

RECORD OF CHANGES

Dates of issue for original and each revision of this document are:

Revision - June 2000 Initial Production Release

LIST OF EFFECTIVE PAGES

Total number of pages in this publication is 63 (excluding schematics, assembly and mechanical diagrams in appendices) consisting of the following:

i - vi Table of Contents/List of Figures/List of Tables
1 - 47 Document Main Text
A-1 - H-1 Document Appendices

NOTE: On partial document updates, insert latest changed pages and destroy superseded pages.

TABLE OF CONTENTS

SECTION 1	INTRODUCTION	1
1.1	Scope	1
1.2	Product Description	1
1.3	Technical Specifications	2
1.4	Reference Documentation	4
SECTION 2	RECEIVING, INSPECTION AND INSTALLATION	5
2.1	Unloading and Unpacking	5
2.2	Receiving Documentation	5
2.3	Installation and Connection Requirements	5
2.4	Connector Descriptions and Signal Definitions	5
2.4.1	Primary Power	6
2.4.2	Antenna	6
2.4.3	Audio/Control	7
SECTION 3	OPERATION	10
3.1	Minimum System Requirements	10
3.2	Software Installation	10
3.3	Conventions and File Structures	10
3.4	Getting Started	11
3.4.1	Radio Interconnect	11
3.4.2	Power-on Sequence	11
3.4.3	Reading the Radio Configuration	12
3.5	Altering the Radio Configuration	13
3.5.1	Changing Individual Channel Settings	13
3.5.2	Setting/Changing Model Defaults	13
3.6	Radio Operation	14
SECTION 4	MAINTENANCE	15
4.1	Maintenance Concept	15
4.2	Preventive Maintenance Requirements	15
4.2.1	Inspection	15
4.2.2	Cleaning	16

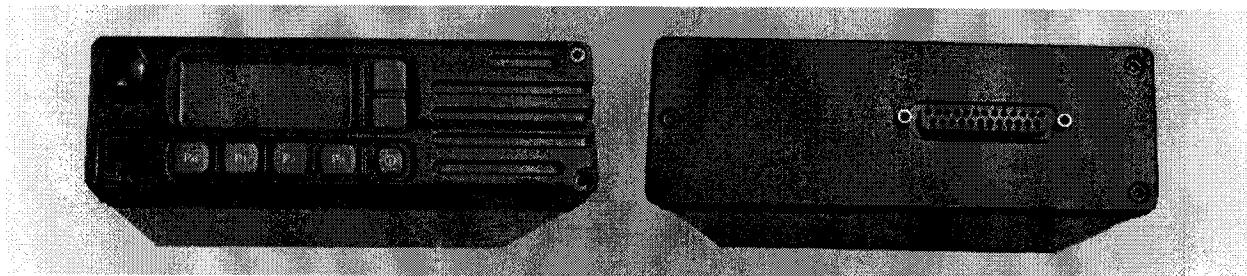
LIST OF FIGURES

FIGURE 1-1	Product Comparison	1
FIGURE 1-2	System Overview	2
FIGURE 3-1	Radio to PC Interconnect Configuration	11
FIGURE 3-2	Control Software Initial Screen	12

LIST OF TABLES

TABLE 2-1 Primary Power Connector Characteristics.....	6
TABLE 2-2 Antenna Port Connector Characteristics.....	6
TABLE 2-3 Audio/Control Connector Characteristics.....	7
TABLE 2-4 Audio/Control Connector Pin Assignments.....	8
TABLE 2-5 Channel Selection Control Settings.....	9

SECTION 1 INTRODUCTION


The TACTICAL ELECTRONICS UHF/VHF radio product represents a state-of-the-art communications line providing half-duplex audio to radio frequency (RF) transmit and receive functions. Consisting of six (6) available models, the series provides FM transceiver functions in the 140 to 162 MHz and 400 to 512 MHz frequency bands. The design has been tailored towards narrowband data telemetry applications requiring fast transmit/receive response times with compact size and high reliability.

1.1 Scope

This manual describes the TACTICAL ELECTRONICS CORPORATION Land Mobile Radios. The manual includes specifications, design description, installation, and operation instructions along with routine maintenance requirements.

1.2 Product Description

The radio is a modified version of a standard UHF/VHF radio product produced by ICOM. The VHF versions of the radio incorporate the ICOM IC-F1020 transceiver while the UHF version incorporate the IC-F2020. In order to make the product more applicable for data communications functions, the product line incorporates a custom front panel as depicted in the following picture.

IC-F1020/F2020

TACTICAL RADIO

FIGURE 1-1 PRODUCT COMPARISON

The custom front panel replaces the normal operator oriented local status/control interface and audio interface connector with a single DB-25 connector targeted for computer control. The DB-25 provides both the audio interface and a strapping capability for frequency select. This feature is incorporated via a custom printed circuit board (PCB) located within the STR-1600 front panel known as an External Interface Card (EIC). The following figure depicts this implementation.

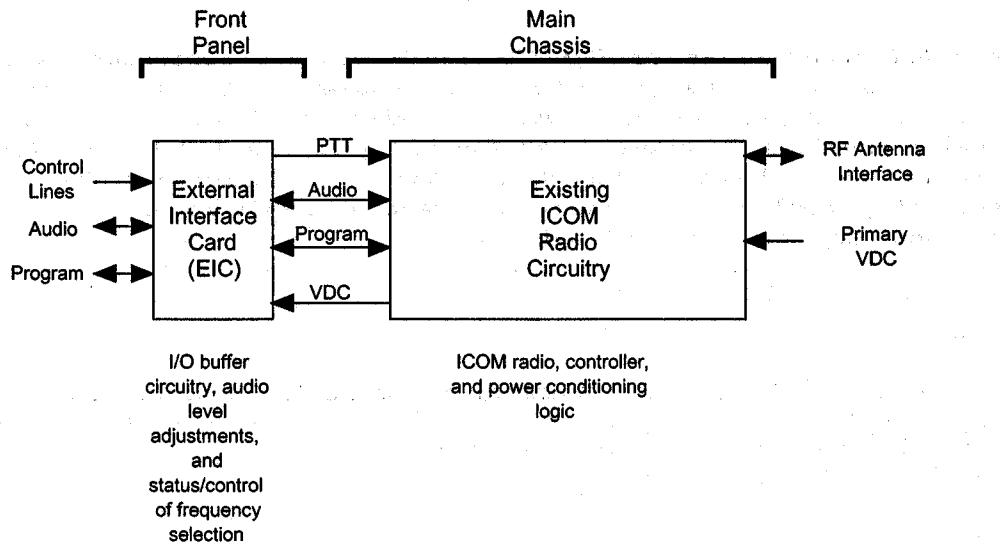


FIGURE 1-2 SYSTEM OVERVIEW

1.3 Technical Specifications

The technical capabilities of the TACTICAL radios are summarized in the following table.

Item	Specification
FREQUENCY RANGES	STR-1611: 136-155 MHz STR-1612: 146-174 MHz STR-1621: 400-430 MHz STR-1622: 450-470 MHz STR-1623: 470-490 MHz STR-1624: 490-512 MHz
Number of Channels	8 preset channels
Frequency Stability	$\pm 0.0005\%$ of assigned center frequency from -30°C to $+60^{\circ}\text{C}$ ($+25^{\circ}\text{C}$ reference)
FCC Compliance	FCC type certified (FCC 47 CFR 90).
Operating Power	$13.6 \text{ VDC} \pm 15\%$ (current @ 13.6 V: transmit 12.5 A, receive 0.7 A)
Operator Adjustments	None
Reliability	25,000 hr MTBF

Item	Specification
Antenna Connector	UHF female located on rear panel
Audio Interface and Control Connector	DB-25 socket on front panel including 3 channel select lines, audio in/out, push-to-talk, and programming interface.
Power Connector	AMP High Power DC
Channel Spacing	Selectable to either 25 KHz or 12.5 KHz channel spacing.
RF Output Power	Selectable between 5 and 30 watts ($\pm 2\%$) into a VSWR of 2:1 or better.
Output Impedance	50 ohms, nominal
Output Protection	Operating into a 10:1 VSWR of any phase angle will not damage the transceiver.
Modulation	FM with a rated deviation of ± 5 KHz for 25 KHz channel spacing and ± 2.5 KHz for 12.5 KHz channel spacing.
Modulation Sensitivity	An 80 mvolt RMS audio input signal produces 60% of rated deviation.
Turn-On Time	Within 20 msec (UHF models) or 40 msec (VHF model) of application of the keying signal, the transceiver reaches 90% of programmed output power and is capable of transmitting an on frequency signal with a SINAD of 30 dB or greater.
Spurious and Harmonic Output	-70 dB below rated power
Audio Input Impedance	10 K Ohm $\pm 20\%$
Transmit Audio Frequency Response	Flat response over the 300-3000 Hz range. No pre-emphasis.
Minimum Duty Cycle	Capable of 30 seconds transmit keying or 25% continuous duty cycle.
Output S/N Ratio	30 dB minimum fully modulated
Spurious Leakage	-57 dBm maximum
Selectivity	70 dB minimum for 25 KHz channel spacing and 60 dB min. for 12.5 KHz spacing
Intermodulation	65 dB minimum
Dynamic Range	With input signals ranging from -100 dBm to 0 dBm, the SINAD at the receiver is 23 dB minimum when receiving a signal modulated with a 1 KHz tone at 60% rated deviation
Sensitivity	0.5 uV (12 dB SINAD) minimum
Spurious and Image Rejection	70 dB minimum
Transmit to Receive Recovery Time	30 msec maximum measured from removal of keying signal to the transmitter

Item	Specification
Audio Output	A 1 KHz signal at 60% rated deviation produces a 1 V p-p audio output into a 600 ohm resistive load.
Receive Frequency Response	Flat response over the 300-3000 Hz range. No deemphasis.
Receiver Overload	A +28 dBm signal continuously applied to the input will not cause any permanent damage.
Dimensions	Approximately 2" high x 6" wide x 7" deep
Weight	3.3 pounds
Vibration	2 g rms 5 Hz-300 Hz sinusoidal, 3 axes, continuous
Shock	10 g half sine, 15 msec; 3 axes
Temperature	-30°C to +60°C (operating and storage)
Humidity	Any obtainable humidity value versus temperature up 100% 'non-condensing'
Altitude	Sea level to 10,000 feet operating and 40,00 feet non-operating

1.4 Reference Documentation

The following documents, or the latest revision of these documents, serve as an addendum to this document. Users are referred to these documents for maintenance and design information pertaining to the standard ICOM radio circuitry.

Service Manual - UHF Land Mobile Radio - IC-F2020
 (Copyright 1995 by Icom Inc.)

Service Manual - VHF Land Mobile Radio - IC-F1020
 (Copyright 1995 by Icom Inc.)

SECTION 2 RECEIVING, INSPECTION AND INSTALLATION

2.1 Unloading and Unpacking

NOTE

If shipping carton is damaged upon receipt, request carrier's agent be present during unpacking and inspection of the system.

Upon receipt of the equipment, inspect the shipping container for damage. If the container or the cushioning material is found damaged, they should be kept until the contents of the shipment have been verified for completeness and the equipment has been inspected for mechanical and electrical defects. If the contents are incomplete or if there is a mechanical or electrical defect, please notify:

TACTICAL ELECTRONICS CORPORATION
5589 CAJEPUT COURT
MELBOURNE VILLAGE, FL 32901
(321)253-0845 (phone)
(321)951-4630 (fax)

2.2 Receiving Documentation

Each radio system is shipped with a packing slip. The packing slip should be carefully checked against the contents of the shipping container.

2.3 Installation and Connection Requirements

The radio's three (3) connectors. These are:

- 1) Primary Power
- 2) Antenna
- 3) Audio/control

After carefully reviewing the connector and signal descriptions below, the user should establish all connections, making sure that the primary power input is turned off at the source. Once all interconnections are in place, primary power may be applied.

2.4 Connector Descriptions and Signal Definitions

This section describes the types of connectors used on the STR-1600 and provides the definition of the signals associated with each.

2.4.1 Primary Power

The Primary Power connector is located on the rear of the radio and is attached to the unit itself via approximately 6 inches of 12 gage wire. Characteristics of this connector are as indicated in the following table.

TABLE 2-1 PRIMARY POWER CONNECTOR CHARACTERISTICS

PARAMETER	VALUES
Connector Part Number	Cap Housing Kit (AMP 770024-1)
Pin Part Number	Pins (AMP 193841-1)
Mating (i.e., User Supplied) Connector Part Number	Plug Housing Kit (AMP 770017-1)
Mating (i.e., User Supplied) Pin Part Number	Socket (AMP 193642-1)
Pin Assignments	Pin 1 - +13.6 VDC Pin 2 - Ground
Input Voltage Range	13.6 VDC +/- 15%
Current Drain	11 Amps maximum
Connector to Radio Color Coding	Pin 1 - Red Pin 2 - Black

2.4.2 Antenna

The Antenna connector is located on the rear of the radio and is mounted directly to the main housing of the radio. Characteristics of this connector are as indicated in the following table.

TABLE 2-2 ANTENNA PORT CONNECTOR CHARACTERISTICS

PARAMETER	VALUES
Connector Type	UHF Female
Mating (i.e., User Supplied) Connector Type	UHF Male
Antenna Impedance	50 Ohms
Maximum Output Power	35 Watts
Output Frequency Range	STR-1611: 136-155 MHz STR-1612: 146-174 MHz STR-1621: 400-430 MHz STR-1622: 450-470 MHz STR-1623: 470-490 MHz STR-1624: 490-512 MHz

2.4.3 Audio/Control

The Audio/Control connector is located on the front of the radio and is mounted directly to the front panel mold of the radio. Characteristics of this connector are as indicated in the following table.

TABLE 2-3 AUDIO/CONTROL CONNECTOR CHARACTERISTICS

PARAMETER	VALUES
Connector Part Number	DB-25 Female
Mating (i.e., User Supplied) Connector Part Number	DB-25 Male

The following table defines the signal contents of all assigned pins on this connector.

TABLE 2-4 AUDIO/CONTROL CONNECTOR PIN ASSIGNMENTS

PIN	SIGNAL	DESCRIPTION AND CHARACTERISTICS
2	Ground	Ground for the external interface side of the EIC card as well as all externally driven signals or power inputs via the Audio/Control Connector.
4	Receive Audio	Recovered audio signal output from the radio. Approximately 1 V p-p into a 600 ohm resistive load for 300 to 3000 Hz outputs.
7	Transmit Enable (i.e., Push-to-Talk)	Places the radio into transmit mode when low (i.e., grounded) or receive mode when high or floating. Input will support 20 mA current or 28 volt stand-off.
9	Radio +5 VDC	VCC from the main radio unit. THIS OUTPUT IS PROVIDED AS A MONITOR POINT ONLY!!! May be utilized to validate that the STR-1600 is in a power on state.
10	Serial Programming Interface	Full-duplex serial line utilized to program frequencies, bandwidths and output power selections into the STR-1600. This interface should only be utilized with the SRI provided programming interface cabling/software.
11	Ground	See "Ground" description above.
12	Power On/Off Control	Toggle control for radio on/off control. Reference the notes that follow this table for further description.
13	Radio Ground	Ground for the internal interface side of the EIC card as well as all internal radio logic of the STR-1600. Note - do not connect this signal to an external ground. Signal is provided only to be used in conjunction with Power On/Off Control as described below.
14	Channel Select 2	Control signal which when combined with "Channel Select 0" and "Channel Select 1" forms a 3-bit binary channel selection control. Input will support 20 mA current or 28 volt stand-off. See table that follows for channel selection definitions.
17	Transmit Audio	Audio signal input to the radio when transmit operation is active. Signal exhibits a 10 K Ohm input impedance. An 80 mvolt RMS input produces approximately 60% rated deviation for input frequencies from 300 to 3000 Hz.
18	Ground	See "Ground" description above.
19	Channel Select 0	See "Channel Select 2" description above.
20	+13.6 VDC	+13.6 VDC power input to the EIC. This power is utilized for external interface logic only and is wholly isolated from the primary input power to the STR-1600.
21	Ground	See "Ground" description above.
22	+13.6 VDC	See "+13.6 VDC" description above.
23	Channel Select 1	See "Channel Select 2" description above.

Pins not listed within this table are all defined as no connects.

When the "Power On/Off Control" signal is momentarily connected to "Radio Ground" and then released, it causes the power on/off state of the **radio** to toggle. This can be utilized in conjunction with the "Radio +5 VDC" signal to insure the **radio** is powered on for operation. Note that **radio** units will maintain the power on/off state across removal of the primary power to the radio. As such, users need not utilize this control signal but may simply always leave the **radio** in a powered on state. When delivered from the factory, **radio** units are left in a power on state.

For the channel select lines described above, the following table defines the control functions of these inputs.

TABLE 2-5 CHANNEL SELECTION CONTROL SETTINGS

FRONT PANEL 25 PIN D SIGNAL STATES			DEFINITION
Channel Select 2	Channel Select 1	Channel Select 0	
High	High	High	Select Chan 1
High	High	Low	Select Chan 2
High	Low	High	Select Chan 3
High	Low	Low	Select Chan 4
Low	High	High	Select Chan 5
Low	High	Low	Select Chan 6
Low	Low	High	Select Chan 7
Low	Low	Low	Select Chan 8

SECTION 3 OPERATION

Operation of the radio is accomplished by utilizing a special software program to configure the radio for the proper configuration and then connecting the system into the target platform for audio data transmission and reception.

The following sections describe the radio operations from the perspective of configuring the unit for the proper radio channel characteristics prior to final system installation.

3.1 Minimum System Requirements

This package requires a PC executing under the Windows operating system. The version of Windows may be Windows 95, Windows 98, or Windows 2000. At a minimum, the system should include:

- 16 Mb RAM (32 Mb recommended)
- Color monitor (minimum of 600x800 pixel resolution)
- 2 Mb available hard-drive disk space
- Serial port (COM1: through COM4:)
- 3 1/2 " floppy disk drive

3.2 Software Installation

The control software for the radio is provided on a set of 3 1/2" floppy disks. The first disk of the set will contain the program "setup.exe". Executing this program activates a standard windows software installation process with full instructions as to required user actions. The installation will create the program "str1600.exe" in the specified install directory.

3.3 Conventions and File Structures

The radio control software supports standard Windows type operation, including menu based selection processes. Throughout the remaining portions of this document, a reference such as "select **aaaa** : **bbbb**" indicates a Windows type menu selection process where **aaaa** is the text name which appears at the top of the active program screen and **bbbb** is the submenu item displayed once the **aaaa** menu is selected. Further submenu items are preceded by the same : and then the text name of the lower submenu item.

In addition to the STR1600.exe program, the install directory will also contain the file "prefs.cfg" after the first execution of the program. This file is utilized to record user settings (e.g., communications port selection) such that these configurable items can be carried forward across executions of the program.

The radio control program utilizes Labview, a software package from National Instruments. The install directory also contains other support files associated with the run-time version capability required of Labview for the control program.

3.4 Getting Started

3.4.1 Radio Interconnect

Before taking any actions from the control program with TACTICAL radio, the radio must be connected to a primary power source and to the PC via a special programming interface cable and adapter. The following figure depicts the required interconnects.

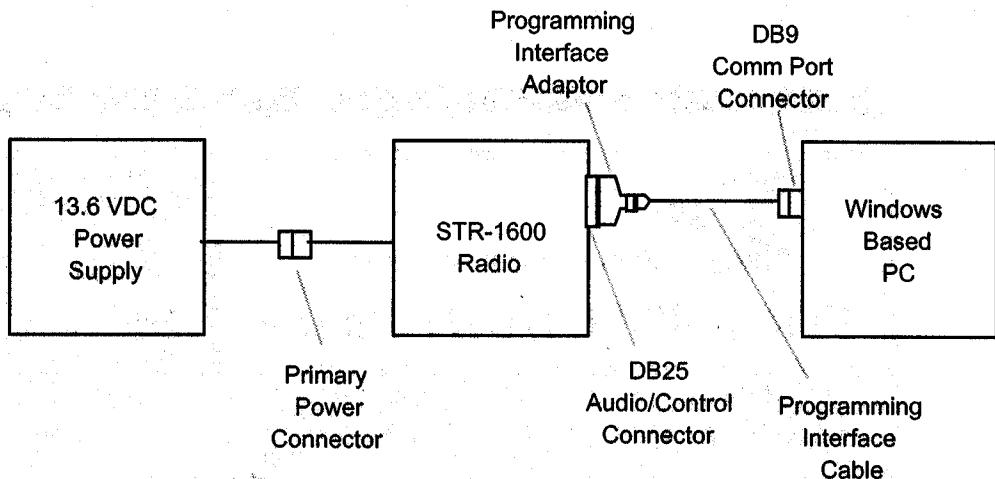


FIGURE 3-1 RADIO TO PC INTERCONNECT CONFIGURATION

The 13.6 VDC power supply need only support the radio operation in a quiescent mode (i.e., < 0.7 A). The power up sequence of the radio versus the PC is not critical.

The interconnect from the radio to the PC is via an interface cable and adapter provided with the software (SRI P/N 50-STR1600-200). The cable consists of a DB9 female connection on one end and an RG45 male connector on the other end. The DB9 end should be plugged into any standard serial communications port on the PC. DB9 to DB25 adapters may be utilized as required.

The interface adapter accepts the RG45 connection on one side and interfaces with the STR-1600 female DB-25 front panel connector on the other. The adapter also includes an LED and a momentary push button switch on the sides of the plastic housing.

3.4.2 Power-on Sequence

Once the above configuration has been established, the primary power supply and PC should be powered on and initialized. When the primary power is activated to the radio, the LED on the side of the programming interface adapter should illuminate. This indicates that the radio has successfully powered up in an "ON" condition.

If the LED fails to illuminate within two (2) seconds, the user should attempt to establish an "ON" condition by momentarily activating the push button on the side of the programming interface adapter and then releasing it. If a radio has been inadvertently left in an "OFF" condition, this will toggle the state, which should then illuminate the LED. If this action fails to correct the problem, the user should validate the primary power connection to the radio and then attempt the "ON"/"OFF" toggle switch again.

3.4.3 Reading the Radio Configuration

Assuming the above process is successful, the user can proceed to activate the STR1600.exe program. This will result in the following sample screen on the PC's monitor.

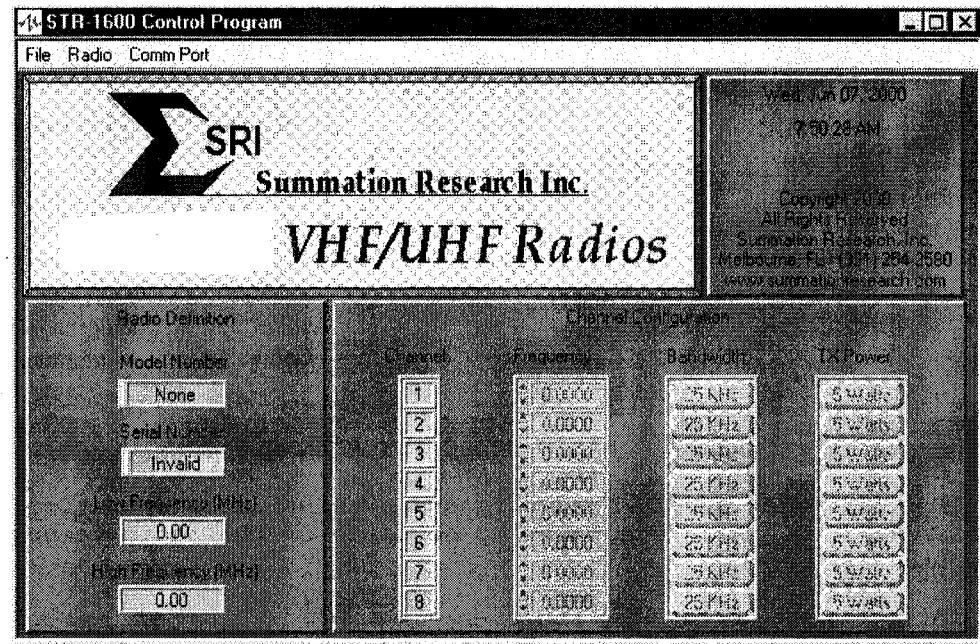


FIGURE 3-2 CONTROL SOFTWARE INITIAL SCREEN

If this is the first time the program is being utilized or if the operator has changed the PC's serial communications port being utilized, the first action taken by the user should be to establish the correct port selection. This can be accomplished by selecting **Comm Port : COM1:**, **Comm Port : COM2:**, **Comm Port : COM3:**, or **Comm Port : COM4:**. The port selection will immediately be changed and the new configuration will be recorded to disk for future executions of the program.

After this action, the user may select **Radio : Read Radio**. This will cause the software to interrogate the interconnected radio and then update the displayed fields. The Serial Number field should reflect the five (5) digit serial number from the product label on the radio. The model number will indicate the specific model of the radio and the low and high frequency values will indicate the valid operational frequency range of this particular model.

The right hand side of the screen indicates the current settings for the eight (8) preset channel selections of the radio. This includes the channel

frequency, bandwidth (i.e., wideband at 25 KHz or narrowband at 12.5 KHz) and output power level (i.e., 5 Watts or 30 Watts).

3.5 Altering the Radio Configuration

3.5.1 Changing Individual Channel Settings

Once a radio has been read as described above, the channel configuration fields on the right hand side of the screen may be edited. The frequency field may be changed via standard text edit methods, or it may be incremented or decremented via the arrows located at the side of each setting. The bandwidth and power selections are toggle controls which flip states each time the user selects the button.

After establishing the changes to all channel settings, the user should select **Radio : Write Radio**. The system will again interrogate the radio as to it's current settings, modify the channel configurations according to the edited fields, and then write the new configuration back to the radio.

By interrogating the radio again prior to modifying it's settings, the software insures the correct configuration update even if a new radio has been connected to the PC since the last read radio action. As such, a user may establish a channel configuration and then write the data to multiple radios simply by connecting a new radio to the PC and invoking **Radio : Write Radio**. The fields on the left hand side of the screen will be updated each time this action is taken.

The software does not preclude the operator from establishing invalid configuration settings, but it does prevent these settings from being written to the radio. As such, an operator may edit a channel frequency field to values outside of the indicated range for the current model, but it will notify the user of the error and abort writing the configuration after the **Radio : Write Radio** action is taken. Similarly, channel frequencies not centered on 25 KHz steps for wideband or 12.5 KHz steps for narrowband will be cause an abort of the configuration update.

3.5.2 Setting/Changing Model Defaults

The radio control software supports user default settings for each of the six(6) model types. An operator may establish settings for the eight (8) channels pertaining to frequency, bandwidth, and output power levels and then store these as the default settings for that model type. This information is stored on disk and, as such, the settings will carry across executions of the control program.

To establish a particular model default, the user must connect a radio of that model type to the PC. Selecting **Radio : Read Radio** will update the display to the information appropriate for that model of radio. The user then may change the frequency, bandwidth, and power level settings that should be utilized for the defaults. After carefully checking the configuration, the operator should select **File : Save Current Settings as Default for this Model**. After interrogating the user as to the validity of this action, the system will replace the previous default settings with the new configuration. Each model type only supports a single default configuration.

After having established the desired defaults, any radio can be updated to the defaults simply by connecting it to the PC and then taking the single action of selecting **Radio : Write from Default Settings for this Model**. This action will cause the software to interrogate the radio, determine the model type, and then write the appropriate default settings for the channel configurations. At the same time, the display will be updated to reflect the new information for the radio.

3.6 Radio Operation

Having established the proper channel configuration for the radio, the radio is now ready for target platform installation. The following operational considerations should be noted:

- 1) Radios which are powered up with an active push-to-talk condition will not operate until the push-to-talk is removed and stay's in a non-active condition for a period of 2 seconds.
- 2) On initial power up or on any change of the frequency select lines into the radio, the target frequency setting may take up to 1 second to obtain.
- 3) If push-to-talk is active at any time during the 1 second tuning period outlined in note 2 above, the tuning action will not complete until push-to-talk is removed and stay's in a non-active condition for a period of 2 seconds.

SECTION 4 MAINTENANCE

In order to ensure that the radio system is always ready for operation, it should be checked periodically so that potential defects may be discovered and corrected before they develop into any serious damage or system failure. A minimal preventive maintenance program will significantly increase the systems life span.

This section describes the necessary preventive maintenance checks and tests the user can perform to easily identify most defects and problems. Any other defects or problems discovered during the normal operation of the system should be noted for future corrective measures.

CAUTION

Stop the operation of the system immediately if a problem is noted during normal operation that can otherwise damage the system.

This section also describes the corrective maintenance checks that can be performed on the radio system.

4.1 Maintenance Concept

The maintenance concept for the radio system is limited to the removal and replacement of the entire unit.

4.2 Preventive Maintenance Requirements

The following is a recommended timetable for performing preventive maintenance checks on the radio.

CAUTION

Primary power to the radio must be turned OFF when performing preventive maintenance on the equipment.

4.2.1 Inspection

The radio system should be inspected periodically for defects or physical damage developed during operation. Inspect all the interface cables to and from the system for cracks, breaks and proper seating with their mating connectors on the card. Inspect all cables for frayed, broken or damaged wires. In addition, inspect all radio connections for accumulation of dirt, grease, or any foreign material that can cause a non-connection. If a cable is found damaged or non-repairable, it should be replaced before operating the system again.

Inspection should be performed at least once every month. The frequency of inspection should be increased for units exposed to dusty or heavy particulate environments.

4.2.2 Cleaning

Clean the outside surfaces and areas around the connectors periodically. Clean the surfaces with a clean, soft, lint-free cloth. Clean the areas around the connectors with a soft bristle brush. To remove grease, fungus, or corrosion, use a cloth dampened with an appropriate electronics cleaning fluid. Cleaning should be done at least once every month. The frequency of cleaning should be increased for units exposed to dusty or heavy particulate environments.

4.3

Storage

5.0

5.1 Units should be stored in a clean, dry, and well-ventilated area. The storage area should be free of dust, debris, and other contaminants. The temperature and humidity should be controlled to prevent damage to the units.

5.2

5.2.1 Units should be stored in their original packaging or in a protective case. The packaging or case should be designed to protect the units from dust, moisture, and physical damage. The units should be stored in a vertical position, with the connectors facing outward. The connectors should be protected from damage by using a soft cloth or a protective cover.

5.3