmitter

Model No. : 119

Series No. : 1


Test Power in : 3Vdc

Channel Numbers : 1

Frequency Range : 433.92 MHz

Modular Function : ASK

According to the preliminary test for X,Y and Z axis, it was found X axis is worse. It was taken as the representative condition for test and its data are recorded in the present document.

EUT Test step:

1. EUT turn on power.
2. EUT transmit signal.
3. The EUT has only one key, Press this single key (Lock) to initiate transmission.

1.2 Applied standards

(1) Technical requirements

According to FCC 15.231(a), (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.(4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition (5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

(2) Field strengths

According to FCC 15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following: (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.(2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in § 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the

provisions of § 15.205 shall be demonstrated using the measurement instrumentation specified in that section.(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	*1,250 to 3,750	*125 to 375
174-260	3,750	375
260-470	3,750 to 12,500	*375 to 1,250
Above 470	12,500	1,250

* *Linear interpolations.*

(3) Bandwidth of momentary signals

According to FCC 15.231(c), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier..

(4) Radiated emission measurements

According to FCC 15.209, the general requirement of field strength of radiated emissions from intentional radiator at a distance of 3 meters shall not exceed the below table.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Magnetic field strength (μA/m)
0.009-0.490	300	2400/F(kHz)	6.37/F(kHz)
0.490-1.705	30	24000/F(kHz)	63.7/F(kHz)
1.705-30.0	3	30	0.08

Note

1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

2. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels using the free space impedance of 377 Ohms, The correction factor is 51.5 dB. For example, the measurement at frequency 9 kHz limit is $2400/9=48.5$ dBuV/m, which is equivalent to $48.5 - 51.5 = -3$ dBuA/m.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
above 960	3	500	54.0

(5) Antenna Requirement

According to FCC 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

(6) Conduction Emission Requirement

For intentional device, according to FCC 15.207(a), line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 - 5	56	46
5 - 30	60	50

* Decreases with the logarithm of the frequency.

(7) Restricted Band

FCC 15.205

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

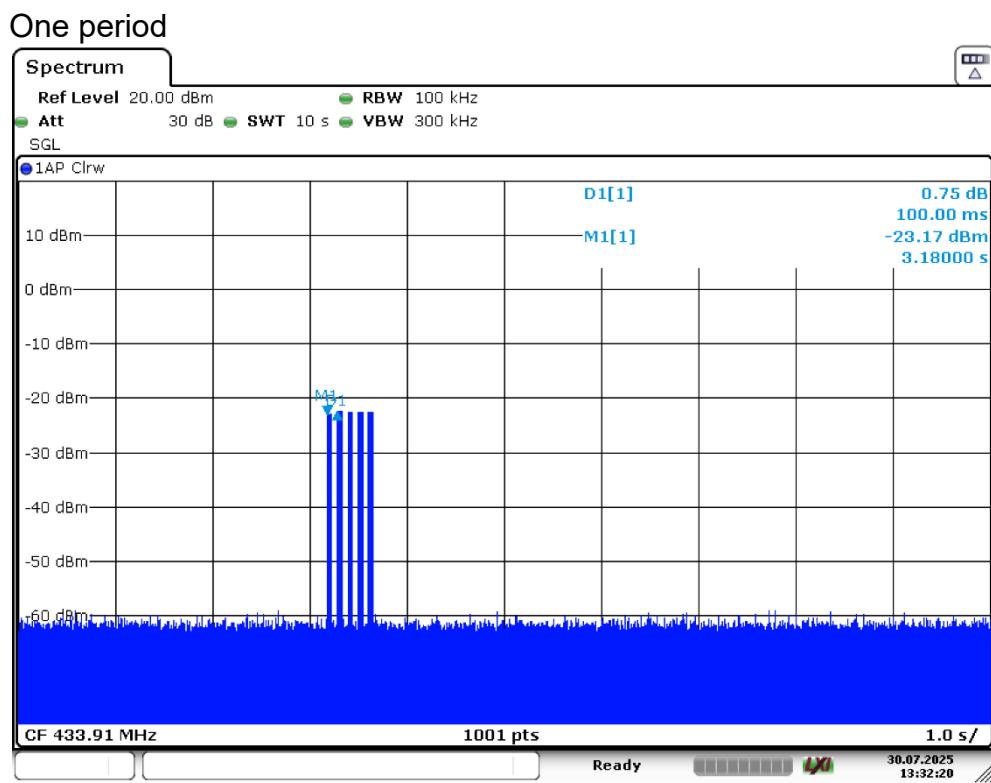
² Above 38.6

1.3 Test result

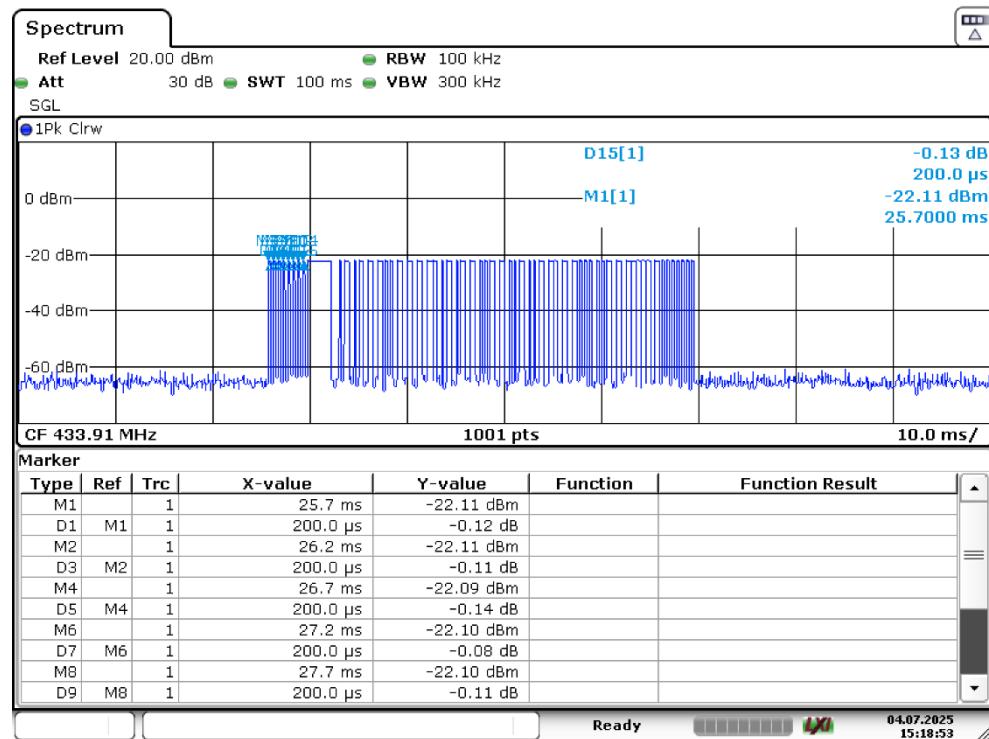
Test Item	FCC/RSS standard section	Report section	Test result
Technical requirement	FCC 15.231(a)	2	PASS
Field strength of the fundamental emission	FCC 15.231(b)	3	PASS
Radiated emission measurement	FCC 15.209	4	PASS
Bandwidth of momentary signals	15.231(c)	5	PASS
AC conducted emission	FCC 15.207(a)	6	--*
Antenna requirement	FCC 15.203	7	PASS

According to ANSI C63.10, determining compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

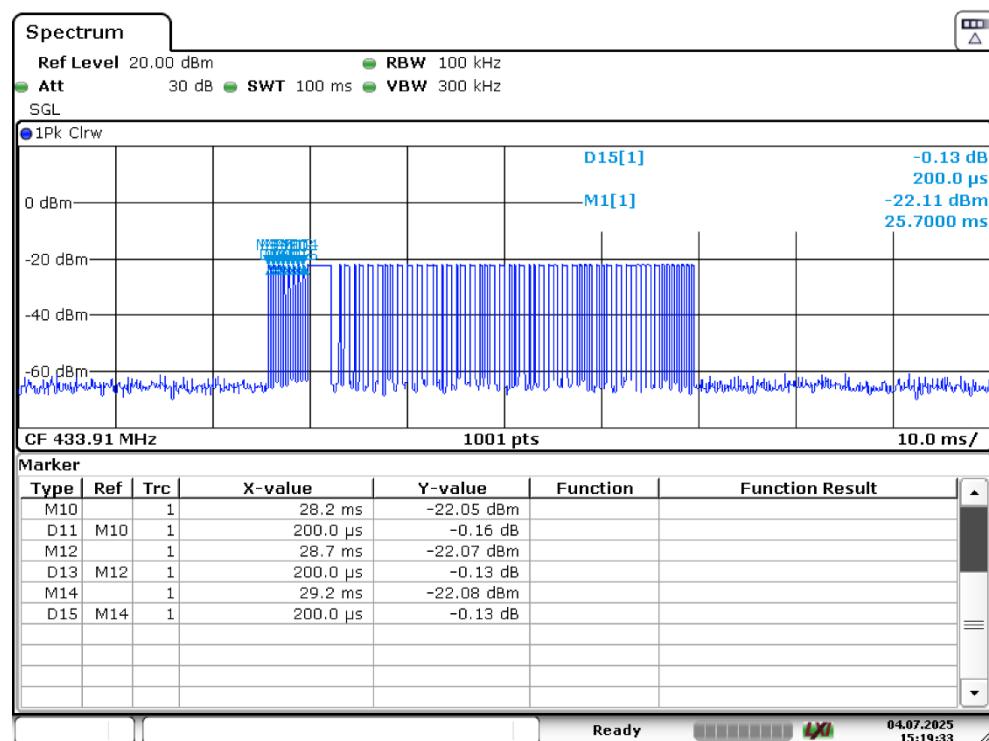
* The EUT is powered exclusively by batteries and has no provision for AC-mains connection; therefore, this test was not performed.

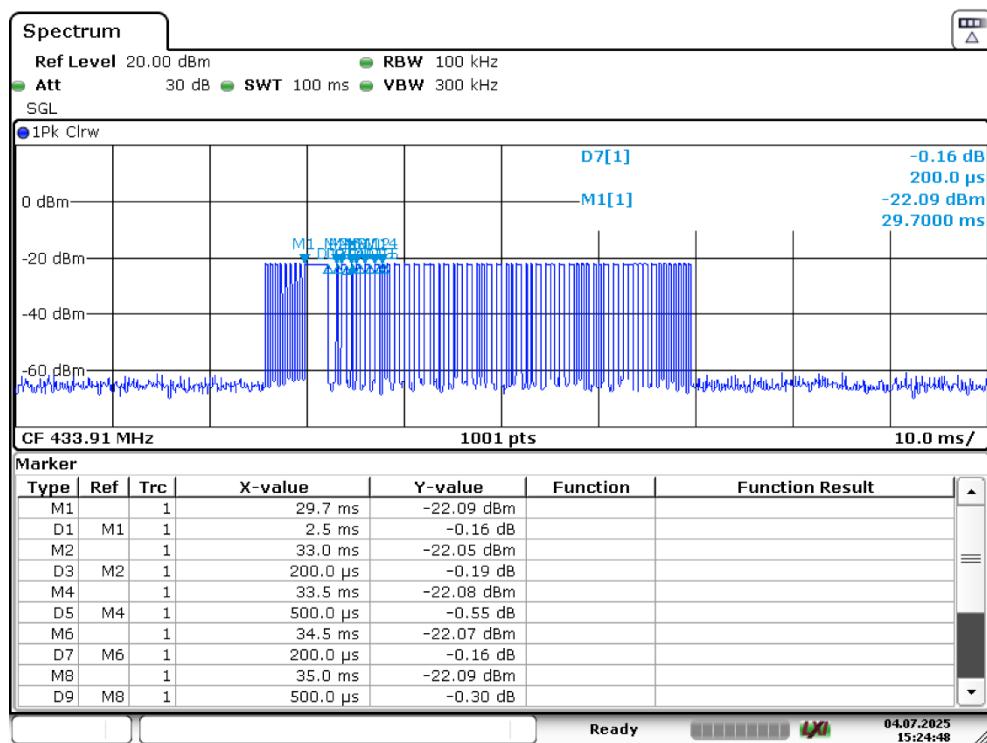

1.4 Calculation of average Factor

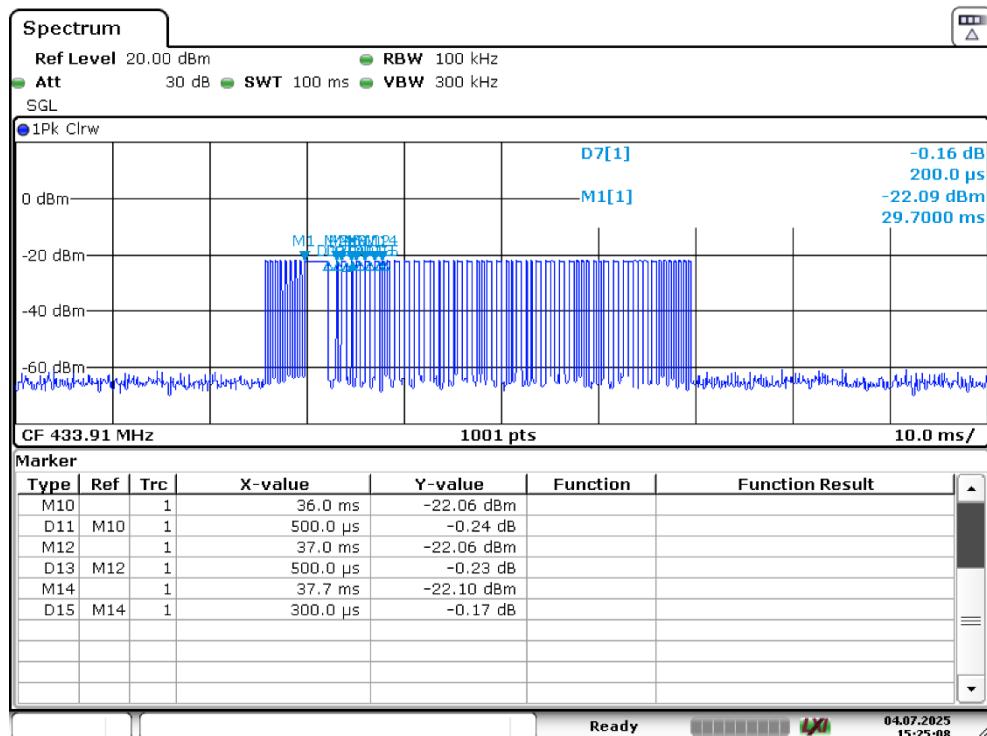
Test Mode : Normal Mode **Tester** : Hunter
Ambient Temperature : 23°C **Relative Humidity** : 57%
Test Date : 2025/07/04 ~ 07/30

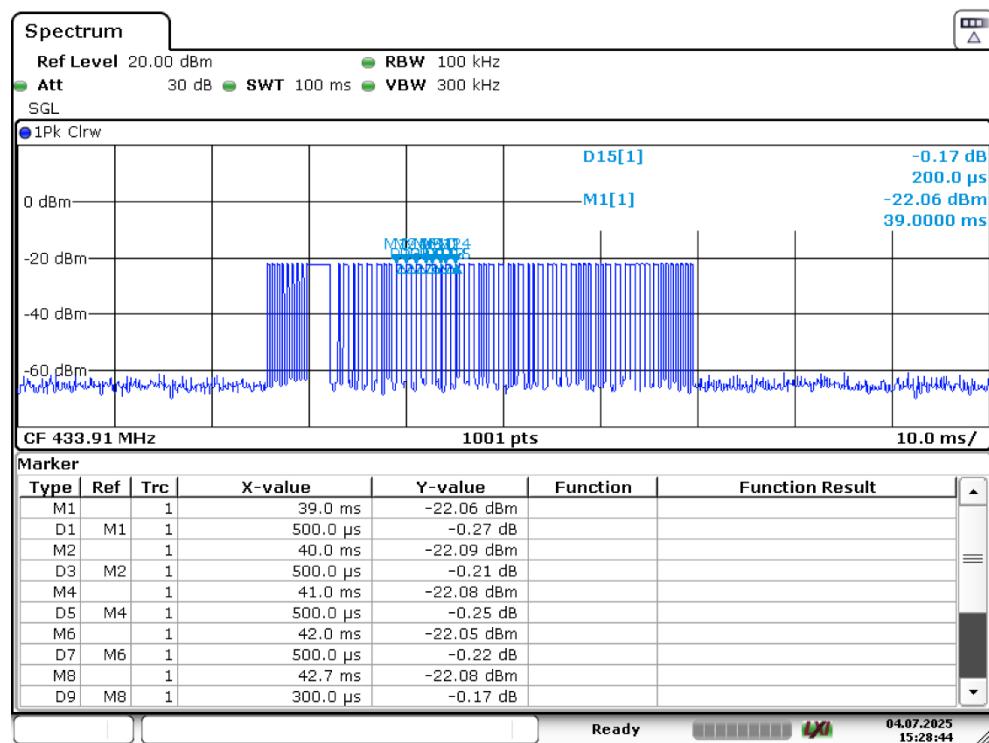

On time:200(us)*18+300(us)*14+500(us)*23+700(us)*1+1(ms)*3
+2.5(ms)*1=25.50(ms)

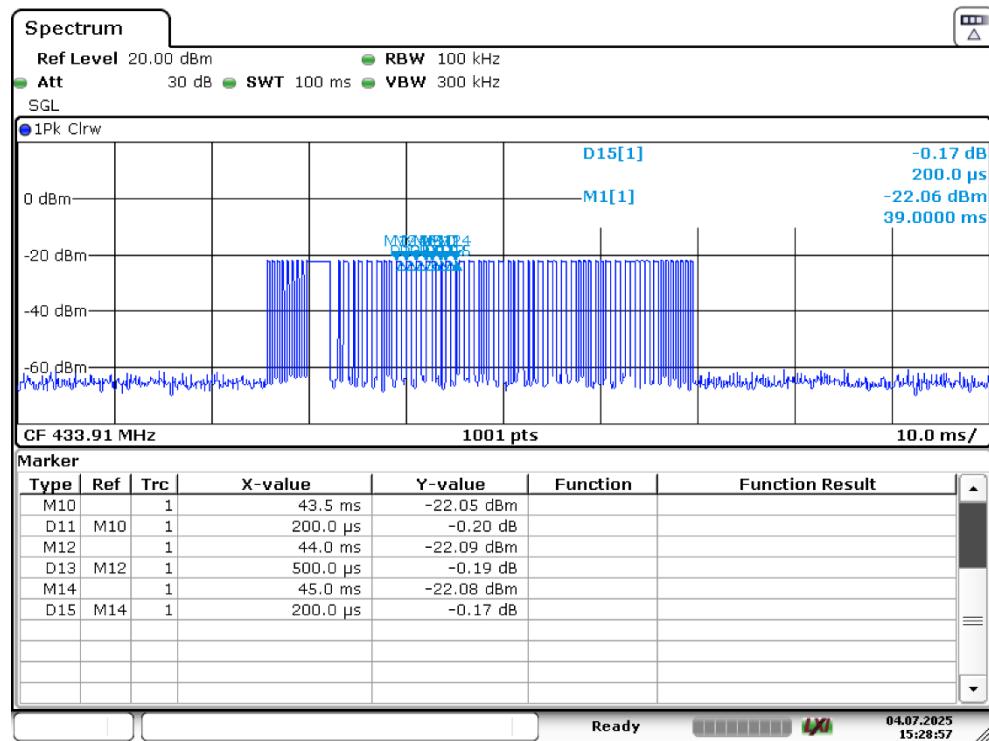
Duty cycle= on time/ one period = 25.50/100.00= 0.255

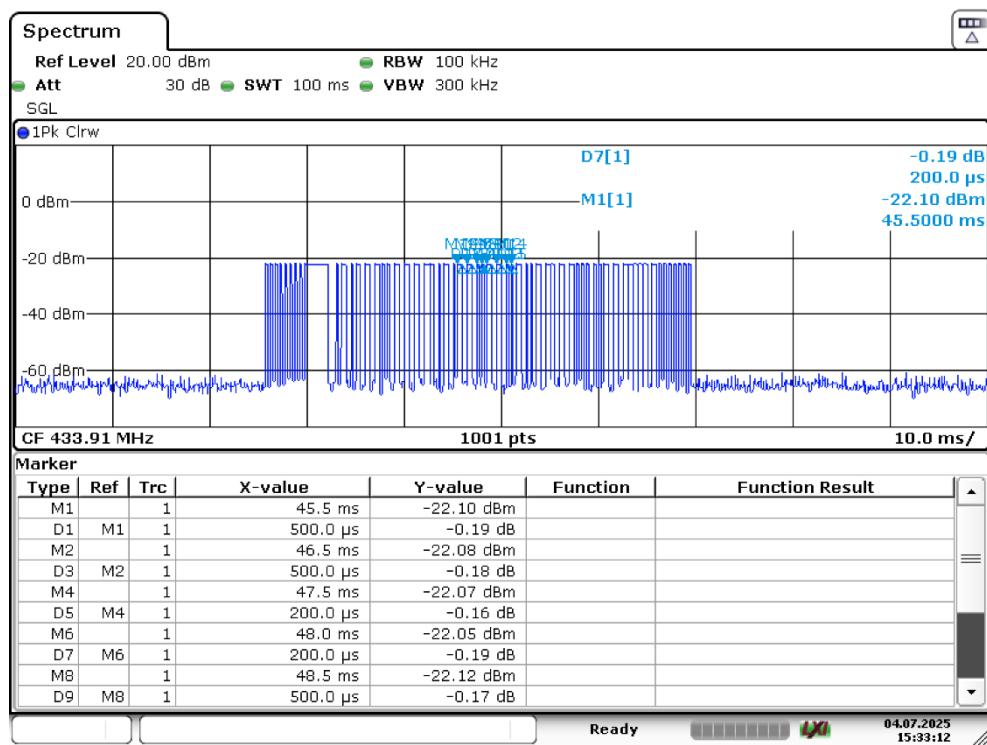

Average factor = 20 log(duty cycle) = -11.869 dB

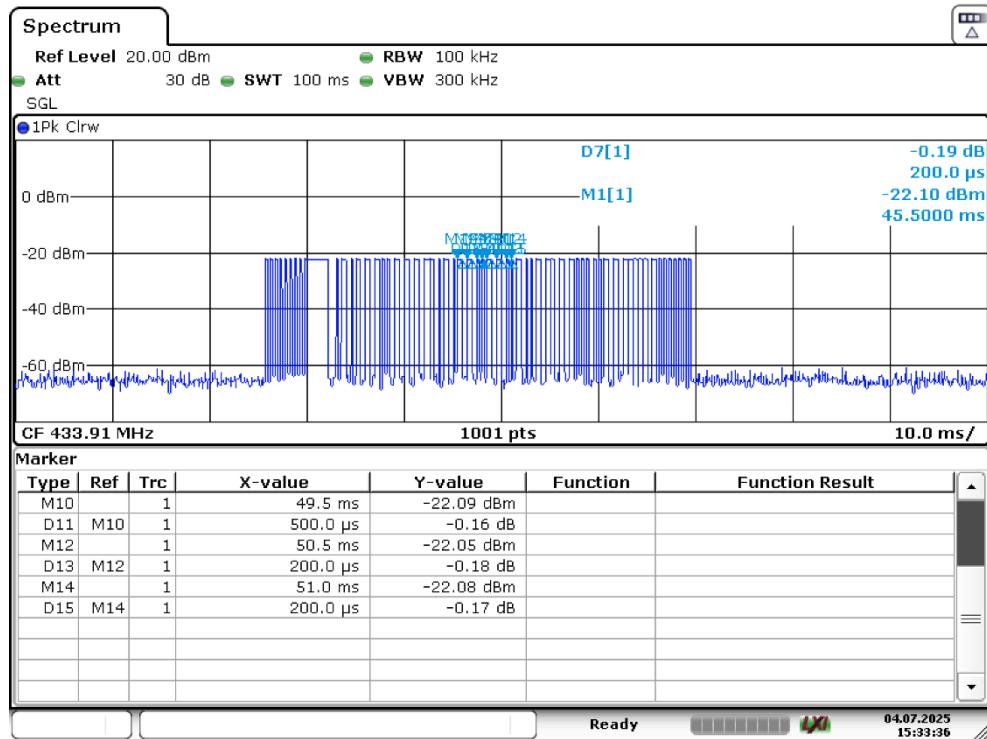

On time

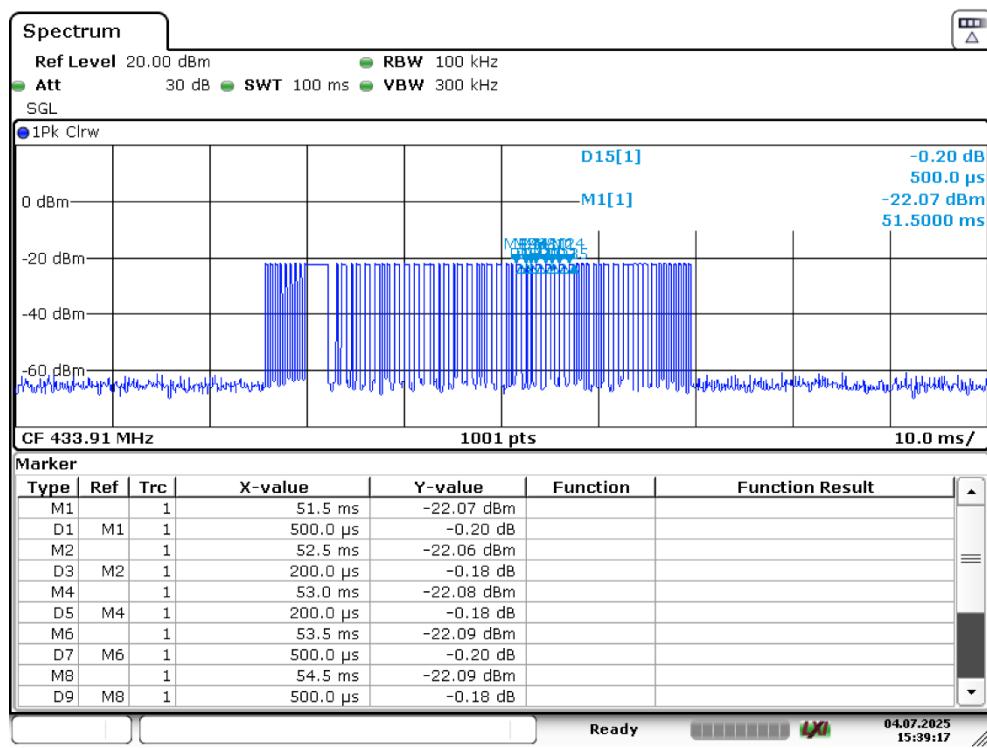

Date: 4.JUL.2025 15:18:54

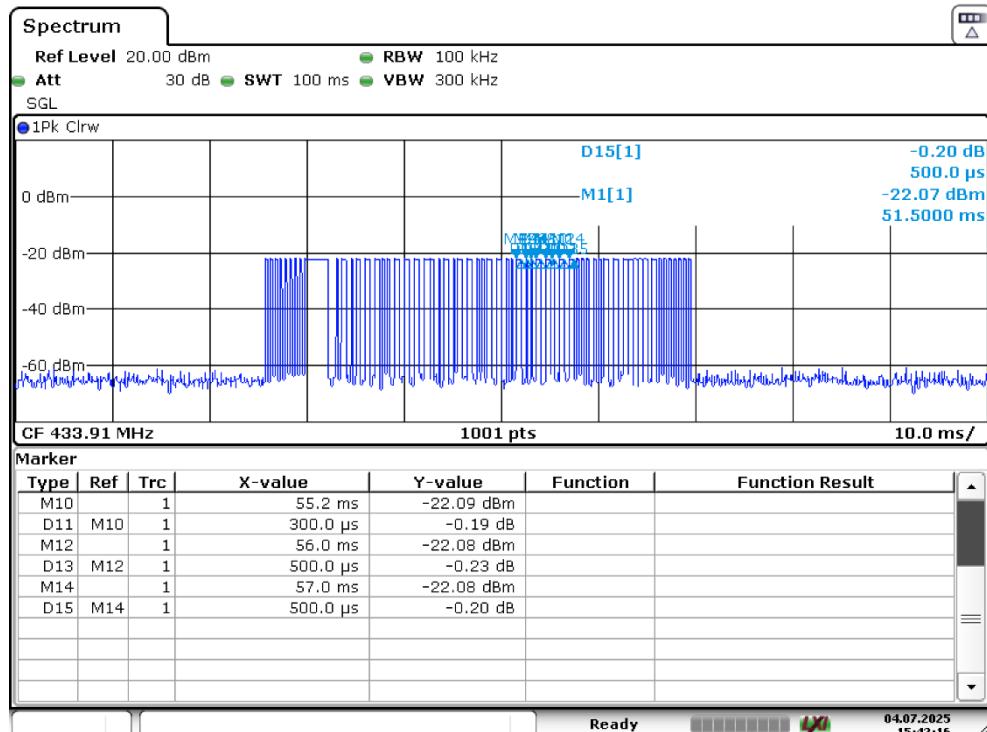

Date: 4.JUL.2025 15:19:33

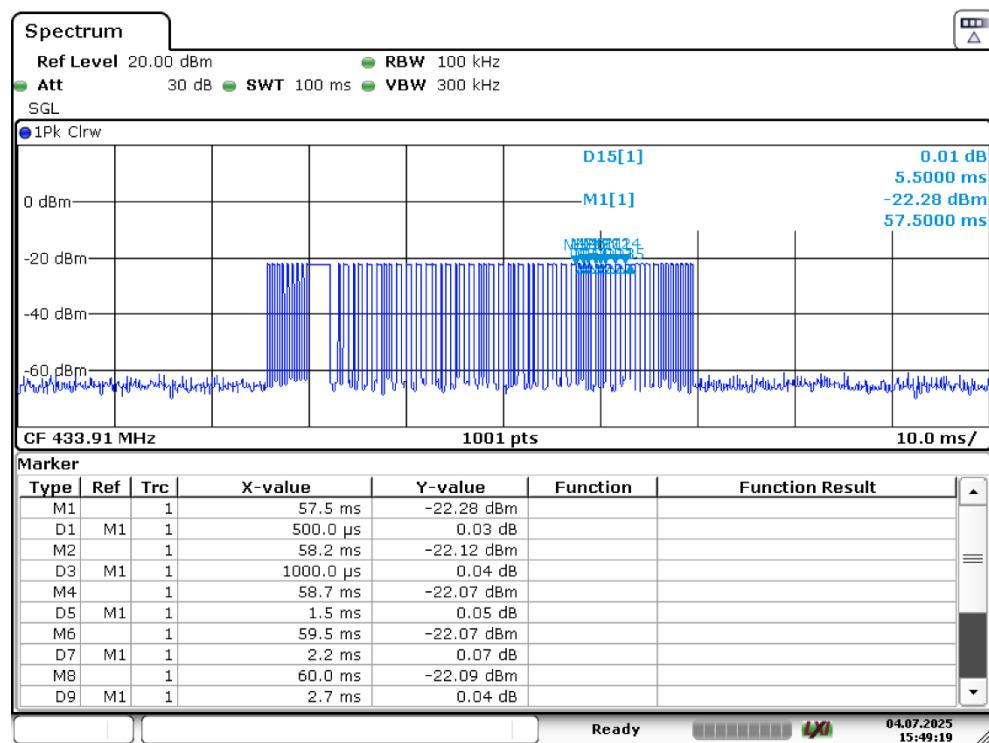

Date: 4.JUL.2025 15:24:48

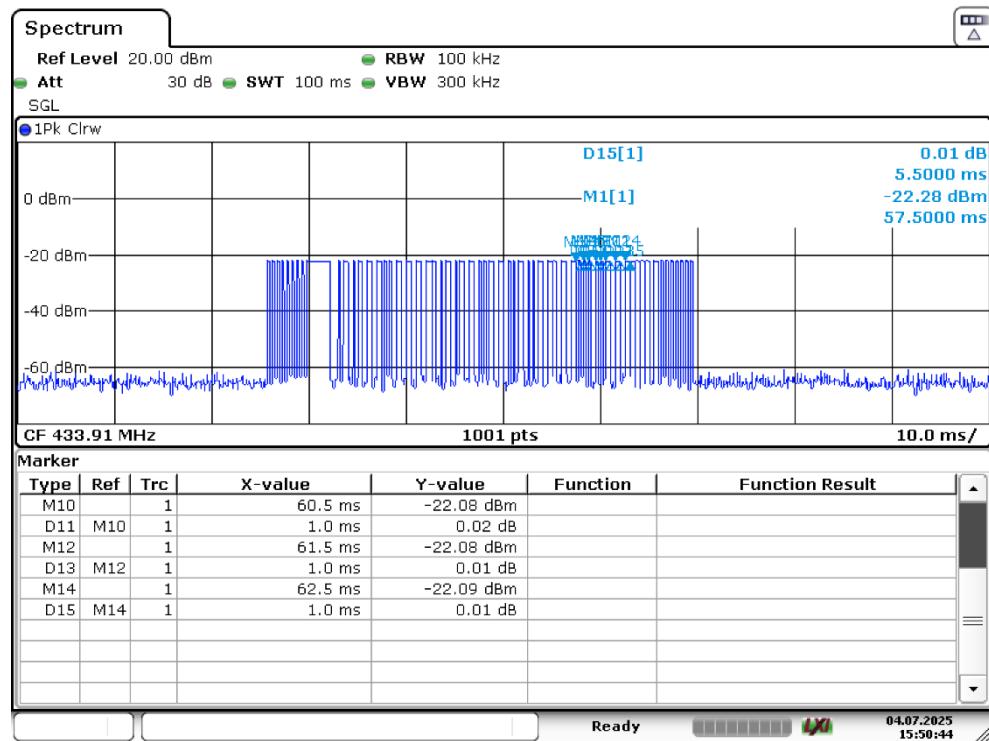

Date: 4.JUL.2025 15:25:08

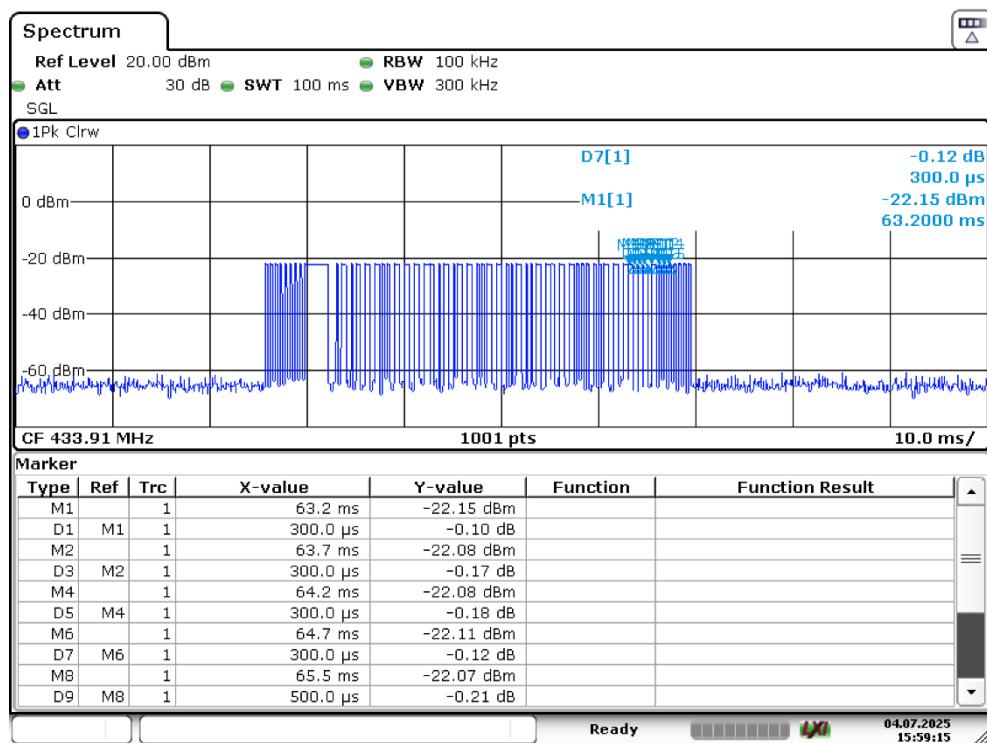

Date: 4.JUL.2025 15:28:44

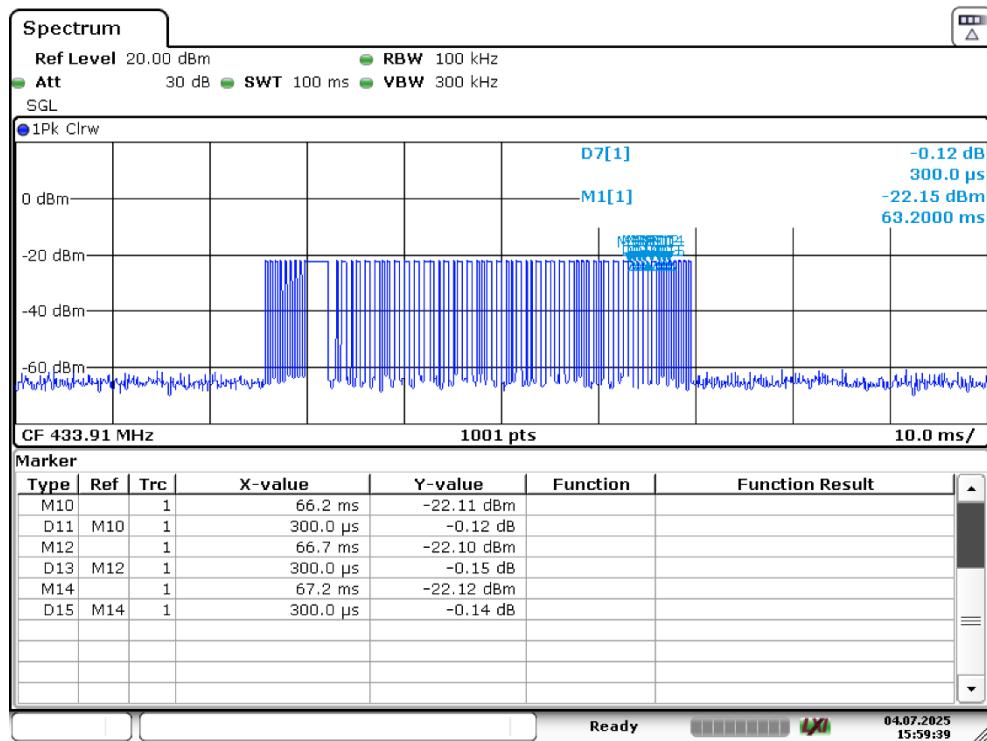

Date: 4.JUL.2025 15:28:58

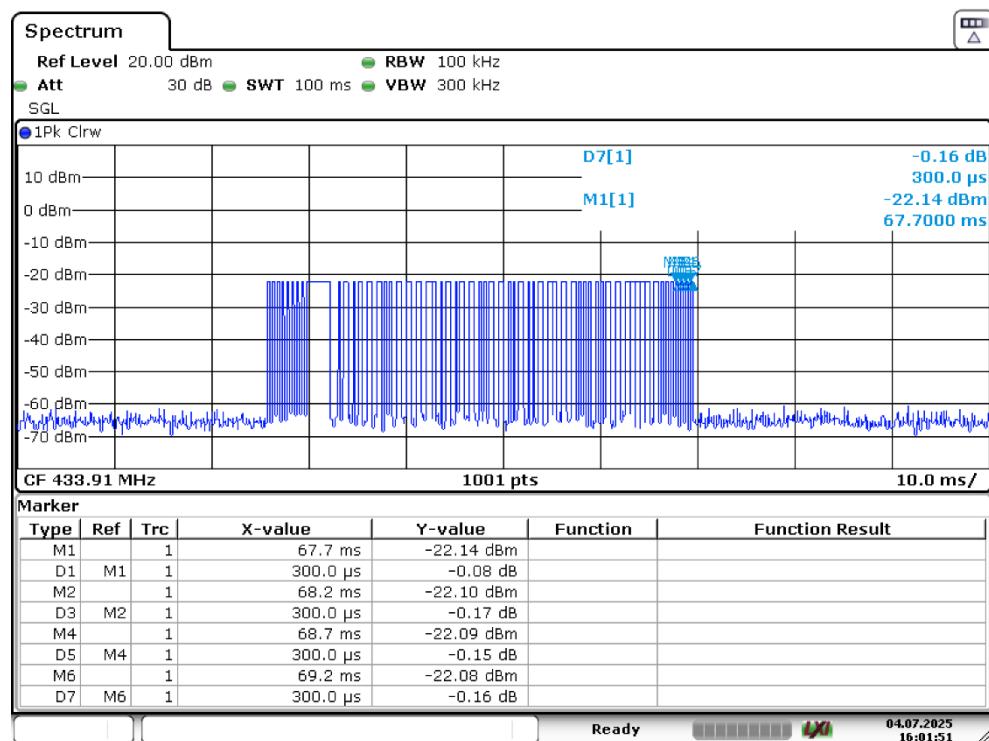

Date: 4.JUL.2025 15:33:12


Date: 4.JUL.2025 15:33:37


Date: 4.JUL.2025 15:39:18


Date: 4.JUL.2025 15:42:16


Date: 4.JUL.2025 15:49:19


Date: 4.JUL.2025 15:50:44

Date: 4.JUL.2025 15:59:16

Date: 4.JUL.2025 15:59:40

Date: 4.JUL.2025 16:01:51

1.5 The Support Units

No.	Unit	Trade Name	Model No.	Power Code	Supported by lab.
--	--	--	--	--	--

Connecting Cables :

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
--	--	--	--	--	--	--	--

1.6 Layout of Setup

Radiated emission test

EUT

Others test

EUT

1.7 Test Instruments

Conducted Test

Test Site and Equipment	Manufacturer	Model No. /Serial No.	Last Calibration Date	Calibration Due Date
Spectrum Alayzer	R&S	FSV40/101609	2024/10/21	2025/10/20
Test room	N/A	TR13	NCR	NCR

Note:

1. The calibrations are traceable to NML/ROC.
2. NCR:No Calibration Required.

Radiated Emission Test (Below 1GHz)

Test Site and Equipment	Manufacturer	Model No. /Serial No.	Last Calibration Date	Calibration Due Date
EMI Receiver	R&S	ESCS30/836858/020	2024/11/8	2025/11/7
Spectrum Alayzer	Agilent	E4407B/MY45106795	2025/7/11	2026/7/10
Antenna	SCHWARZBECK & Mini-Circuits	VULB 9168 & BW-N5W5+/VULB 9168-612 & 004	2025/4/11	2026/4/10
Loop Antenna	EMCO	6502/00020558	2024/9/9	2025/9/8
Pre-amplifier	Mini-circuit	ZKL-1R5+/004	2025/3/25	2025/9/24
RF cable	JYEBAO	C0164 + C0080-1 + C0080-2+RSU(CRC-011/11)+C0080-3	2025/3/25	2025/9/24
Test software	Audix	e3/V6.20110303a2	NCR	NCR
Semi-anechoic chamber	ETS. LINDGREN	TR11/ 906-A	2025/6/4	2026/6/3

Note:

1. The calibrations are traceable to NML/ROC.
2. NCR : No Calibration Required.
3. The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.

Radiated Emission Test (Above 1 GHz)

Test Site and Equipment	Manufacturer	Model No. /Serial No.	Last Calibration Date	Calibration Due Date
Antenna	EMCO	3117/ 0082847	2024/11/28	2025/11/27
Pre-amplifier	MITEQ	TTA1800-30-HG- N-M/ 1904295	2025/5/5	2026/5/4
Highpass Filter	Mini-Circuits	NHP-25+/ 3030020028	2024/9/20	2025/9/19
RFcable	Suhner	Sucoflex 106P/ C0091	2024/9/30	2025/9/29
RFcable	JMCA	MWX241/B/ C0103~C0104	2024/12/2	2025/12/1
MXA singal analyzer	KeySight	N9020A/ MY54420147	2025/4/18	2026/4/17
Test software	Audix	e3/ V9 20150907c	NCR	NCR
Semi-anechoic chamber	ETS. LINDGREN	TR1/ 17627-B	2024/12/2	2025/12/1

Note:

1. The calibrations are traceable to NML/ROC.
2. NCR : No Calibration Required.
3. The calibration date of the chamber TR1 listed above is the date of site VSWR measurement.

1.8 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16 series and ANSI C63.4:2014 amended as per ANSI 63.4a:2017.

Test Room	Type of Test Room	Descriptions
TR1	3m fully-anechoic chamber	For the radiated emission measurement (above 1GHz)
TR11	3m semi-anechoic chamber	For the radiated emission measurement (below 1GHz)
TR13	Test Site	For the RF conducted emission measurement.
TR5	Shielding Room	For the conducted emission measurement.
TR20	Shielding Room	

Test Laboratory Competence Information

Central Research Technology Co. has been accredited / filed / authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
Accreditation Certificate	USA	NVLAP	200575-0	ISO/IEC 17025
	USA	FCC	TW1104, TW0019	ISO/IEC 17025
	R.O.C. (Taiwan)	TAF	0905	ISO/IEC 17025
	R.O.C. (Taiwan)	BSMI	SL2-IN-E-0033, SL2-IS-E-0033, SL2-R1/R2-E-0033, SL2-A1-E-0033, SL2-L1-E-0033	ISO/IEC 17025
	Canada	ISED	TW0905	ISO/IEC 17025
Site Filing Document	Japan	VCCI	R-11527,C-11609,T-11441, G-10010,C-20010, G-10614, T-20009	Test facility list & NSA Data
Authorization Certificate	Germany	TUV	UA 50235497	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

1.9 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Test Item	Measurement Uncertainty	
Occupied Channel Bandwidth	0.6 %	
RF output power, conducted	0.1 dB	
Radiated Emission: (9kHz~30MHz)	Horizontal 3.12dB ; Vertical 3.14dB	
Radiated Emission: (30MHz~1000MHz)	Horizontal 4.60dB ; Vertical 6.12dB	
Radiated Emission: (1GHz~6GHz)	Horizontal 4.70dB ; Vertical 4.56dB	
Line Conducted Emission	NSLK-8128-RC	2.92 dB
	ENV 4200	2.92 dB
	ESH2-Z5	2.94 dB

2 Technical requirements

Result: Pass

2.1 Applied standard

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released

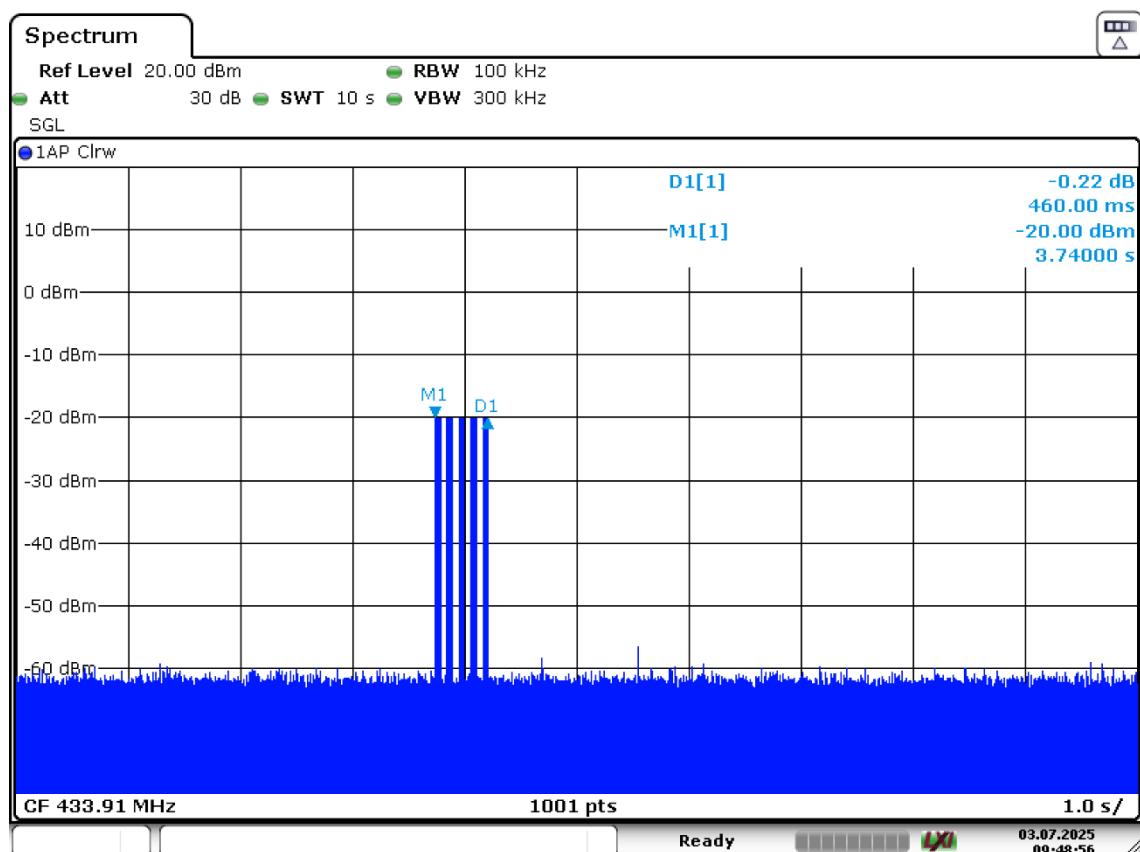
2.2 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit data at fixed frequencies
- c. Setting Spectrum Analyzer and measurement.
- d. Measure the released time and compare with the required limit.

2.3 Test configuration

2.4 Test Data

Test Mode : Normal Mode


Tester : Hunter

Ambient Temperature : 23°C

Relative Humidity : 57%

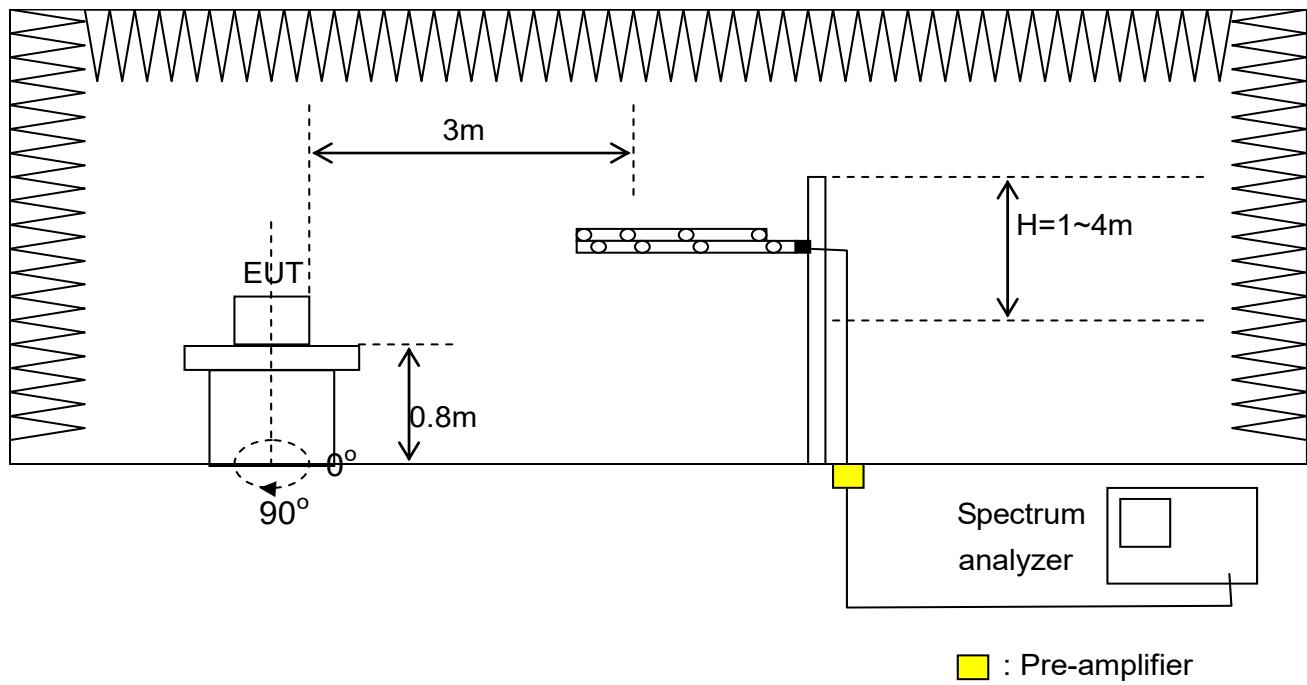
Test Date : 2025/07/03

The transmitter cease transmission within 460 ms < 5 s.

Date: 3.JUL.2025 09:48:56

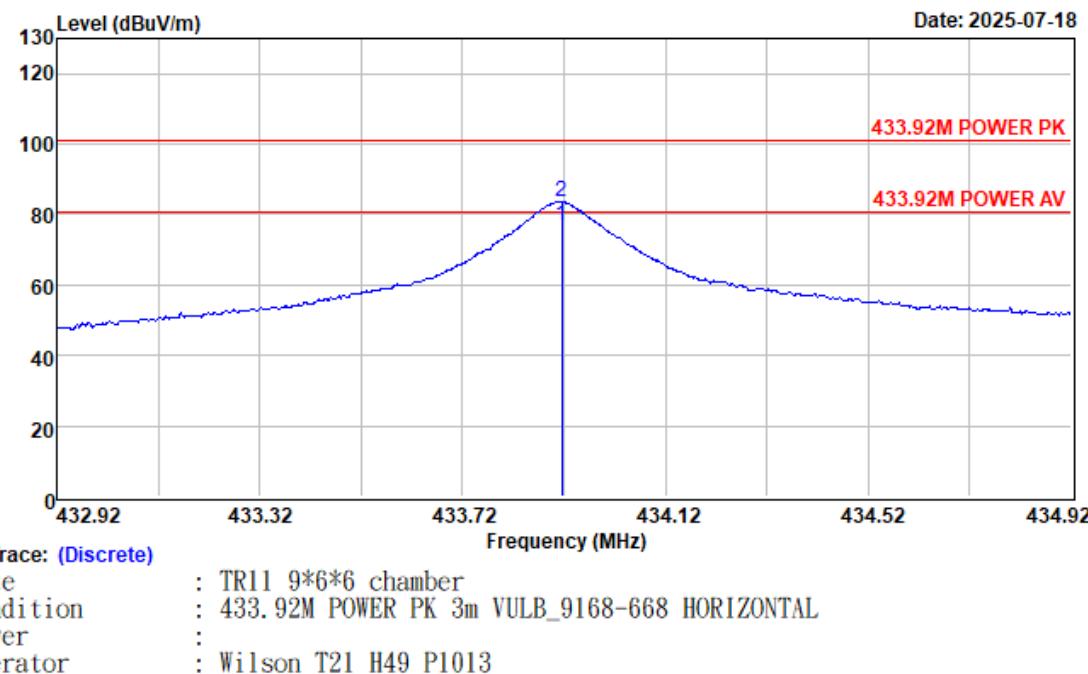
3 Field strength of the fundamental emissions

Result: Pass


3.1 Applied standard

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	*1,250 to 3,750	*125 to 375
174-260	3,750	375
260-470	3,750 to 12,500	*375 to 1,250
Above 470	12,500	1,250

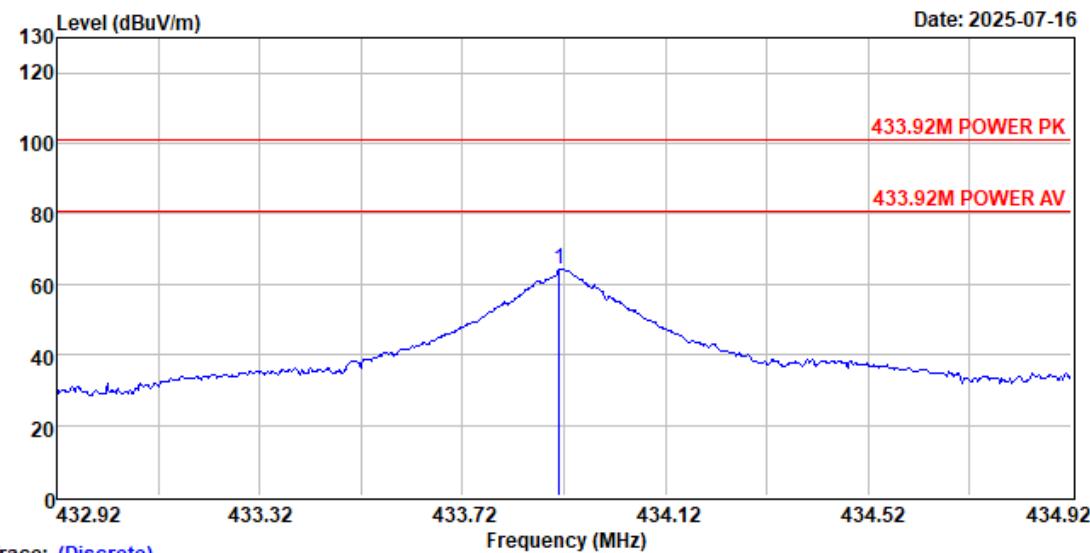
3.2 Measurement Procedure


- a. The Equipment Under Test (EUT) was set up according to the test configuration simulating typical usage as per the user's manual.
- b. Spectrum analyzer settings: Resolution bandwidth (RBW) = 120 kHz.
- c. Measurement of the field strength of fundamental emissions was performed and compared with the above required limits.
- d. Measurements were conducted using the CISPR quasi-peak detector as required by the standard.

3.3 Test configuration

3.4 Test Data

Test Mode : Continuous Transmitting
Polarization : Horizontal **Tester** : Volvo
Ambient Temperature : 22°C **Relative Humidity** : 53%



No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Pol V/H	Remark
1	433.92	88.01	-16.15	71.86	80.83	-8.97	Horizontal	Average
2	433.92	99.88	-16.15	83.73	100.83	-17.19	Horizontal	Peak

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. Average factor calculation result refer to P11.
5. Average level = Peak Level + Average Factor
6. The peak value complies with the average limit.

Test Mode : Continuous Transmitting
Polarization : Vertical **Tester** : Volvo
Ambient Temperature : 22°C **Relative Humidity** : 53%

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Pol V/H	Remark
1	433.92	80.46	-16.15	64.31	100.83	-36.52	Vertical	Peak

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. Average factor calculation result refer to P11.
5. Average level = Peak Level + Average Factor
6. The peak value complies with the average limit.

4 Radiated Emission

Result: Pass

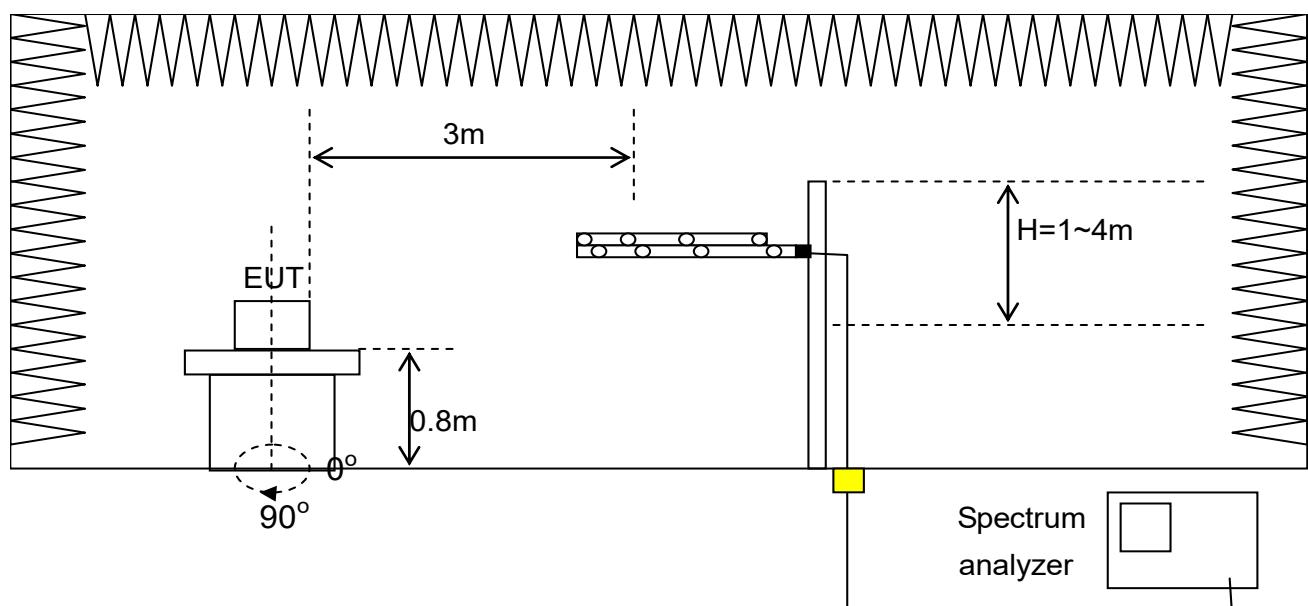
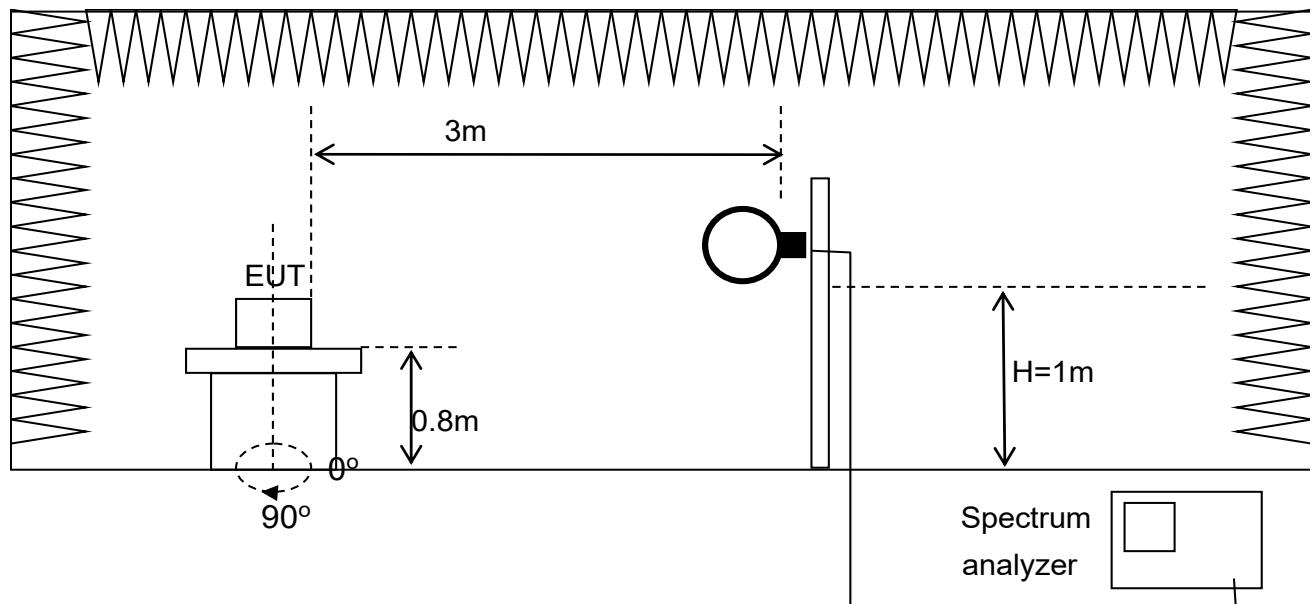
4.1 Applied standard

Radiated emissions shall comply with the field strength limits shown as below table.

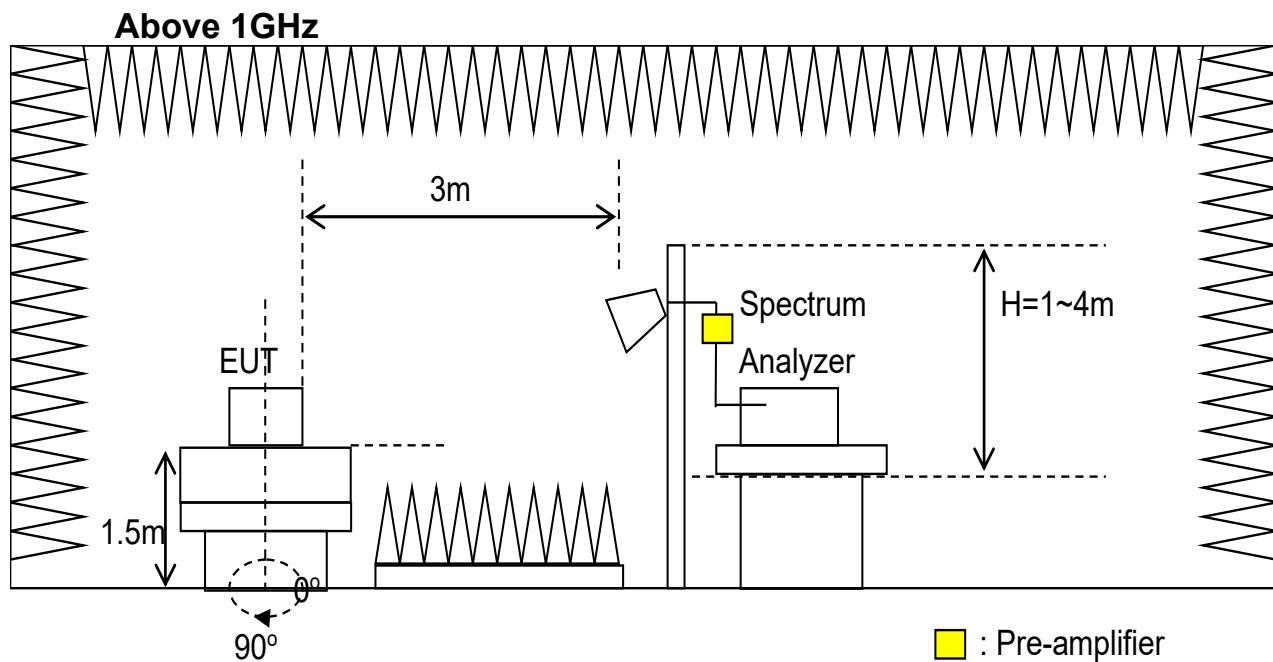
Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Magnetic field strength (μA/m)
0.009-0.490	300	2400/F(kHz)	6.37/F(kHz)
0.490-1.705	30	24000/F(kHz)	63.7/F(kHz)
1.705-30.0	3	30	0.08

Note

- 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.
2. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels using the free space impedance of 377 Ohms, The correction factor is 51.5 dB. For example, the measurement at frequency 9 kHz limit is 48.5 dBuV/m, which is equivalent to $48.5 - 51.5 = -3$ dBuA/m, which has the same limit to RSS-Gen.

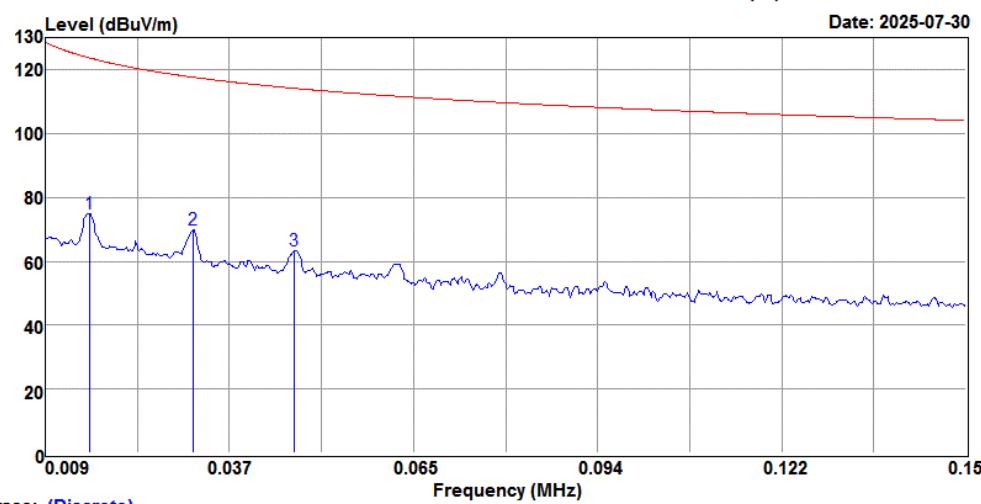


Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
above 960	3	500	54.0

4.2 Measurement Procedure


- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit and receive data at operating frequency.(if necessary)
- c. If the EUT is tabletop equipment, it should be placed on a wooden table with a height of 0.8 meters above the reference ground plane in the semi-anechoic chamber. If the EUT is floor-standing equipment, it should be placed on a non-conducted support with a height of 12 millimeters above the reference ground plane in the semi-anechoic chamber.
- d. The EUT is set 3m away from the interference receiving antenna.
- e. Rapidly sweep the signal in the test frequency range by using the spectrum through the Maximum-peak detector.
- f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least six frequencies associated with higher emission levels and record them.
- g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per CISPR 16-1 to find out the maximum level occurred. Receiver Setting is 9 kHz – 150kHz: RBW=200 Hz, 150kHz – 30 MHz: RBW=9 kHz, 30 MHz- 1 GHz: RBW=120 kHz.
- i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or Average to find out the maximum level occurred, if any. Spectrum Analyzer Setting is Peak:RBW=1 MHz, VBW=3 MHz; Average: RBW=1 MHz, VBW=3 kHz.
- j. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- k. Change the receiving antenna to another polarization to measure radiated emission by following step e. to j. again.
- l. If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.
- m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate A.V. value will be measured and presented.

4.3 Test configuration

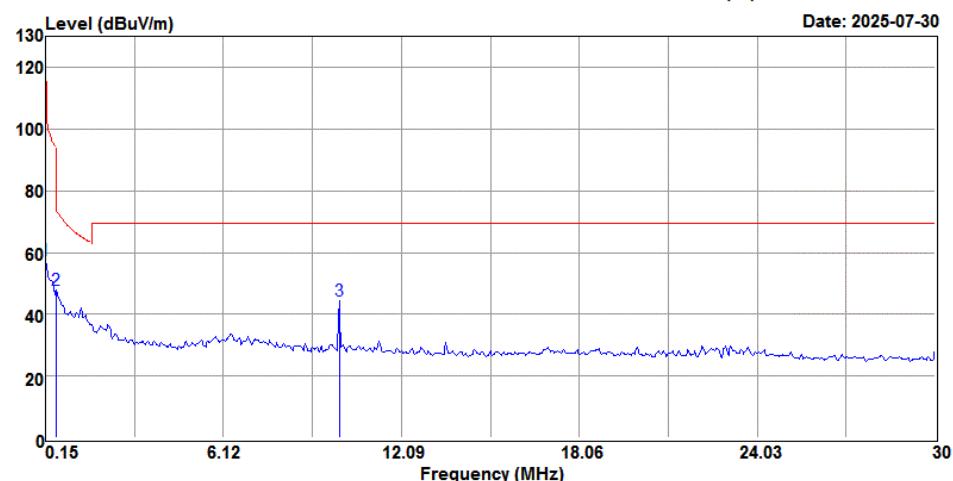
Below 1GHz


Yellow square : Pre-amplifier

4.4 Test Data

Radiated Emission Measurement below 1000MHz

Test Mode : Continuous Transmitting
Test Range : 9 kHz ~ 150 kHz
Polarization : Ground-parallel **Tester** : Wilson
Ambient Temp. : 23°C **Relative Humidity** : 50%



Trace: (Discrete)									
Site	: TR11 9*6*6 chamber								
Condition	: EMC06502LOOP								
Power	:								
Operator	: Wilson T23 H50 P1007								
	Read	Limit	Over	A/Pos	T/Pos				
Freq	Level	Level	Factor	Line	Limit			Pol/Phase	Remark
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg	
1	0.016	74.76	74.73	0.03	123.65	-48.89	---	---	Peak
2	0.032	69.76	69.73	0.03	117.62	-47.86	---	---	Peak
3	0.047	63.46	63.43	0.03	114.15	-50.69	---	---	Peak

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak

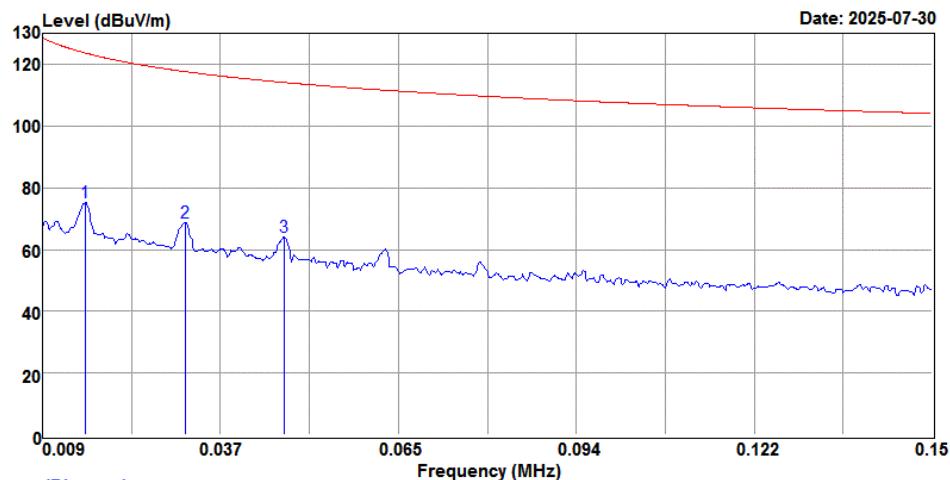
Test Mode : Continuous Transmitting
Test Range : 150 kHz ~ 30 MHz
Polarization : Ground-parallel **Tester** : Silson
Ambient Temp. : 23°C **Relative Humidity** : 50%

Trace: (Discrete)

Site : TR11 9*6*6 chamber

Condition : EMC06502LOOP

Power :

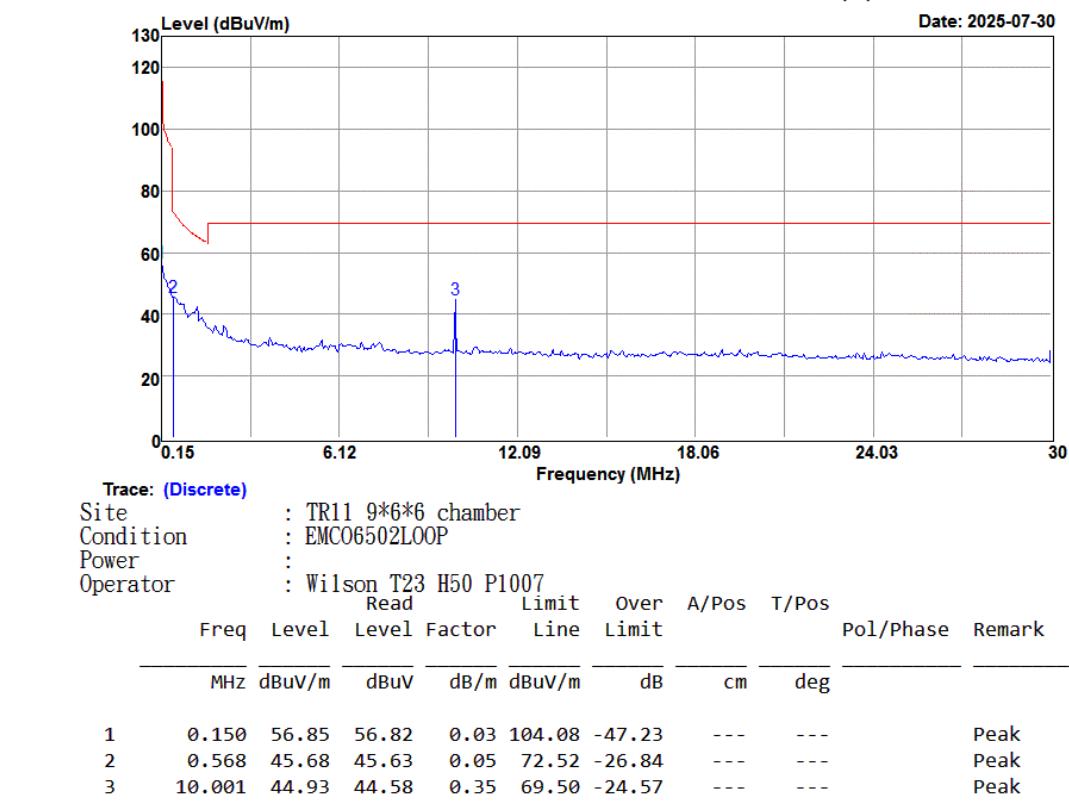

Operator : Wilson T23 H50 P1007

Freq	Level	Level	Factor	Read	Limit	Over	A/Pos	T/Pos	Pol/Phase	Remark
				dBuV	dB/m	dBuV/m	dB	cm		
1	0.150	57.47	57.44	0.03	104.08	-46.61	---	---		Peak
2	0.508	47.97	47.92	0.05	73.48	-25.51	---	---		Peak
3	10.001	44.47	44.12	0.35	69.50	-25.03	---	---		Peak

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak

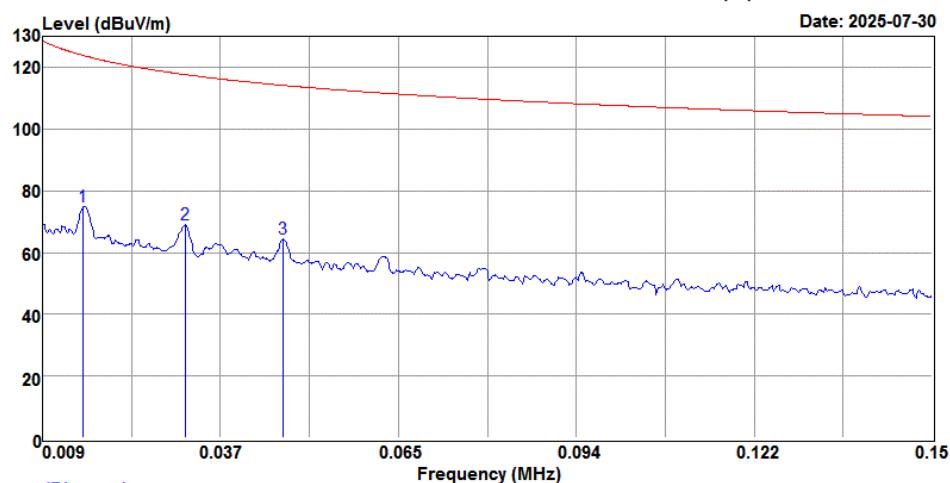
Test Mode : Continuous Transmitting
Test Range : 9 kHz ~ 150 kHz
Polarization : Parallel **Tester** : Wilson
Ambient Temp. : 23°C **Relative Humidity** : 50%



Trace: (Discrete)								
Site	: TR11 9*6*6 chamber							
Condition	: EMC06502LOOP							
Power	:							
Operator	: Wilson T23 H50 P1007							
	Read	Limit	Over	A/Pos	T/Pos			
Freq	Level	Level Factor	Line	Limit	Line	Pol/Phase	Remark	
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg
1	0.016	75.19	75.16	0.03	123.65	-48.46	---	---
2	0.032	68.85	68.82	0.03	117.62	-48.77	---	---
3	0.047	64.02	63.99	0.03	114.10	-50.08	---	---

Note:

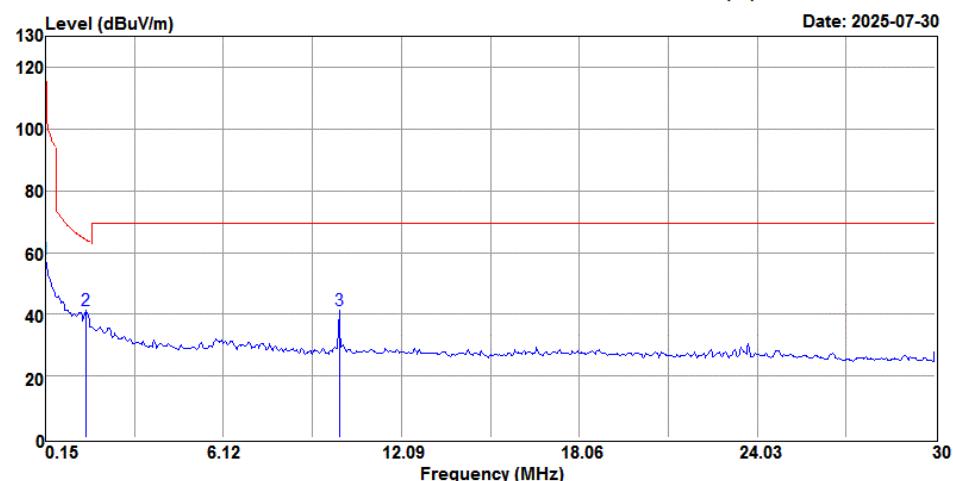
1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak


Test Mode : Continuous Transmitting
Test Range : 150 kHz ~ 30 MHz
Polarization : Parallel **Tester** : Wilson
Ambient Temp. : 23°C **Relative Humidity** : 50%

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak

Test Mode : Continuous Transmitting
Test Range : 9 kHz ~ 30 MHz
Polarization : Perpendicular **Tester** : Wilson
Ambient Temp. : 23°C **Relative Humidity** : 50%


Trace: (Discrete)
 Site : TR11 9*6*6 chamber
 Condition : EMC06502LOOP
 Power :
 Operator : Wilson T23 H50 P1007

Freq	Level	Level	Factor	Read	Limit	Over	A/Pos	T/Pos	Pol/Phase	Remark
				MHz	dBuV/m	dBuV	dB/m	dBuV/m		
1	0.015	74.71	74.68	0.03	123.89	-49.18	---	---	---	Peak
2	0.032	68.92	68.89	0.03	117.62	-48.70	---	---	---	Peak
3	0.047	64.27	64.24	0.03	114.15	-49.88	---	---	---	Peak

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak

Test Mode : Continuous Transmitting
Test Range : 9 kHz ~ 30 MHz
Polarization : Perpendicular **Tester** : Wilson
Ambient Temp. : 23°C **Relative Humidity** : 50%

Trace: (Discrete)

Site : TR11 9*6*6 chamber

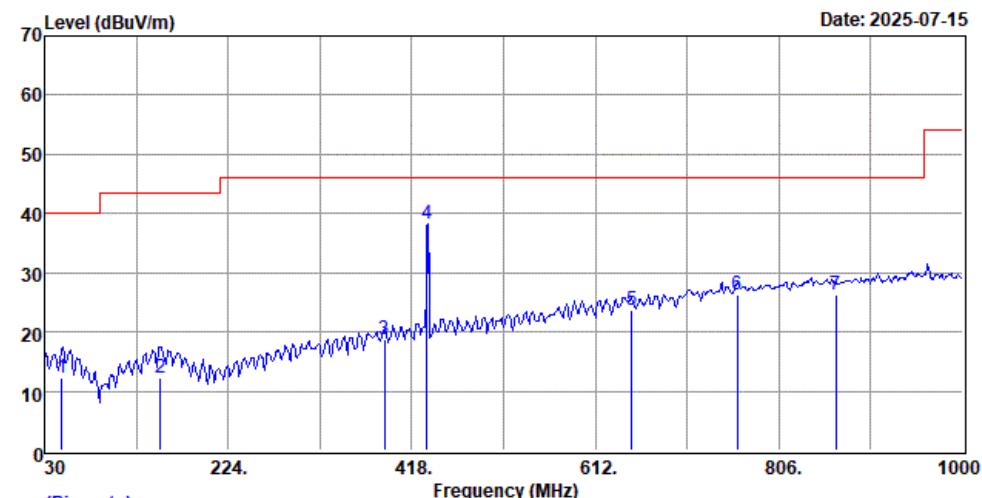
Condition : EMC06502LOOP

Power :

Operator : Wilson T23 H50 P1007

Read	Limit	Over	A/Pos	T/Pos
Freq	Level	Factor	Line	Limit

Pol/Phase

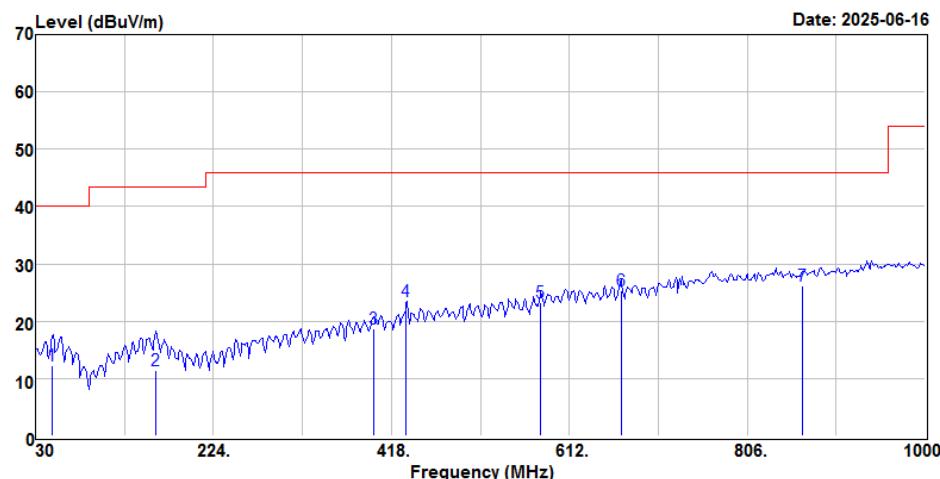

Remark

	Freq	Level	Factor	Line	Limit			
	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg
1	0.150	57.92	57.89	0.03	104.08	-46.16	---	---
2	1.493	41.26	41.18	0.08	64.15	-22.89	---	---
3	10.001	41.47	41.12	0.35	69.50	-28.03	---	---

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak

Test Mode : Continuous Transmitting
Test Range : 30 MHz ~ 1 GHz
Polarization : Horizontal **Tester** : Volvo
Ambient Temp. : 22°C **Relative Humidity** : 53%

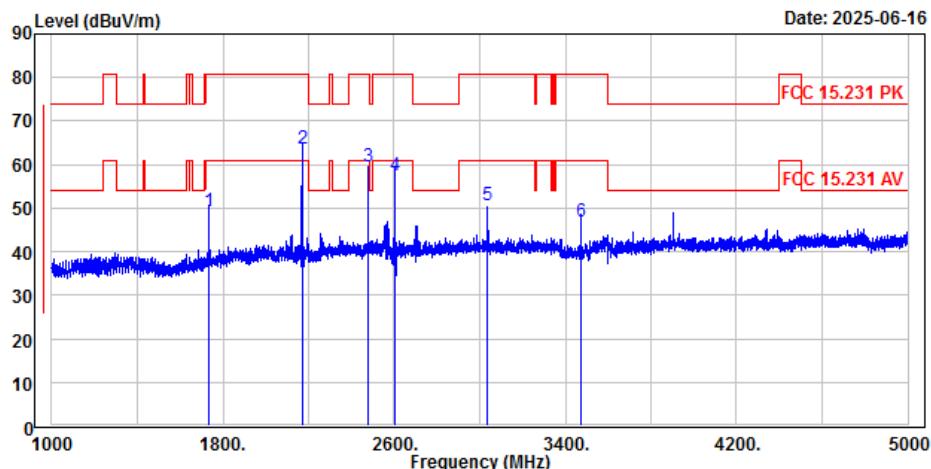

Site : TR11 9*6*6 chamber
 Condition : 433M FCC TX PK 3m VULB_9168-612 HORIZONTAL
 Power :
 Operator : Volvo T22 H53 P1013

Freq	Level	Read	Limit	Over	A/Pos	T/Pos	Pol/Phase	Remark
		Level	Factor	Line	Limit			
MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg	
1	48.250	12.11	32.70	-20.59	40.00	-27.89	179	132 HORIZONTAL QP
2	152.500	12.14	32.29	-20.15	43.50	-31.36	188	236 HORIZONTAL QP
3	388.900	18.71	35.85	-17.14	46.00	-27.29	117	54 HORIZONTAL QP
4	433.920	38.32	54.19	-15.87	46.00	-7.68	---	--- HORIZONTAL Peak
5	650.800	23.76	35.16	-11.40	46.00	-22.24	127	315 HORIZONTAL QP
6	762.350	26.29	35.55	-9.26	46.00	-19.71	101	156 HORIZONTAL QP
7	866.140	26.27	34.69	-8.42	46.00	-19.73	124	44 HORIZONTAL QP

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak

Test Mode : Continuous Transmitting
Test Range : 30 MHz ~ 1 GHz
Polarization : Vertical **Tester** : Volvo
Ambient Temp. : 22°C **Relative Humidity** : 53%


Trace: (Discrete)									
Site	: TR11 9*6*6 chamber								
Condition	: FCC PART15C 3m VULB_9168-612 VERTICAL								
Power	:								
Operator	: Volvo T22 H53 P1013								
	Read	Level	Factor	Limit	Over	A/Pos	T/Pos	Pol/Phase	Remark
Freq	MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg	
1	47.950	12.19	32.87	-20.68	40.00	-27.81	100	209	VERTICAL QP
2	160.525	11.44	31.65	-20.21	43.50	-32.06	100	253	VERTICAL QP
3	398.600	18.72	35.47	-16.75	46.00	-27.28	100	201	VERTICAL QP
4	433.920	23.38	39.18	-15.80	46.00	-22.62	---	---	VERTICAL Peak
5	580.960	23.24	36.08	-12.84	46.00	-22.76	100	117	VERTICAL QP
6	668.260	25.33	36.52	-11.19	46.00	-20.67	100	32	VERTICAL QP
7	866.140	26.17	34.47	-8.30	46.00	-19.83	100	124	VERTICAL QP

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. QK. is abbreviation of Quasi-Peak

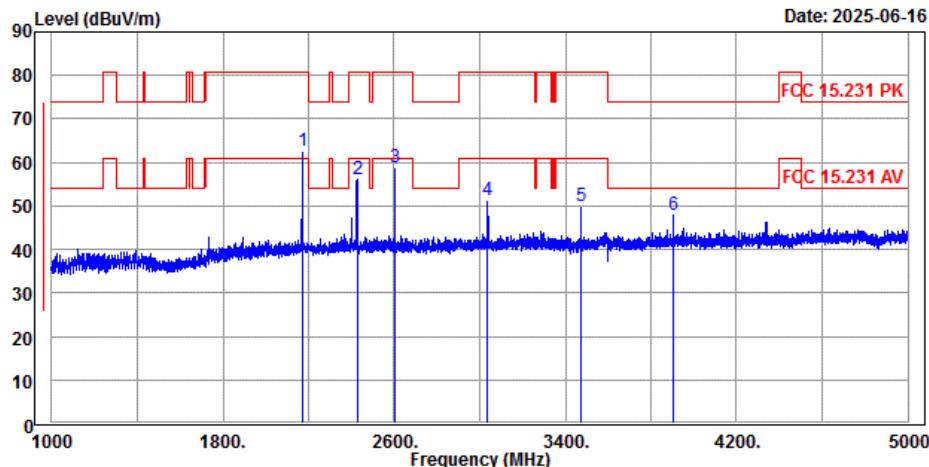
Radiated Emission Measurement above 1000MHz

Test Mode : Continuous Transmitting
Test Range : 1 GHz ~ 5 GHz
Polarization : Horizontal **Tester** : Carl
Ambient Temp. : 23°C **Relative Humidity** : 54%

Condition : FCC 15.231 PK 3m EMCO_3117_82847 HORIZONTAL

POWER :

OPERATOR : carl, T:23, H:54, P:1007


Freq	Level	Read	Limit	Over	APos	TPos	Pol/Phase	Remark
		Level	Factor	Line				
MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg	
1 1735.640	49.12	66.77	-17.65	80.80	-31.68	203	185	HORIZONTAL Peak
2 2169.550	63.59	78.90	-15.31	80.80	-17.21	172	360	HORIZONTAL Peak
3 2480.000	59.55	74.39	-14.84	80.80	-21.25	172	360	HORIZONTAL
4 2603.460	57.46	72.21	-14.75	80.80	-23.34	172	360	HORIZONTAL Peak
5 3037.370	50.66	64.83	-14.17	80.80	-30.14	230	169	HORIZONTAL Peak
6 3471.280	46.99	61.54	-14.55	80.80	-33.81	314	81	HORIZONTAL Peak

Frequency (MHz)	Peak Level (dBuV/m)	Average Factor (dB)	Average Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2169.550	63.59	-11.87	51.72	60.80	-9.08

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. Average limit = Peak limit- 20. If the peak level meets average limit, average value doesn't need be recorded.
5. Average factor calculation result refer to P11.
6. Average level = Peak Level + Average Factor

Test Mode : Continuous Transmitting
Test Range : 1 GHz ~ 5 GHz
Polarization : Vertical **Tester** : Carl
Ambient Temp. : 23°C **Relative Humidity** : 54%

Condition : FCC 15.231 PK 3m EMCO_3117_82847 VERTICAL

POWER :

OPERATOR : carl,T:23,H:54,P:1007

Freq	LeveL	Level	Factor	Read	Limit	Over	APos	TPos	Pol/Phase	Remark
				Line	Limit	Over	Line			
MHz	dBuV/m	dBuV	dB/m	dBuV/m	dB	cm	deg			
1 2169.550	62.50	77.81	-15.31	80.80	-18.30	339	114	VERTICAL	Peak	
2 2426.830	56.17	70.84	-14.67	80.80	-24.63	152	216	VERTICAL	Peak	
3 2603.460	58.74	73.49	-14.75	80.80	-22.06	182	258	VERTICAL	Peak	
4 3037.370	51.37	65.54	-14.17	80.80	-29.43	169	248	VERTICAL	Peak	
5 3471.280	50.09	64.64	-14.55	80.80	-30.71	235	56	VERTICAL	Peak	
6 3905.190	47.88	61.58	-13.70	74.00	-26.12	193	0	VERTICAL	Peak	

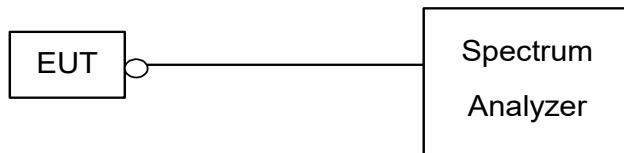
Frequency (MHz)	Peak Level (dBuV/m)	Average Factor (dB)	Average Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2169.550	62.50	-11.87	50.63	60.80	-10.17

Note:

1. Level (dBuV/m) = Read level + Factor.
2. Factor (dB/m) = Cable Loss + Antenna Factor – Gain of Preamplifier.
3. Over Limit (dB) = Level – Limit line
4. Average limit = Peak limit- 20.If the peak level meets average limit, average value doesn't need be recorded.
5. Average factor calculation result refer to P11.
6. Average level =Peak Level + Average Factor

5 Bandwidth of momentary signals

Result: Pass


5.1 Applied Standard

The occupied bandwidth of momentarily operated devices shall be less than or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the occupied bandwidth shall be less than or equal to 0.5% of the centre frequency.

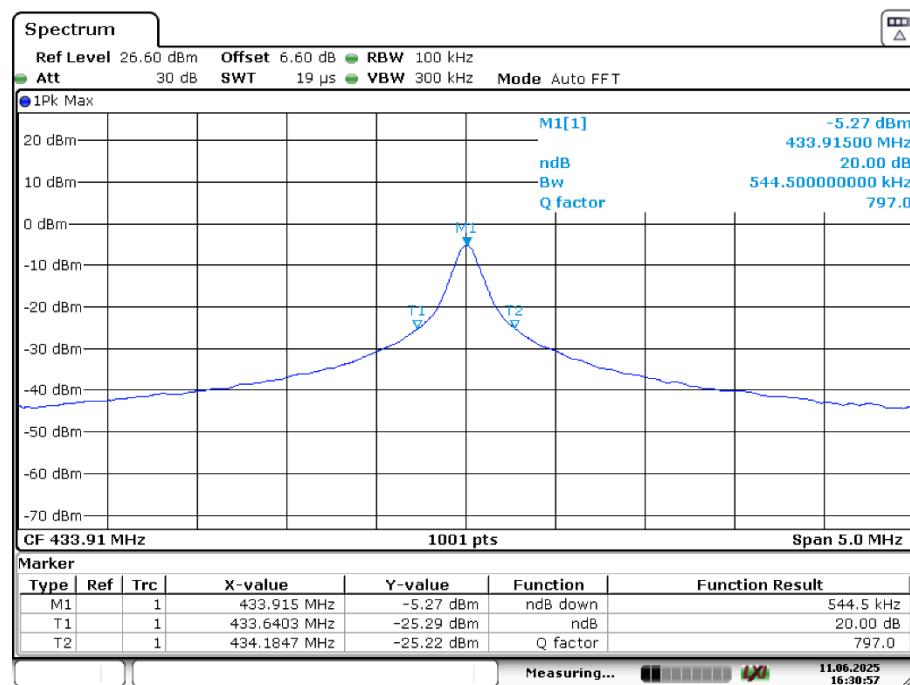
5.2 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual
- b. Setting Spectrum Analyzer and measurement.
- c. Record the 20 dB bandwidth and compare with the required limit.

5.3 Test Configuration

5.4 Test Data

Test Model : Continuous Transmitting


Tester : Hunter

Ambient Temperature : 24°C

Relative Humidity : 58%

Test Date : 2025/06/11

Frequency (MHz)	20 dB bandwidth (MHz)	Limit (MHz)
433.92	0.5445	1.08

6 Conducted Emission Measurement

Result: NA

6.1 Limits for Emission Measurement

AC line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 - 5	56	46
5 - 30	60	50

* Decreases with the logarithm of the frequency.

6.2 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a non-conducted table with a height of 0.8 meters above the reference ground plane and 0.4 meters from the conducting wall of the shielded room. Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 12 millimeters above the reference ground plane.
- c. Connect the EUT's power source to the appropriate power mains through the LISN.
- d. All the other peripherals are connected to the 2nd LISN, if any.
- e. The LISN was placed 0.8 meters from the EUT and at least 0.8 meters from other units and other metal planes.
- f. Measure the conducted emissions on each power line (Neutral Line and Line 1 – Hot side) of the EUT's power source by using the test receiver connected to the coupling RF output port of LISN.
- g. Rapidly scan the signal from 150kHz to 30MHz by using the receiver through the Maximum-Peak detector to determine those frequencies associated with higher emission levels for each measured line. Receiver setting is IF bandwidth=9 kHz.

- h. Then measure the maximum level of conducted disturbance for each frequency found from step g. by using the receiver through the Quasi-Peak and Average detectors per CISPR 16-1.
- i. Record the level for each frequency and compare with the required limit.

6.3 Test Configurations

7 Antenna Requirement

Result: Pass

7.1 Applied Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Atenna type

This is permanently attached antenna.

~ End of Report ~