

TABLE OF CONTENTS LIST FOR PART 90 VHF DEVICE

APPLICANT: Tactical Electronics Corporation

FCC ID: EFO IC-F1020WN-2

TEST REPORT:

PAGE 1.....COVER SHEET - GENERAL INFORMATION & TECHNICAL DESCRIPTIVE
PAGE 2.....TECHNICAL DESCRIPTION CONTINUED & RF POWER OUTPUT
PAGE 3.....RF POWER OUTPUT, MOD CHARACTERISTICS & OCCUPIED B/W
PAGE 4.....OCCUPIED BANDWIDTH CONTINUED
PAGE 5.....OCCUPIED BANDWIDTH PLOT - CW
PAGE 6.....OCCUPIED BANDWIDTH PLOT - MASK C
PAGE 7.....OCCUPIED BANDWIDTH PLOT - MASK D
PAGE 8.....OCCUPIED BANDWIDTH PLOT - SPECTRAL EFFICIENCY PLOT
PAGE 9.....SPURIOUS EMISSIONS AT ANTENNA TERMINALS
PAGE 10.....METHOD OF MEASURING SPURIOUS EMISSIONS AT ANTENNA TERM.
PAGE 11.....FIELD STRENGTH OF SPURIOUS EMISSIONS
PAGE 12.....METHOD OF MEASURING RADIATED SPURIOUS EMISSIONS
PAGE 13.....FREQUENCY STABILITY
PAGE 14-15..TRANSIENT FREQUENCY STABILITY
PAGE 16-17..TRANSIENT FREQUENCY RESPONSE PLOTS - 30W 12.5kHz
PAGE 18-19..TRANSIENT FREQUENCY RESPONSE PLOTS - 5W 12.5kHz
PAGE 20.....MPE CALCULATIONS
PAGE 21-24..LIST OF TEST EQUIPMENT

EXHIBITS CONTAINING:

EXHIBIT 1.....FCC ID LABEL SAMPLE
EXHIBIT 2.....FCC ID LABEL LOCATION
EXHIBIT 3.....SCHEMATIC
EXHIBIT 4.....BLOCK DIAGRAM
EXHIBIT 5.....OPERATIONAL DESCRIPTION
EXHIBIT 6.....EXTERNAL PHOTOGRAPHS
EXHIBIT 7.....INTERNAL PHOTOGRAPHS
EXHIBIT 8.....TUNING PROCEDURE
EXHIBIT 9-10.....RADIATED TEST SET UP PHOTOS
EXHIBIT 11.....USER'S MANUAL

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

TABLE OF CONTENTS

GENERAL INFORMATION REQUIRED
FOR TYPE ACCEPTANCE

2.1033 (c)(1)(2) Tactical Electronics Corporation will sell the FCC ID: EFO IC-F1020WN-2 VHF transceiver in quantity, for use under FCC RULES PART 22 & 90.

2.1033 (c) TECHNICAL DESCRIPTION
2.1033 (3) User Manual See Exhibit 11

2.1033 (4) Type of Emission: 11K25F2D

For 25 kHz & 12 kHz

Bn = 2M + 2DK

M = 9,600 Bits per second

D = 0.825 Hz (Peak Deviation)

K = 1

Bn = $2(9600/2) + 2(0.825)(1) = 9.6k + 1.65k = 11.25k$

For 12.5 kHz

ALLOWED AUTHORIZED BANDWIDTH = 11.25 kHz.

90.209(b)(5)

2.1033 (5) Frequency Range: 150-174 MHz

(6) Power Range and Controls: There are NO user Power controls.

(7) Maximum Output Power Rating:

30 Watts, into a 50 ohm resistive load.

(8) DC Voltages and Current into Final Amplifier:

POWER INPUT

FINAL AMPLIFIER ONLY

On Next Page with output power

(9) Tune-up procedure. The tune-up procedure is given in EXHIBIT 8.

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 1 of 24

2.1033 (10) Complete Circuit Diagrams: The circuit diagram is included as EXHIBIT 3. The block diagram is included as EXHIBIT 4.

(11) Function of each electron tube or semiconductor device or other active circuit device:
-SEE EXHIBIT 11.

(8) Instruction book. The instruction manual is included as EXHIBIT 11.

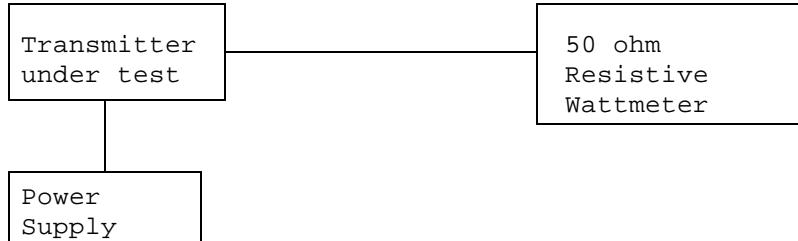
(10) Description of all circuitry and devices provided for determining and stabilizing frequency is included in the circuit description in EXHIBIT 5.

2.1033(c)(11) A photograph or drawing of the equipment identification label is shown in Exhibit 1.

2.1033(c)(12) Photographs of the equipment of sufficient clarity to reveal equipment construction and layout and label location are shown in Exhibit 6-7.

2.1033(c)(13) For equipment employing digital modulation, a detail description of the modulation technique. This UUT uses FSK to modulate the transmitter.

2.1033(c)(14) data required for 2.1046 to 2.1057 See Below


2.1046(a) RF power output.

RF power is measured by connecting a 50 ohm, resistive wattmeter to the RF output connector. With a nominal battery voltage of 13.6 VDC, and the transmitter properly adjusted the RF output measures:

DC INPUT POWER - HIGH: $(13.6V)(6.1A) = 82.96$ Watts
DC INPUT POWER - LOW: $(13.6V)(2.75A) = 37.40$ Watts

OUTPUT POWER: HIGH - 30 Watts
LOW - 5 Watts

METHOD OF MEASURING RF POWER OUTPUT

2.1047(a) Voice Modulation characteristics:
NOT APPLICABLE, F2 type of emission.

2.1049 Audio Low Pass Filter
This UUT does not have a low pass filter.

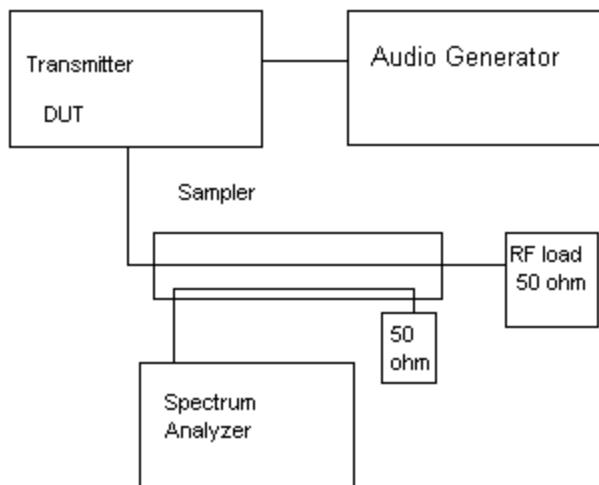
2.1049 Occupied bandwidth:
90.210(c,)

For transmitters that are not equipped with an audio low pass filter pursuant to S90.211(b), the power of any emission must be attenuated below the unmodulated carrier output power as follows: (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency(fd in kHz) of more than 5 kHz but not more than 10 kHz: At least $83 \log(fd/5)$ dB; (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency(fd in kHz) of more than 10 kHz, but not more than 250% of the authorized bandwidth: At least $29 \log(fd/11)$ dB or 50 dB, whichever is the lesser attenuation; (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: At least $43 + 10 \log(Po)$ dB.

90.210(d) Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

(1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB.

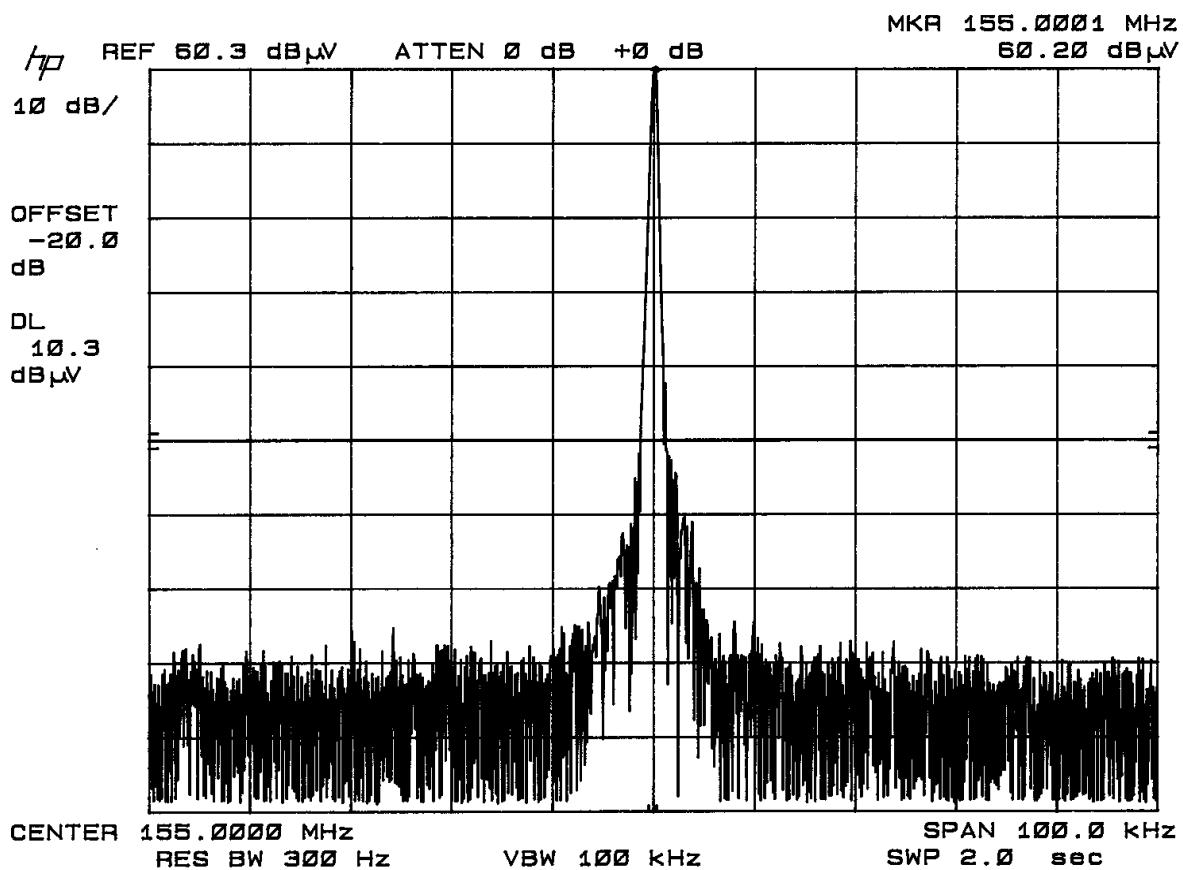
(2) On any frequency from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least $7.27(f_d - 2.88)$ dB.

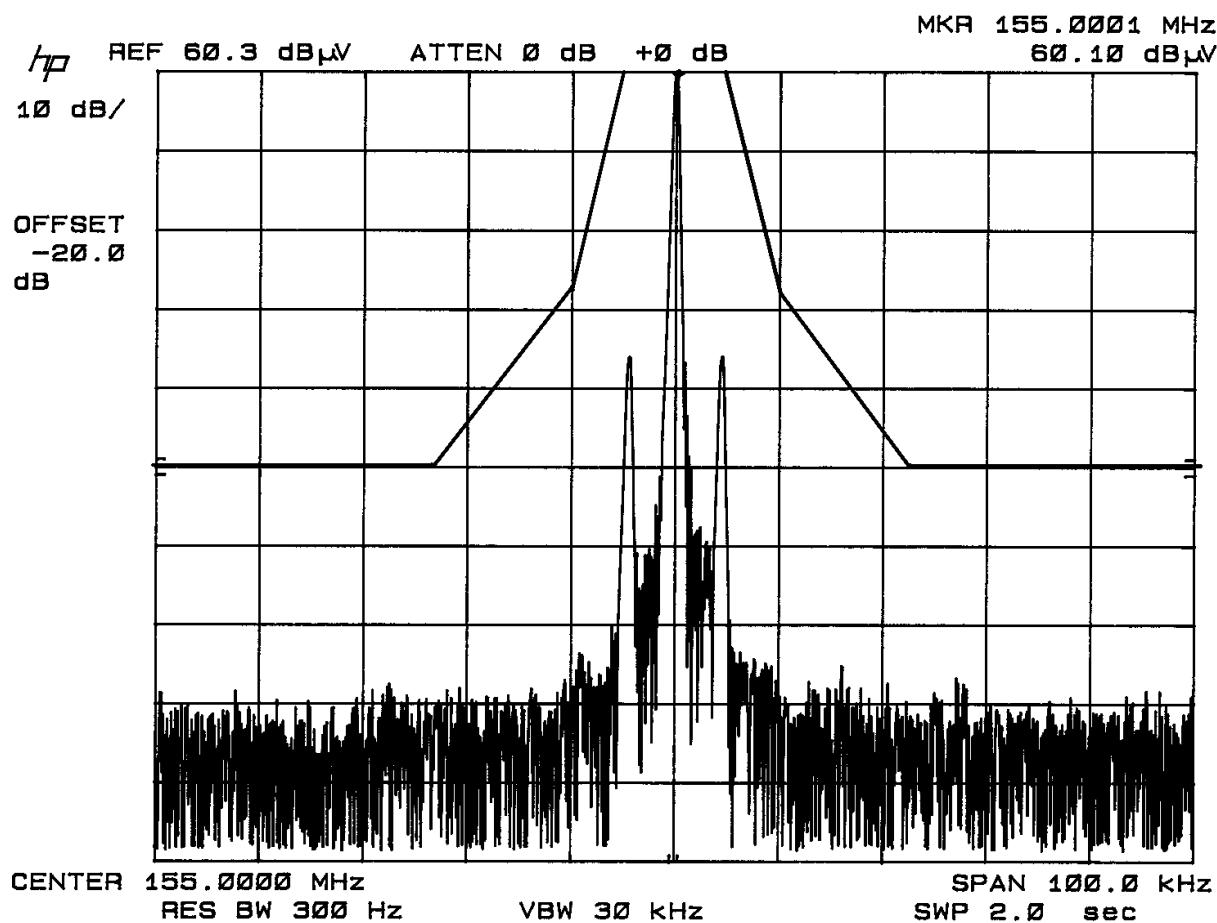

(3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log(P)$ dB or 70 dB, whichever is the lesser attenuation. Data in the plots show that on any frequency removed from the assigned frequency by more than 50%, but not more than 100%: At least 25dB. On any frequency removed from the assigned frequency by more than 100%, but not more than 250%: At least 35 dB. On any frequency removed from the assigned frequency by more than 250%, of the authorized bandwidth: At least $43 + \log(P)$ dB.

Radio telemetry transmitter

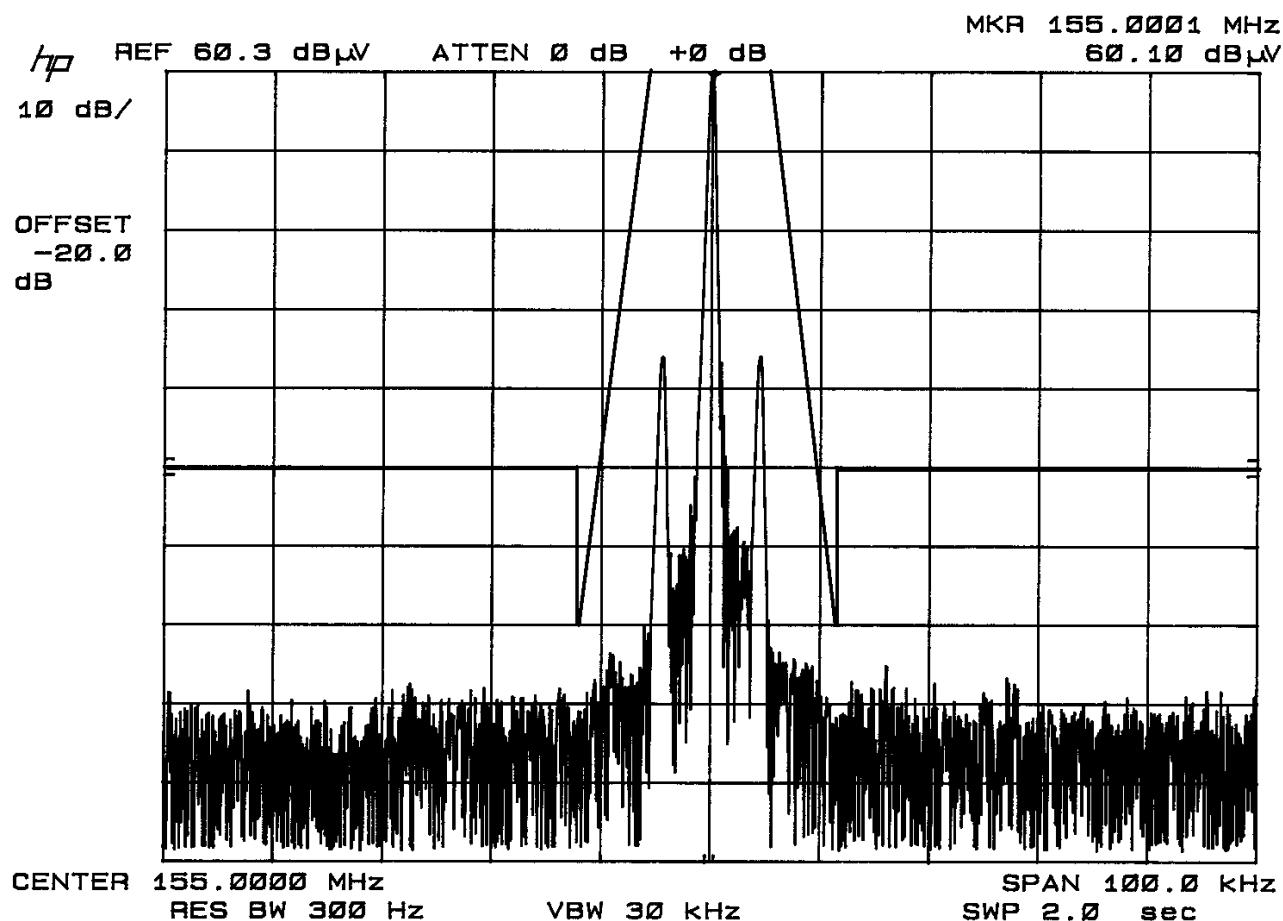
Test procedure: TIA/EIA-603 para 2.2.11, with the exception that data was used.

Test procedure diagram

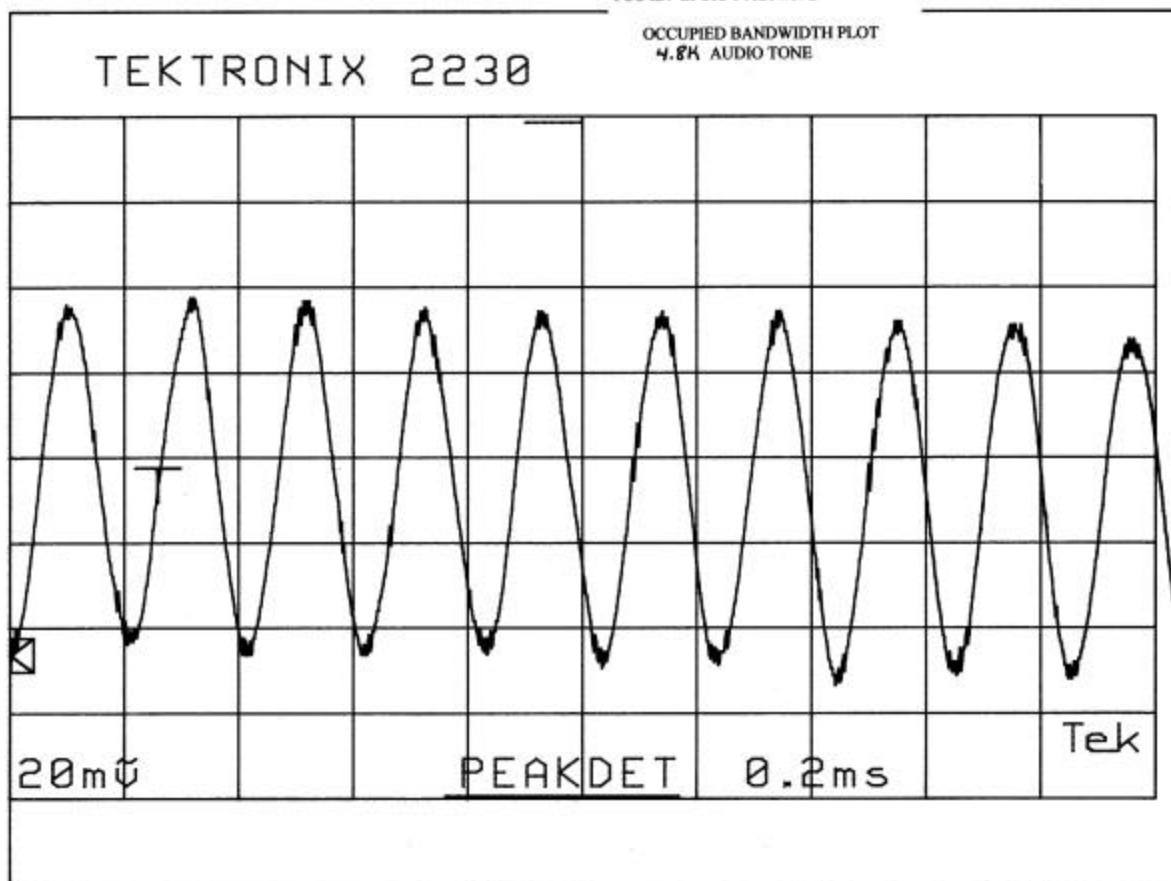

Occupied BW Test Equipment Setup


APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2


REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

CW Plot


Mask C
4800 Hz tone and 825 Hz deviation

Mask D

APPLICANT: TACTICAL ELECTRONICS CORP.
FCC ID: EFOIC-F1020WN-2
REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc
Page 7 of 24

TACTICAL ELECTRONICS CORP.
FCC ID: EFOIC-F1020WN-2

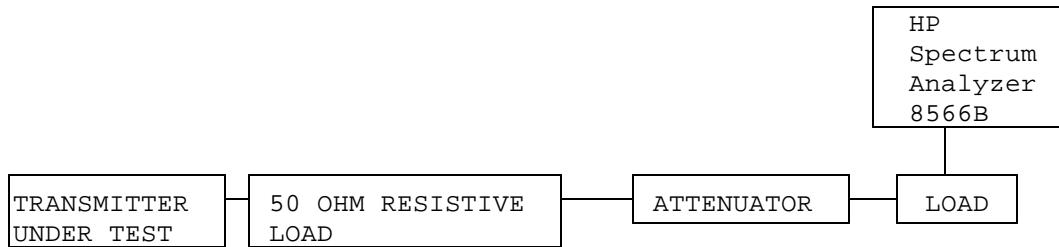
Spectral Efficiency Plot

2.1051 Spurious emissions at antenna terminals (conducted):
2.1052 Data on the following page shows the level of conducted spurious responses. The carrier was modulated 100% using a 2500 Hz tone. The spectrum was scanned from 0.4 to at least the 10th harmonic of the fundamental. The measurements were made in accordance with standard TIA/EIA-603.

REQUIREMENTS: Emissions must be $50 + 10\log(P_o)$ dB below the mean power output of the transmitter.

HIGH POWER: $50 + 10\log(30) = 65$
LOW POWER: $50 + 10\log(5) = 57$

EMISSION	dB BELOW	dB BELOW
FREQUENCY MHz	CARRIER	CARRIER
	LOW POWER	HIGH POWER
155.00	00.0	00.0
310.00	78.3	77.3
465.00	88.9	74.3
620.00	103.2	107.0
775.00	109.7	104.2
930.00	116.9	117.1
1085.00	117.9	118.4
1240.00	109.9	116.6
1395.00	104.5	108.4
1550.00	107.5	116.6


APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 9 of 24

Method of Measuring Conducted Spurious Emissions

METHOD OF MEASUREMENT: The procedure used was TIA/EIA-603 STANDARD without any exceptions. An audio generator was connected to the UUT through a dummy microphone circuit and the output of the transmitter connected to a standard load and from the standard load through a pre-selector filter of the spectrum analyzer. The spectrum was scanned from 400 kHz to at least the tenth harmonic of the fundamental using a HP model 8566B spectrum analyzer. The measurements were made using the shielded room located at TIMCO ENGINEERING INC. 849 N.W. State Road 45, Newberry, Florida 32669.

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 10 of 24

2.1053 Field strength of spurious emissions:

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

REQUIREMENTS: Emissions must be $50 + 10\log(P_o)$ dB below the mean power output of the transmitter.

HIGH - $50 + 10\log(30) = 65$ dB
 LOW - $50 + 10\log(5) = 57$ dB

TEST DATA:

HIGH POWER

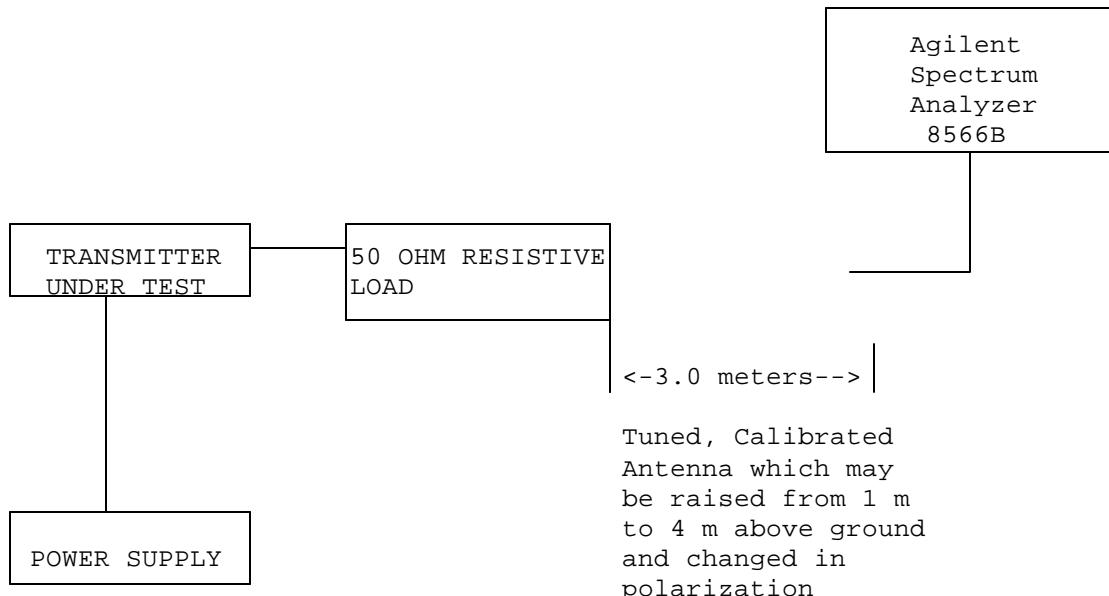
Emission Frequency	ATTN dBc	Margin dB
MHz		
155.00	0.00	0.00
310.00	78.00	13.00
465.00	**	
620.00	**	
775.00	**	
930.00	**	
1,085.00	**	
1,240.00	**	
1,395.00	**	
1,550.00	**	

LOW POWER

155.00	0.00	0.00
155.00	77.00	20.00
310.00	**	
465.00	**	
620.00	**	
775.00	**	
930.00	**	
1,085.00	**	
1,240.00	**	
1,395.00	**	
1,550.00	**	

** INDICATES MEASUREMENTS BELOW OUR EQUIPMENT CAPABILITIES AND LEVELS
 WERE 20 dB OR MORE BELOW THE FCC LIMITS.

APPLICANT: TACTICAL ELECTRONICS CORP.


FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 11 of 24

METHOD OF MEASUREMENTS: The tabulated data shows the results of the radiated field strength emissions test. The spectrum was scanned from 30 MHz to at least the tenth harmonic of the fundamental. This test was conducted per TIA/EIA STANDARD 603 using the substitution method. Measurements were made at the open field test site of TIMCO ENGINEERING, INC. located at 849 NW State Road 45, Newberry, FL 32669.

Method of Measuring Radiated Spurious Emissions

Equipment placed 80 cm above ground
on a rotatable platform.

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 12 of 24

2.1055 Frequency stability:

90.213(a)(1)

Temperature and voltage tests were performed to verify that the frequency remains within the .00015%, 1.5 ppm specification limit, for 25 kHz spacing & 0.00025% for 12.5 kHz spacing and 0.0001% for 6.25 kHz spacing. The test was conducted as follows: The transmitter was placed in the temperature chamber at 25 degrees C and allowed to stabilize for one hour. The transmitter was keyed ON for one minute during which four frequency readings were recorded at 15 second intervals. The worse case number was taken for temperature plotting. The assigned channel frequency was considered to be the reference frequency. The temperature was then reduced to -30 degrees C after which the transmitter was again allowed to stabilize for one hour. The transmitter was keyed ON for one minute, and again frequency readings were noted at 15 second intervals. The worst case number was recorded for temperature plotting. This procedure was repeated in 10 degree increments up to + 50 degrees C.

Readings were also taken at minus 15% of the battery voltage of 10.8 VDC, which we estimate to be the battery endpoint.

MEASUREMENT DATA:

Assigned Frequency (Ref. Frequency): 155.000 098 MHz

<u>TEMPERATURE_°C</u>	<u>FREQUENCY_MHz</u>	<u>PPM</u>
REFERENCE_____	155.000 098	00.0
-30_____	155.000 008	- 0.12
-20_____	155.000 135	+ 0.24
-10_____	155.000 137	+ 0.25
0_____	155.000 128	+ 0.19
+10_____	155.000 115	+ 0.11
+20_____	155.000 076	- 0.14
+30_____	155.000 018	- 0.52
+40_____	154.999 962	- 0.88
+50_____	154.999 952	- 0.94

-15% Battery End-Point VDC 155.000 092 - 0.04

RESULTS OF MEASUREMENTS: The maximum frequency variation over the temperature range was +0.25 ppm.

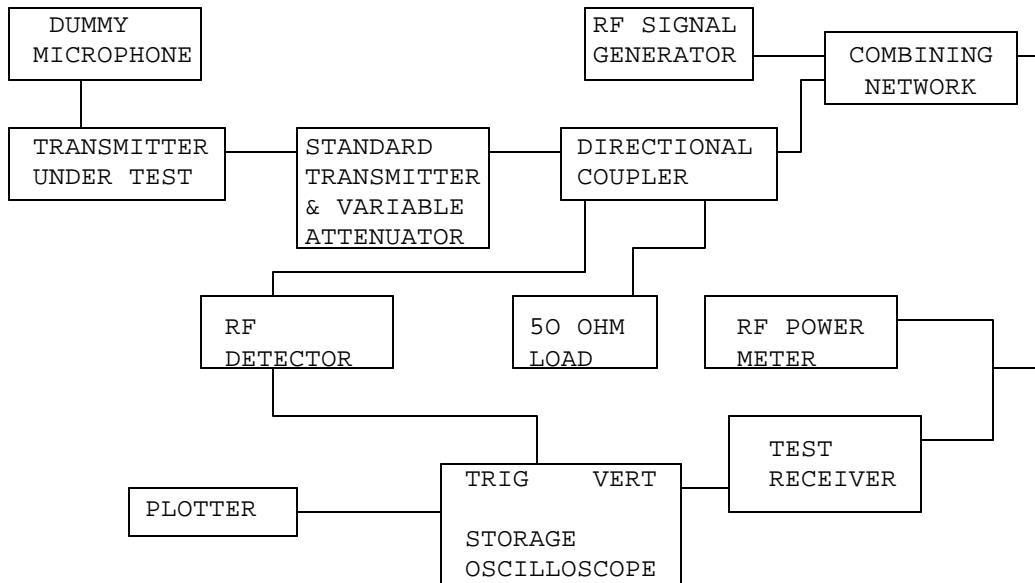
APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 13 of 24

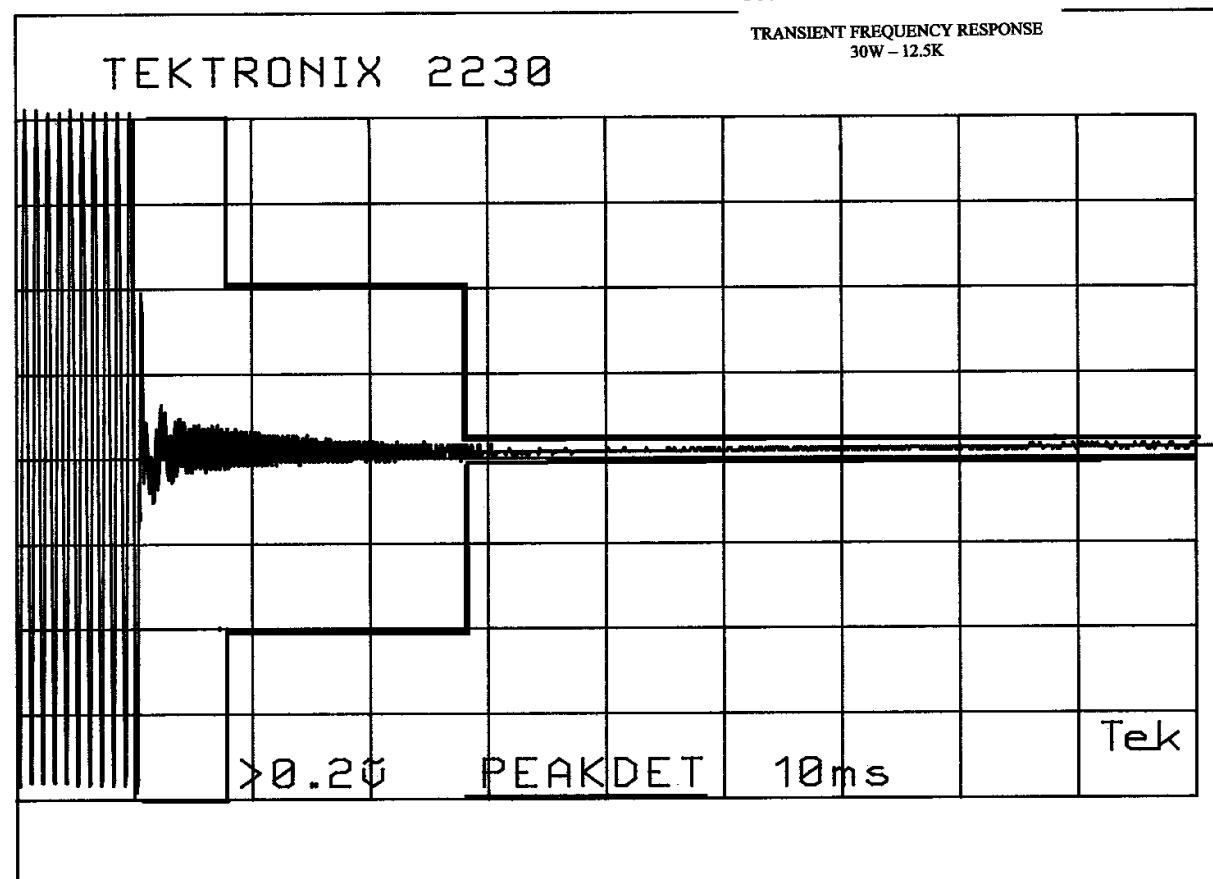
2.1055(a)(1) Frequency stability:
90.214 Transient Frequency Behavior

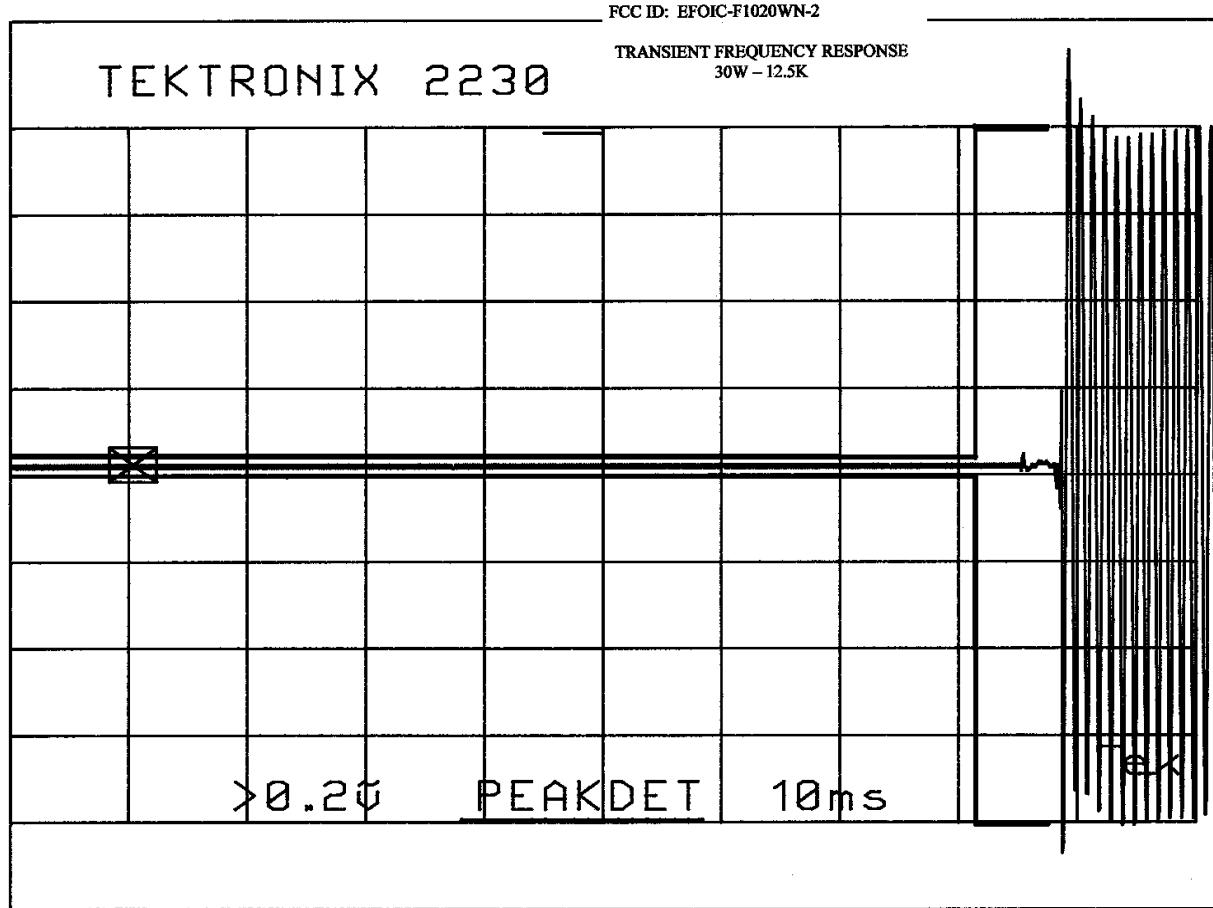

REQUIREMENTS: In the 150-174 MHz frequency band, transient frequencies must be within the maximum frequency difference limits during the time interval indicated below for 12.5kHz Channels:

Time Interval	Maximum Frequency	All Radios 150-174 MHz
t1	+12.5 kHz	5.0 ms
t2	+6.25 kHz	20.0 ms
t3,t4	+12.5 kHz	5.0 ms

TEST PROCEEDURE: TIA/EIA TS603 PARA 2.2.19, the levels were set as follows;

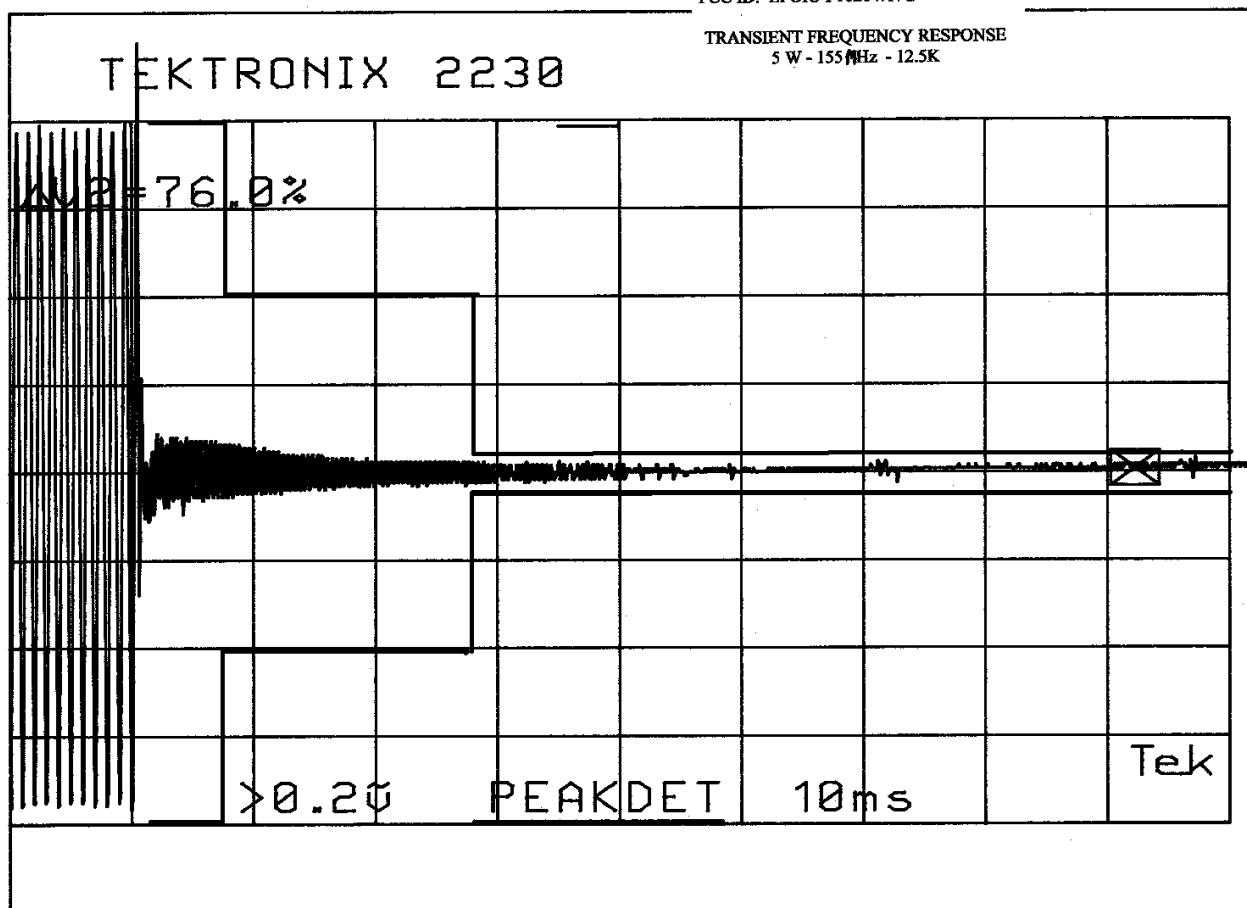
1. Using the variable attenuator the transmitter level was set to 40 dB below the test receivers maximum input level, then the transmitter was turned off.
2. With the transmitter off the signal generator was set 20 dB below the level of the transmitter in the above step, this level will be maintained with the signal generator through-out the test.
3. Reduce the attenuation between the transmitter and the RF detector by 30 dB.
4. With the levels set as above the transient frequency behavior was observed & recorded.


2.1055 Frequency stability:
90.214 Transient Frequency Behavior
(Continued)


APPLICANT: TACTICAL ELECTRONICS CORP.
FCC ID: EFOIC-F1020WN-2
REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc
Page 15 of 24

TACTICAL ELECTRONICS CORP.
FCC ID: EFOIC-F1020WN-2

TRANSIENT FREQUENCY RESPONSE
30W - 12.5K

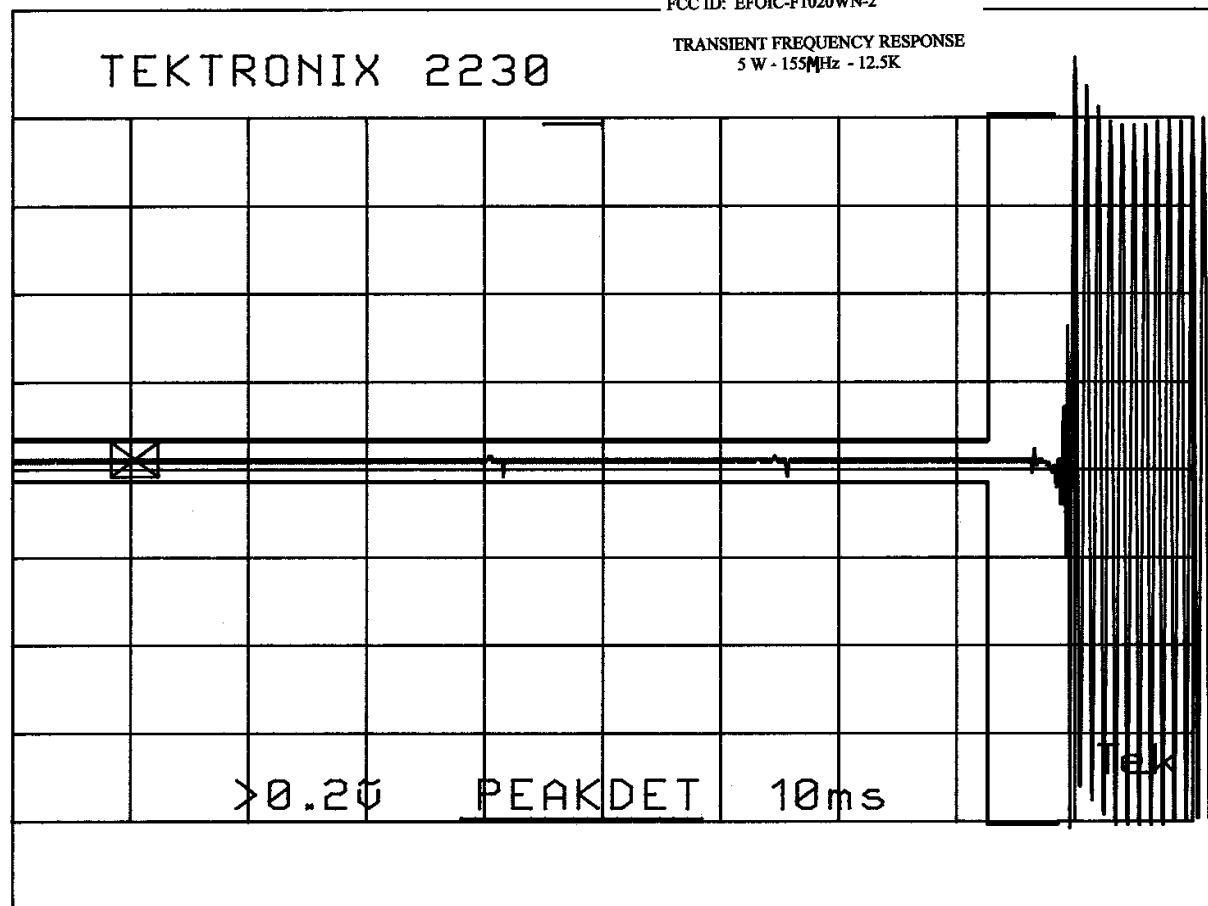

Transient frequency behavior for high power
and a 12.5 kHz channel

Transient frequency behavior high power
and for a 12.5 kHz channel

TACTICAL ELECTRONICS CORP.
FCC ID: EFOIC-F1020WN-2

TRANSIENT FREQUENCY RESPONSE
5 W - 155 MHz - 12.5K

Transient frequency behavior low power
and for a 12.5 kHz channel


APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 18 of 24

TACTICAL ELECTRONICS CORP.
FCC ID: EFOIC-F1020WN-2

Transient frequency behavior low power
and for a 12.5 kHz channel

W := 30.0 power in Watts D := 1 Duty Factor in decimal % (1=100%)

E := 2 exposure time in minutes U := 30 (use 6 for controlled and 30 for uncontrolled)

$$W_{exp} := W \cdot D \cdot \left\{ \frac{E}{U} \right\}$$

$$PC := \frac{E}{U}$$

$$PC = 0.067 \text{ percent on time}$$

$$W_{exp} = 2 \text{ Watts}$$

Po := 2000 mWatts dBd := -2.15 antenna gain f := 155 Frequency in MHz

$$G := dBd + 2.15 \text{ gain in dBi}$$

$$Gn := 10^{\frac{G}{10}} \text{ gain numeric} S := .2$$

$$Gn = 1 S = 0.2$$

$$R := \sqrt{\frac{(Po \cdot Gn)}{(4 \cdot \pi \cdot S)}} \quad Rinches := \frac{R}{2.54}$$

$$R = 28.209 \text{ distance in centimeters required for compliance} \quad Rinches = 11.106$$

MPE Calculation

Using a typical installation of:

Quarter wave antenna

On time of 2 minutes out of 30

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
X	Receiver, Beige Tower Spectrum Analyzer (Tan)	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/02
X	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/02
X	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/02
	Receiver, Blue Tower Spectrum Analyzer (Blue)	HP	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/02
	RF Preselector (Blue)	HP	85685A	2926A00983	CHAR 10/22/01	10/22/02
	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/02
	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
X	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/02
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/01
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/02
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/02
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/02
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/02
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/01
X	Double-Ridged Horn Antenna	Electro-Metrics	RGA -180	2319	CAL 12/19/01	12/19/02
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/02
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/02
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/02

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/02
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	(5/25/00)
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/02
X	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/02
X	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/03
X	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/02
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/02
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/02
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/03
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/03
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/03
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/02
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/02
X	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/03
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/03
	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/03
X	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/02
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/02
	Injection Probe	Fischer Custom Communications	F-120-9A	270	CAL 6/1/01	6/1/02
X	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/01
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 11/12/99	11/12/00
	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/02
X	Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/02
	Power Line Coupling/ Decoupling Network	Fischer Custom Communications	FCC-801-M2-16A	01048	CAL 8/29/01	8/29/02

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Power Line Coupling/ Decoupling Network	Fischer Custom Communications	FCC-801-M3-16A	01060	CAL 8/29/01	8/29/02
VHF/UHF Current Probe	Fischer Custom Communications	F-52	130	CAL 8/30/01	8/30/02
Passive Impedance Adapter	Fischer Custom Communications	FCC-801-150-50-CDN	01117 & 01118	CAL 8/29/01	8/29/02
Radiating Field Coil	Fischer Custom Communications	F-1000-4-8/9/10-L-1M	9859	CAL 10/15/98	10/15/99
Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/02
BandReject Filter	Lorch Microwave	5BR4-2400/60-N	Z1	CHAR 3/2/01	3/2/02
BandReject Filter	Lorch Microwave	6BR6-2442/300-N	Z1	CHAR 3/2/01	3/2/02
BandReject Filter	Lorch Microwave	5BR4-10525/900-S	Z1	CHAR 3/2/01	3/2/02
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/02
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/02
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/02
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/02
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/02
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/02
X Egg Timer	Unk			CHAR 2/28/01	2/28/02
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/28/01	2/28/02
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		CHAR 2/28/01	2/28/02
EMC Immunity Test System	Keytek	CEMASTER	9810210		
AC Power Source	California Instruments	1251RP	L05865		
AC Power Source	California Instruments	PACS-1	X71484		
Isotropic Field Probe	Amplifier Research	FP5000	22839		
Isotropic Field Probe	Amplifier Research	FP5000	300103		
Capacitor Clamp	Keytek	CM-CCL	9811359	No Cal Required	
Amplifier	Amplifier Research	10W1000B	23117	No Cal Required	

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Field Monitor	Amplifier Research	FM5004	22288	No Cal Required	
ELF Meter	F. W. Bell	4060	Not serialized		
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/03
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/03
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/03
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/03

APPLICANT: TACTICAL ELECTRONICS CORP.

FCC ID: EFOIC-F1020WN-2

REPORT #: T:\T\Tactical_AFJ\119auc2\119AUC2TestReport.doc

Page 24 of 24