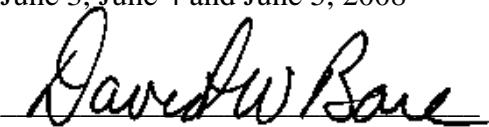


*Electromagnetic Emissions Test Report
In Accordance With Industry Canada
Radio Standards Specification 119 Issue 9,
FCC Part 90
on the
GE MDS LLC
Transmitter
Model: LCT450*


FCC ID NUMBER: E5MDS-LCT450
UPN: 101D-LCT450

GRANTEE: GE MDS LLC
175 Science Parkway
Rochester, NY 14620

TEST SITE: Elliott Laboratories
684 W. Maude Avenue
Sunnyvale, CA 94086

REPORT DATE: June 10, 2008

FINAL TEST DATE: June 3, June 4 and June 5, 2008

AUTHORIZED SIGNATORY:

David Bare
CTO

Testing Cert #2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Rev #	Date	Comments	Modified By
1		Original issue	-

TABLE OF CONTENTS

COVER PAGE.....	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
FCC CERTIFICATION INFORMATION.....	5
DECLARATIONS OF COMPLIANCE.....	7
SCOPE.....	8
OBJECTIVE.....	8
SUMMARY OF TEST RESULTS.....	9
PART 90 AND RSS-119 TEST SUMMARY.....	9
MEASUREMENT UNCERTAINTIES.....	10
EQUIPMENT UNDER TEST (EUT) DETAILS.....	11
GENERAL.....	11
EUT ANTENNA	11
ENCLOSURE.....	11
MODIFICATIONS.....	11
SUPPORT EQUIPMENT.....	12
EUT INTERFACE PORTS	12
EUT OPERATION DURING TESTING.....	12
TEST SITE.....	13
GENERAL INFORMATION.....	13
CONDUCTED EMISSIONS CONSIDERATIONS	13
RADIATED EMISSIONS CONSIDERATIONS	13
MEASUREMENT INSTRUMENTATION	14
RECEIVER SYSTEM	14
INSTRUMENT CONTROL COMPUTER	14
PEAK POWER METER	14
FILTERS/ATTENUATORS	14
ANTENNAS.....	15
ANTENNA MAST AND EQUIPMENT TURNTABLE.....	15
INSTRUMENT CALIBRATION.....	15
TEST PROCEDURES	16
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS.....	21
RADIATED EMISSIONS SPECIFICATION LIMITS	21
CALCULATIONS – EFFECTIVE RADIATED POWER	21

TABLE OF CONTENTS (Continued)

<i>EXHIBIT 1: Test Equipment Calibration Data.....</i>	<i>1</i>
<i>EXHIBIT 2: Test Data Log Sheets.....</i>	<i>2</i>
<i>EXHIBIT 3: Test Configuration Photographs – Radiated Emissions.....</i>	<i>3</i>
<i>EXHIBIT 4: Theory of Operation GE MDS LLC Model LCT450</i>	<i>4</i>
<i>EXHIBIT 5: Proposed FCC ID Label & Label Location</i>	<i>5</i>
<i>EXHIBIT 6: Detailed Photographs GE MDS LLC Model LCT450.....</i>	<i>6</i>
<i>EXHIBIT 7: Installation Guide GE MDS LLC Model LCT450</i>	<i>7</i>
<i>EXHIBIT 8: Block Diagram GE MDS LLC Model LCT450.....</i>	<i>8</i>
<i>EXHIBIT 9: Schematic Diagrams GE MDS LLC Model LCT450.....</i>	<i>9</i>

FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part 2, Subpart J, Section 2.1033(C) & to Industry Canada RSP-100.

2.1033(c)(1) Applicant:

GE MDS LLC
175 Science Parkway
Rochester, NY 14620

2.1033(c)(2) & RSP-100 (4) FCC ID: E5MDS-LCT450
UPN: 101D-LCT450

2.1033(c)(3) & RSP-100 (7.2(a)) Instructions/Installation Manual

Please refer to Exhibit 7: User Manual

2.1033(c)(4) & RSP-100 (7.2(b)(iii)) Type of emissions

FCC 90 & RSS-119: F1D

Necessary bandwidth (2M + 2DK): **12.5kHz channels, D=3.1, M=2.4, K=1**
 $2(3.1)+2(2.4) = 11.0\text{kHz}$

2.1033(c)(5) & RSP-100 (7.2(a)) Frequency Ranges

FCC 90 & RSS-119: **450-512 MHz**

2.1033(c)(6) & RSP-100 (7.2(a)) Range of Operation Power

FCC 90 & RSS-119: **1 to 30 Watts**

2.1033(c)(7) & RSP-100 (7.2(a)) Maximum FCC & IC Allowed Power Level

FCC 90.729 & RSS-119: Depends on frequency, antenna height and purpose of operation (land mobile or fixed).

2.1033(c)(8) & RSP-100 (7.2(a)) Applied voltage and currents into the final transistor elements

The final RF stage output amplifier operates at 13.8 Vdc and draws 6 Adc

2.1033(c)(9) & RSP-100 (7.2(a)) Tune-up Procedure

There is no tune up procedure since is a digital radio. All settings and calibration are done in the factory and stored in memory. Refer to attestation letter from GE MDS LLC.

2.1033(c)(10) & RSP 100 (7.2(a)) Schematic Diagram of the Transmitter

Refer to Exhibit 6: Schematic diagram

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Frequency Stabilization

Refer to Exhibit 4: Theory of Operation and test data for supporting measurements.

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Suppression of Spurious radiation

Refer to Exhibits 4 and 6

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Modulation

Refer to Exhibits 4 and 6

2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Power

Refer to Exhibit 4: Theory of Operation

2.1033(c)(11) & RSP-100 (7.2(g)) Photographs or Drawing of the Equipment Identification Plate or Label

Refer to Exhibit 5: Label and label location.pdf

2.1033(c)(12) & RSP-100 (7.2(c)) Photographs of equipment

Refer to Exhibit 6, Internal and External Photographs

2.1033(c)(14) & RSP-100 (7.2(b)(ii)) Data taken per Section 2.1046 to 2.1057 and RSS-133 issue 2, Rev. 1.

Refer to Exhibit 2

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:
LCT450

Manufacturer:
GE MDS LLC
175 Science Parkway
Rochester, NY 14620

Tested to applicable standards:
RSS-119, Issue 9 (Land Mobile and Fixed Radio Transmitters and Receivers, 27.41 to 960 MHz).
FCC Part 90 (Private Land Mobile Radio Service)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845A-1 Dated August 16, 2007

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of TIA/EIA-603 and the specific RSS standards applicable to this device); and that the equipment performed in accordance with the data submitted in this report.

Signature
Name David Bare
Title CTO
Address Elliott Laboratories Inc.
684 W. Maude Ave
Sunnyvale, CA 94086
USA

Date: June 10, 2008

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SCOPE

FCC Part 90 & IC RSS-119 testing was performed for the equipment mentioned in this report. The equipment was tested in accordance with the procedures specified in Sections 2.1046 to 2.1057 of the FCC Rules & IC RSS-119. TIA-603 was also used as a test procedure guideline to perform some of the required tests.

The intentional radiator above was tested in a simulated typical installation to demonstrate compliance with the relevant FCC & RSS performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the FCC Part 90 & IC RSS-119. Certification of these devices is required as a prerequisite to marketing as defined in Section 2.1033 & RSP-100.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to FCC & Industry Canada. FCC & Industry Canada issues a grant of equipment authorization and a certification number upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SUMMARY OF TEST RESULTS**Part 90 and RSS-119 Test Summary**

Measurement Required	FCC Sections	RSS-119 Section	Test Performed	Measured Value	Test Procedure Used	Result
Modulation Tested	-	-	-	FSK	N/A	N/A
Modulation characteristics	2.1047/	5.2	-			
Conducted RF power output	2.1046 / 90.279 & 90.205(g) 50W	5.4 (SRSP-512 6.3) 50W	Conducted Output Power Test	32.3 Watts	B	Complies
Spurious emissions at antenna port	2.1051/ 90.210(d)	5.8	Emission Limits and/or Unwanted Emission 30MHz – 5GHz	-22.7dBm @ 469.167MHz (-2.7dB)	J	Complies
Occupied Bandwidth	2.1049/ 90.210(d) – Emissions Mask D	5.5, RSS GEN	Emission Mask and 99% Bandwidth	Refer to Plots	C & D	Complies
Field strength of spurious radiation	2.1053 / 90.210(d)	5.8	Radiated Spurious Emissions 30MHz – 5GHz	-21.4dBm erp @ 4096MHz (-1.4dB)	N	Complies
Frequency stability	2.1055 / 90.213 Mobile Stations (1.5ppm)	5.3 Table 1	Frequency Vs. Temperature	Measured: 0.34 ppm	K	Complies
			Frequency Vs. Voltage		L & M	Complies
Transient Frequency Behavior	90.214	5.9	Transient Behavior	Refer to Plots	I	Complies
Exposure to Mobile devices	2.1091	9	Exposure of Humans to RF Fields	To be considered at time of licensing	-	
Receiver	15.109	5.11 RSS GEN	Receiver Spurious Emissions	34.5dB μ V/m @ 937.521MHz (-11.5dB)	N/A	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below were calculated using the approach described in CISPR 16-4-2:2003 using a coverage factor of $k=2$, which gives a level of confidence of approximately 95%. The levels were found to be below levels of U_{cispr} and therefore no adjustment of the data for measurement uncertainty is required.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The GE MDS LLC model LCT450 is a narrowband (12.5 kHz channels) wireless transceiver, which is designed to transmit and receive data in the 450 to 512 MHz band using CPFSK modulation. Normally, the EUT would be placed on a tabletop or in a rack during operation. The EUT was, therefore, placed on a table during emissions testing to simulate the end user environment. The electrical rating of the EUT is 13.8vdc, 9 Amps.

The sample was received on June 3, June 4 and June 5, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
GE MDS LLC	LCT450	Digital UHF Radio	Not serialized	E5MDS-LCT450

EUT ANTENNA

The EUT can be used with antennas up to 9 dBi.

ENCLOSURE

The EUT enclosure is primarily constructed of die cast metal. It measures approximately 15.0cm wide by 17.0cm deep by 5.0cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
IBM	Thinkpad	Laptop	L3-C3706	DoC
Microwave	44003	50 ohm termination	7943	-

No remote support equipment for emissions testing:

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected to	Description	Shielded or Unshielded	Length (m)
Antenna	50 ohms Termination	-	-	-
Data Interface	Laptop	DB25	Shielded	2.0
DC Power	13.8V DC Source	2 wire	Unshielded	2.0

EUT OPERATION DURING TESTING

During emissions testing the EUT was set to transmit mode either unmodulated or modulated as required for testing. As the radio was operating in a continuous transmit state that would not be typical of normal use an external fan was provided for cooling to prevent burn-out of the PA.

TEST SITE***GENERAL INFORMATION***

Final test measurements were taken on June 3, June 4 and June 5, 2008 at the Elliott Laboratories Open Area Test Site #1, 2 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to Section 2.948 of the FCC Rules, construction, calibration, and equipment data has been filed with the Commission.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with Section 2 of FCC Rules. Measurements are made with the EUT connected to a spectrum analyzer through an attenuator to prevent overloading the analyzer.

RADIATED EMISSIONS CONSIDERATIONS

Radiated measurements are performed in an open field environment or Anechoic Chamber. The test site is maintained free of conductive objects within the CISPR 16-1 defined elliptical area.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers are capable of measuring over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the particular detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. If average measurements above 1000MHz are performed, the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz is used.

INSTRUMENT CONTROL COMPUTER

A personal computer is utilized to record the receiver measurements of the field strength at the antenna, which is then compared directly with the appropriate specification limit. The receiver is programmed with appropriate factors to convert the received voltage into field strength at the antenna. Results are printed in a graphic and/or tabular format, as appropriate.

The test receiver also provides a visual display of the signal being measured.

PEAK POWER METER

A peak power meter and thermister mount may be used for output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or EUT and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transmitters and transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor drive to vary the antenna height.

The requirements of ANSI C63.4:2003 were used for configuration of the equipment turntable. It specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

General: For Transmitters with detachable antenna, direct measurements for output power, modulation characterization, occupied bandwidth, and frequency stability are performed with the antenna port of the EUT connected to either the power meter, modulation analyzer, or spectrum analyzer via a suitable attenuator and/or filter. The attenuators and/or filters are used to ensure that the transmitter fundamental will not overload the front end of the measurement instrument.

Procedure B – Power Measurement (Conducted Method): The following procedure was used for transmitters that do use external antennas.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) Either a power meter or a spectrum analyzer was used to measure the power output.
- 3) If a spectrum analyzer was used a resolution and video bandwidth 10kHz was used to measure the power output. Corrected for any external attenuation used for the protection of the input of analyzer. In addition, For CDMA or TDMA modulations set spectrum analyzer resolution to 1MHz and video to 30 kHz. Use video averaging with a 100-sample rate.
- 4) If a power meter was used, corrected for any external attenuation used for the protection of the input of the sensor head. Also set the power sensor correction by setting up the frequency range that will be measured.
- 5) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

Procedure C - Occupied Bandwidth (Conducted Method): Either for analog, digital, or data modulations, occupied bandwidth was performed. The EUT was set to transmit the appropriate modulation at maximum power. The bandwidth was measured using following methods:

- 1) The built-in 99% function of the spectrum analyzer was used.
- 2) If the built-in 99% is not available then the following method is used:

26-dB or 20-dB was subtracted to the maximum peak of the emission. Then the display line function was used, in conjunction with the marker delta function, to measure the emissions bandwidth.
- 3) For the above two methods a resolution and video bandwidth of 100 or 300 Hz was used to measure the emission's bandwidth.

Procedure D - Occupied Bandwidth (Conducted Emission Mask): Either for analog, digital, or data modulations, emission mask was performed. The EUT was set to transmit the appropriate modulation at maximum power. The following method was used:

- 1) The EUT was connected directly to the spectrum analyzer and used an attenuator to protect the input of the analyzer. The EUT antenna was removable, so conducted measurements was performed. The EUT was set to transmit continuous packets of data and the Fundamental Frequency set to the middle of the EUT frequency range.
- 2) Since EUT is designed with a 12.5 kHz channel Section 90.210 (d)(1)(2)(3) was used to show compliance to the emission mask.
- 3) Any emission must be attenuated below the power (P) as follow:

90.210 (d)(1): 5.625 kHz: 0 dB

90.210(d)(2): 5.625 kHz: 20 dB
12.5 kHz: 70 dB

90.210(d)(3): more than 12.5 kHz: -20 dBm (50+10*log(P))

The following Resolution and Video bandwidth was used to show compliance for the above requirement: 100 Hz.

- 4) Since EUT is designed with a 25 kHz channel Section 90.210 (c)(1)(2)(3) was used to show compliance to the emission mask.
- 5) Any emission must be attenuated below the power (P) as follow:

90.210 (c)(1): 5 kHz but no more then 10kHz: $83 * \log(F_d / 5)$ dB

90.210(c)(2): 10kHz but no more then 250%: At least $29 \log(f_d / 2/11)$ dB or 50 dB, whichever is the lesser attenuation

90.210(c)(3): more than 250%: -13 dBm (43+10*log(P))

The following Resolution and Video bandwidth was used to show compliance for the above requirement: 300 Hz.

Procedure H - Other Types of Equipment: Either digital or data modulated signals were simulated, by software or external sources, to performed the required tests. The EUT was set to transmit the appropriate digital modulation.

Procedure J – Antenna Conducted Emissions: For spurious emission measurements at the antenna terminal the following procedure was performed:

- 1) Set the transmitting signal at the middle of the operating range of the transmitter, as specified in the standard. Power is set to maximum and then to minimum.
- 2) Set the spectrum analyzer display line function to -20-dBm.
- 3) Set the spectrum analyzer bandwidth to 10kHz <1GHz and 1 MHz >1GHz.
- 4) For the spectrum analyzer, the start frequency was set to 30 MHz and the stop frequency set to the 10th harmonic of the fundamental. All spurious or intermodulation emission must not exceed the -20dBm limit.
- 5) Steps 1 to 4 were repeated for all modulations and output ports that will be used for transmission.

Procedure K - Frequency Stability: The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The spectrum analyzer is configured to give a 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. The Temperature chamber was varied from -30 to +50° C (or +60° C for some IC RSS standards, if applicable) in 10 degrees increment. The EUT was allowed enough time to stabilize for each temperature variation.

Procedure L - Frequency Stability: For AC or DC operated devices the nominal voltage is varied to 85% and to 115% at either room temperature or at a controlled +20°C temperature.

Procedure M - Frequency Stability: For battery-powered devices the voltage battery end-point is determined by reducing the dc voltage until the unit ceases to function. This is performed at either room temperature or at a controlled +20°C temperature.

Procedure N - Field Strength Measurement: The EUT was set on the turntable and the search antenna position 3 meters away. The output antenna terminal was terminated with a 50-ohm terminator. The EUT was set at the middle of the frequency band and set at maximum output power.

For the first scan, a pre-liminary measurement is performed. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

For the final measurement, Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a horn antenna and signal generator. The horn antenna factors can be reference to a half-wave dipole in dBi. The signal generator power level was adjusted until a similar level, which was measured on the first scan, is achieved on the spectrum analyzer. The level on the signal generator is than added to the antenna factor, in dBi, which will give the corrected value.

Procedure I – Transient Frequency Behavior: The TIA/EIA 603 procedure was used to determine compliance to radio being keyed on and off.

- 1) Connected the Test Receiver DOP or Video Output to Channel 1 of the oscilloscope. The output of the RF crystal detector was connected to Auxiliary channel 1, which served as a trigger input. The output of the combiner was connected to the Test Receiver.
- 2) Set the EUT to maximum power and connected as illustrated above. Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at 6.25kHz, 12.5 kHz, or 25 kHz deviation and set its output to –100 dBm, then turn on the EUT.
- 3) The Combiner output side was connected to the Test Receiver, which was used to measure the Power. Used enough external attenuation so that the output at the combiner was set to 40 dB below the maximum input of the Test Receiver, then turn off the EUT.
- 4) Set the signal generator output to the same level in step 3. This level was maintained for the remainder of the test.
- 5) Set the horizontal sweep rate on the storage oscilloscope to 10 milliseconds per division and adjusted the display to continuously view the 1 kHz tone from the DOP or Video Output. Adjusted the vertical amplitude control to display the 1 kHz at +/- 4 divisions vertically centered on the display.
- 6) Set the oscilloscope to trigger at the AUX channel 1 input port.
- 7) Removed enough external attenuation so that the input to the RF detector and combiner is increased by 30 dB.
- 8) Turn on the transmitter and plotted the result for **T_{on}**, **T₁**, and **T₂**.
- 9) Set the oscilloscope to trigger in decreasing magnitude from the RF crystal detector.
- 10) Turn off the transmitter and plotted the result for **T₃**.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS**RADIATED EMISSIONS SPECIFICATION LIMITS**

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt (dBm) or one microvolt/meter (dB_{BuV}/m,). The field strength of the emissions from the EUT is measured on a test site with a receiver.

Below is a formula example used to calculate the attenuation requirement, relative to the transmitters power output, in dB_{BuV}/m. For this example an operating power range of 3 watts is used. The radiated emissions limit for spurious signals outside of the assigned frequency block is $43 + 10\log_{10}(\text{mean output power in watts})$ dB below the measured amplitude at the operating power.

CALCULATIONS – EFFECTIVE RADIATED POWER

$$E(V/m) = \frac{\sqrt{30 * P * G}}{d}$$

E= Field Strength in V/m

P= Power in Watts (for this example we use 3 watts)

G= Gain of antenna in numeric gain (Assume 1.64 for ERP)

d= distance in meters

$$E(V/m) = \frac{\sqrt{30 * 3 \text{ watts} * 1.64 \text{ dB}}}{3 \text{ meters}}$$

$$20 * \log (4.049 \text{ V/m} * 1,000,000) = 132.14 \text{ dBuV/m} @ 3 \text{ meters}$$

FCC Rules request an attenuation of $43 + 10 \log (3)$ or 47.8 dB for all emissions outside the assigned block, the limit for spurious and harmonic emissions is:

$$132.1 \text{ dBuV/m} - 47.8 \text{ dB} = 84.3 \text{ dBuV/m} @ 3 \text{ meter.}$$

Note: Substitution Method is performed for spurious emission not being 20-dB below the calculated field strength.

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 30 - 1,600 MHz, 03-Jun-08**Engineer: Rafael Varelas**

<u>Manufacturer</u>	<u>Description</u>	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	26-Mar-09
EMCO	Log Periodic Antenna, 0.3-1 GHz	3146A	364	13-Dec-08
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141	29-Nov-08
Hewlett Packard	Microwave Preamplifier 0.5-26.5 GHz	83017A	1257	28-Mar-09
Hewlett Packard	Preamplifier, 100 kHz - 1.3 GHz	8447D OPT 010	1826	29-May-09
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	11-Apr-10

Radiated Emissions, 30 - 1,000 MHz, 04-Jun-08**Engineer: Rafael Varelas**

<u>Manufacturer</u>	<u>Description</u>	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	29-Jan-09
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1347	17-Jan-09
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497	03-Jul-08

Conducted Emissions - AC Power Ports, 04-Jun-08**Engineer: Rafael Varelas**

<u>Manufacturer</u>	<u>Description</u>	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Elliott Laboratories	LISN, FCC / CISPR	LISN-4, OATS	362	18-Jul-08
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	18-Jul-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	29-Jan-09
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1398	12-Feb-09

Radiated Emissions, 30 - 5,000 MHz, 05-Jun-08**Engineer: Rafael Varelas**

<u>Manufacturer</u>	<u>Description</u>	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	08-Nov-08
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	18-Jul-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	29-Jan-09
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1347	17-Jan-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	11-Jul-08
EMCO	Antenna, Horn, 1-18 GHz	3117	1662	11-Apr-10
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	07-Jan-09
Rohde & Schwarz	Power Sensor, 1 nW-20 mW, 10 MHz-18 GHz, 50ohms	NRV-Z1	1798	21-Aug-08
Elliott	Log Periodic Antenna, 0.3-1 GHz	EL300-1000	297	

Frequency Stability, 06-Jun-08**Engineer: Mehran Birgani**

<u>Manufacturer</u>	<u>Description</u>	<u>Model #</u>	<u>Asset #</u>	<u>Cal Due</u>
Hewlett Packard	Spectrum Analyzer 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Aug-08

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T71884 26 Pages

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Emissions Standard(s):	RSS 119, FCC Part 90 and 15	Class:	A
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

GE MDS LLC

Model

LCT450

Date of Last Test: 6/6/2008

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
		Account Manger:	Susan Pelzl
Contact:	Dennis McCarthy		
Emissions Standard(s):	RSS 119, FCC Part 90 and 15	Class:	A
Immunity Standard(s):	-	Environment:	-

EUT INFORMATION

General Description

The EUT is a narrowband wireless transceiver which is designed to transmit and receive data in the 450 to 512 MHz band. Normally, the EUT would be placed on a tabletop or in a rack during operation. The EUT was, therefore, placed on a table during emissions testing to simulate the end user environment. The electrical rating of the EUT is 13.8vdc, 9 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
GE MDS LLC	LCT450	Digital UHF Radio	Not serialized	E5MDS-LCT450

Other EUT Details

None

EUT Antenna (Intentional Radiators Only)

The EUT can be used with antennas up to 9 dBi.

EUT Enclosure

The EUT enclosure is primarily constructed of die cast metal. It measures approximately 15.0cm wide by 17.0cm deep by 5.0cm high.

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
		Account Manger:	Susan Pelzl
Contact:	Dennis McCarthy		
Emissions Standard(s):	RSS 119, FCC Part 90 and 15	Class:	A
Immunity Standard(s):	-	Environment:	-

Test Configuration #1

FCC Part 90

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
IBM	Thinkpad	Laptop	L3-C3706	Doc
Microwave	44003	50 ohm termination	7943	-

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Cabling and Ports

Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
Antenna	50 ohms Termination	-	-	-
Data Interface	Laptop	DB25	Shielded	2.0
DC Power	13.8V DC Source	2 wire	Unshielded	2.0

FCC Part 15

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Microwave	44003	50 ohm termination	7943	-
Hewlett Packard		DC Power Supply		-

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Cabling and Ports (Part 15)

Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
Antenna	50 ohms	Coaxial	Shielded	1.0
Data Interface	Terminated with loopback	DB25	Shielded	2.0
DC Power	13.8V DC Source	2 wire	Unshielded	2.0

EUT Operation During Emissions Tests

During emissions testing the EUT was set to transmit mode either unmodulated or modulated as required for testing.

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
		Account Manager:	Susan Pelzl
Contact:	Dennis McCarthy		
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

RSS 119 and FCC Part 90

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT's rf port was connected to the measurement instrument's rf port, via an attenuator or dc-block if necessary. EUT was placed inside an environmental chamber.

Ambient Conditions:

Temperature: 21 °C
Rel. Humidity: 36 %

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
1-2	Frequency and Voltage Stability	Part 90 - 1.5ppm	Pass	0.34 ppm

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Radio Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

Run #1: Temperature Vs. Frequency (Fixed stations in the 450-512 MHz band)

Drift	Freq.	Limit
(ppm)	(MHz)	(Hz)
1.5	481.00	721.5

Temperature	Reference Frequency	Measured frequency	Drift	Limit
(Celsius)	(MHz)	(MHz)	(Hz)	(Hz)
-30	480.999730	480.999616	114	721.5
-20	480.999730	480.999625	105	721.5
-10	480.999730	480.999744	14	721.5
0	480.999730	480.999783	53	721.5
10	480.999730	480.999892	162	721.5
20	480.999730	480.999730	0	721.5
30	480.999730	480.999893	163	721.5
40	480.999730	480.999804	74	721.5
50	480.999730	480.999624	106	721.5

Run #2: Voltage Vs. Frequency

Nominal Voltage is 13.8Vdc.

Voltage	Reference Frequency	Frequency Drift	Drift	Limit
(Dc)	(MHz)	(MHz)	(Hz)	(Hz)
85%	480.999706	480.999693	13	721.5
115%	480.999706	480.999658	48	721.5

Worst case drift: 163.0 Hz
0.34 ppm

Radio Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

RSS 119 and FCC Part 90 Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 5/5/2008

Config. Used: 1

Test Engineer: Mehran Birgani

Config Change: None

Test Location: SVOATS #2

EUT Voltage: 13.8VDC

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 22 °C

Rel. Humidity: 44 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Maximim Output Power	FCC Part 90	Pass	Max power = 45.1dBm (32.3 Watts)
2	Unwanted emissions (Mask)	FCC Part 90 - Mask D	Pass	Complied with mask
3	99% Bandwidth	-	N/A	9.05 kHz
4	Antenna Port Conducted Spurious Emissions 30 - 5500 MHz	FCC Part 90	Pass	-22.7dBm @ 469.167MHz (-2.7dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Radio Test Data

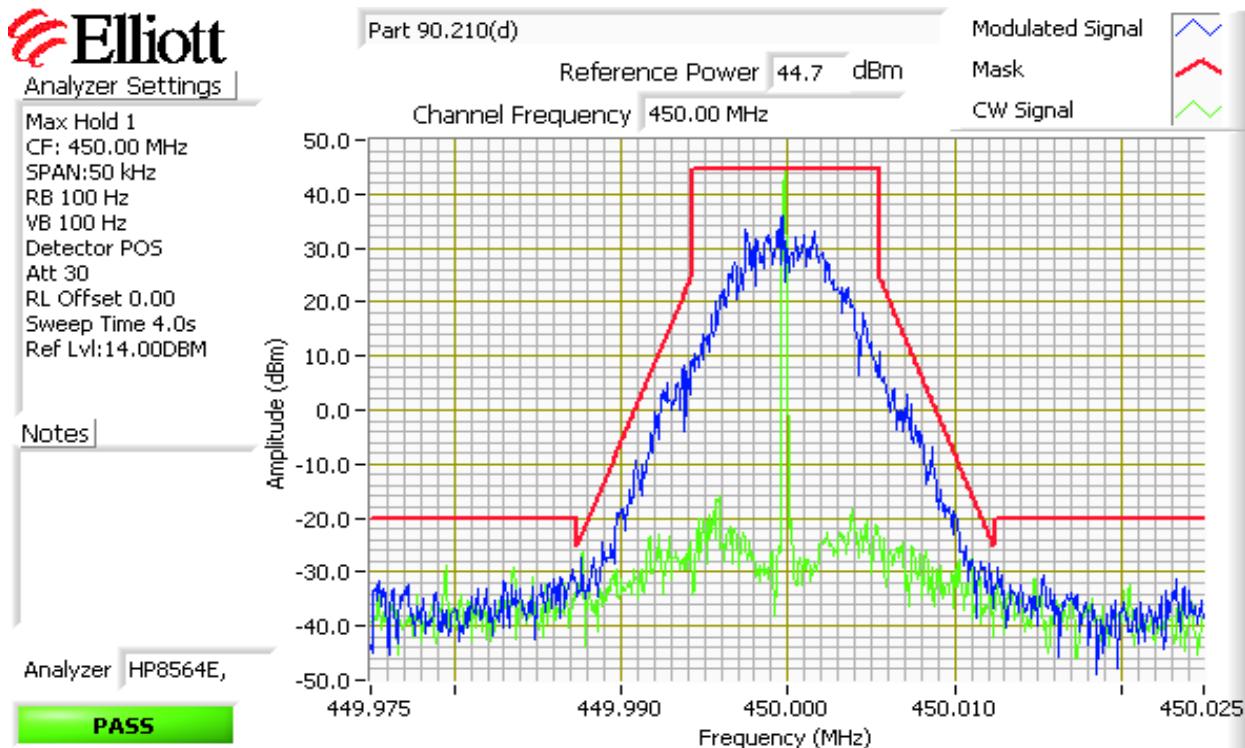
Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

Run #1: Maximum Power Measurements, modulated

Power settings from 20 to 45 are available corresponding to 0.1 to 30 Watts.

Freq.	Setting ²	Pmeas	Duty Cycle	Pout
450	45	44.8	100%	44.8
481	45	45.1	100%	45.1
512	44	44.8	100%	44.8

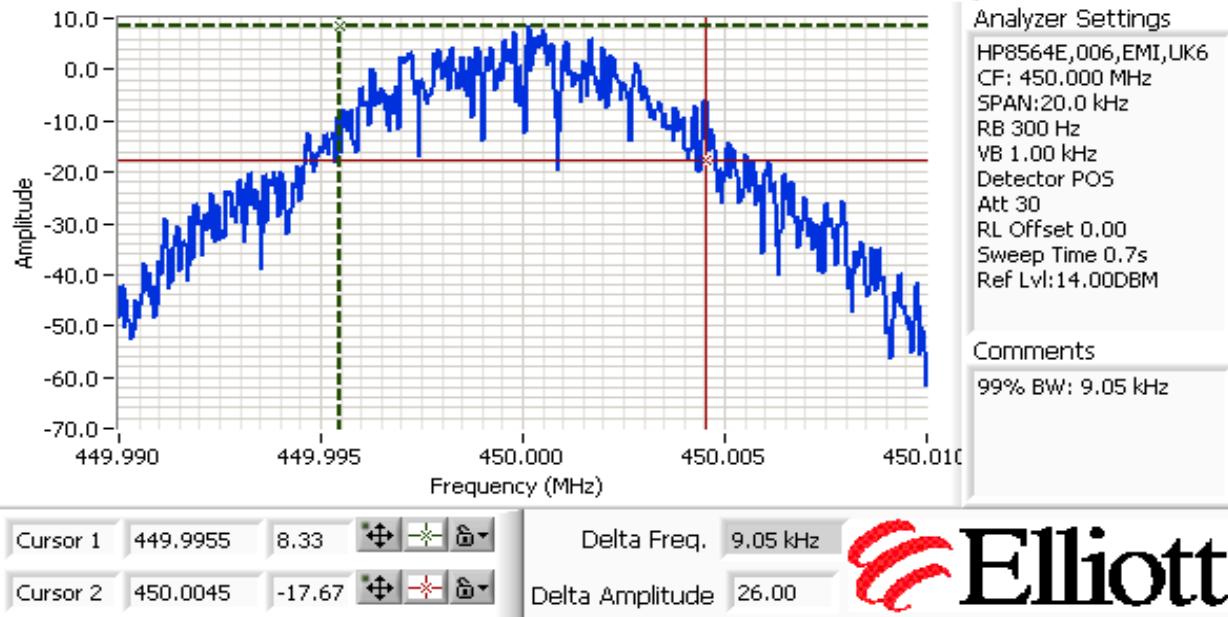
Setting: software power setting of EUT

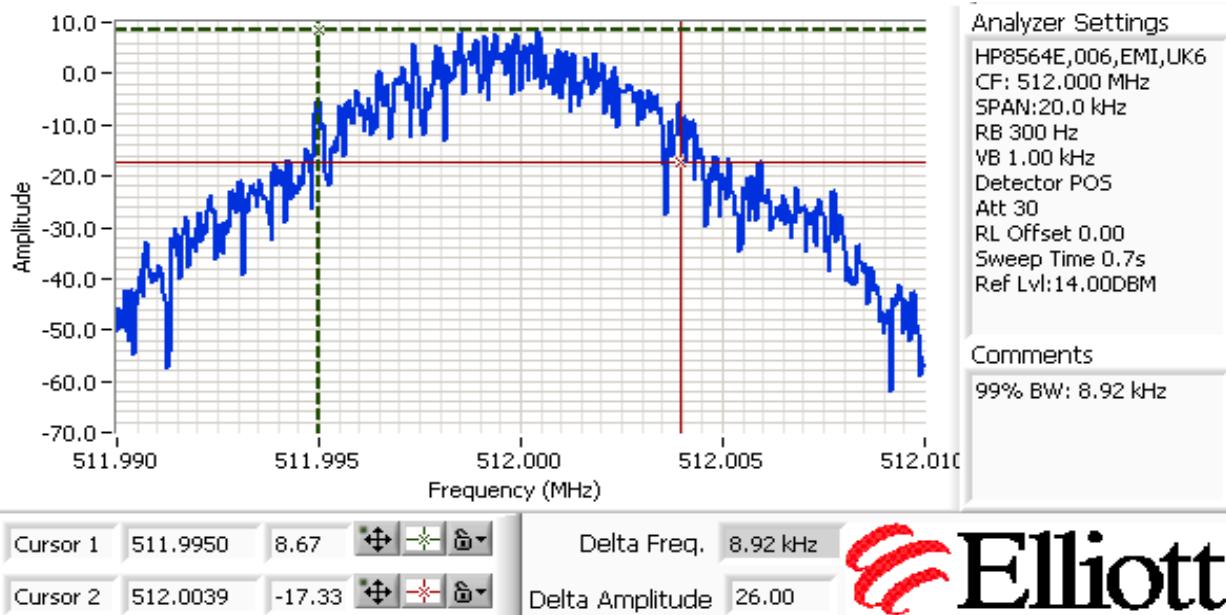
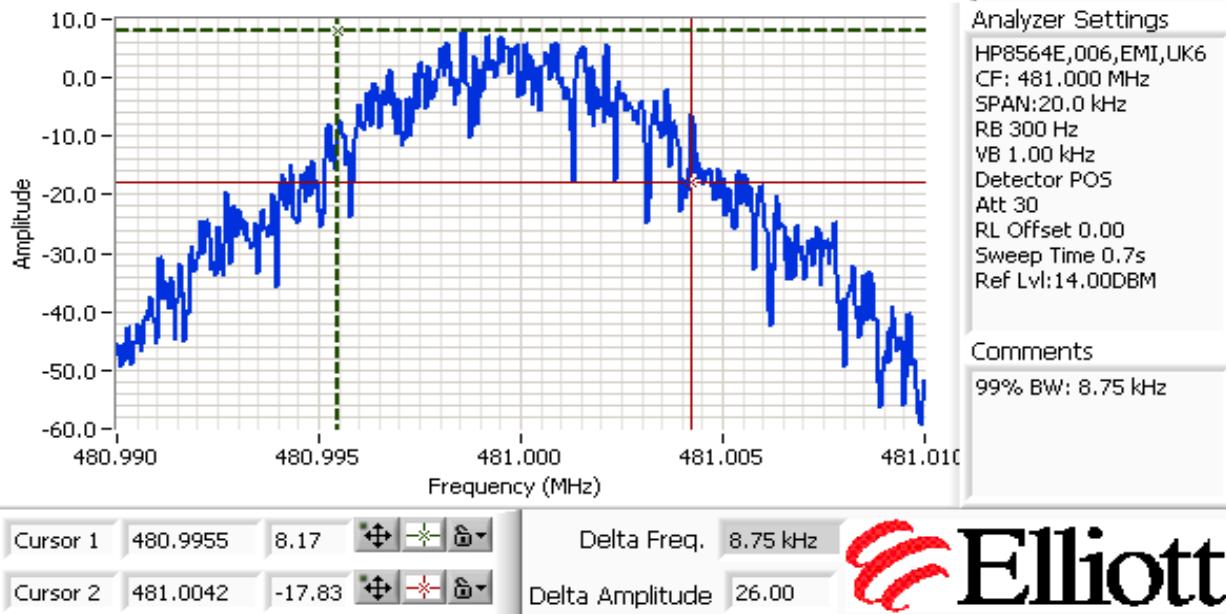

Pmeas: Measured output power (PEP) using power meter

Duty Cycle: Duty cycle of transmissions

Note 1: Output power measured using a peak power meter

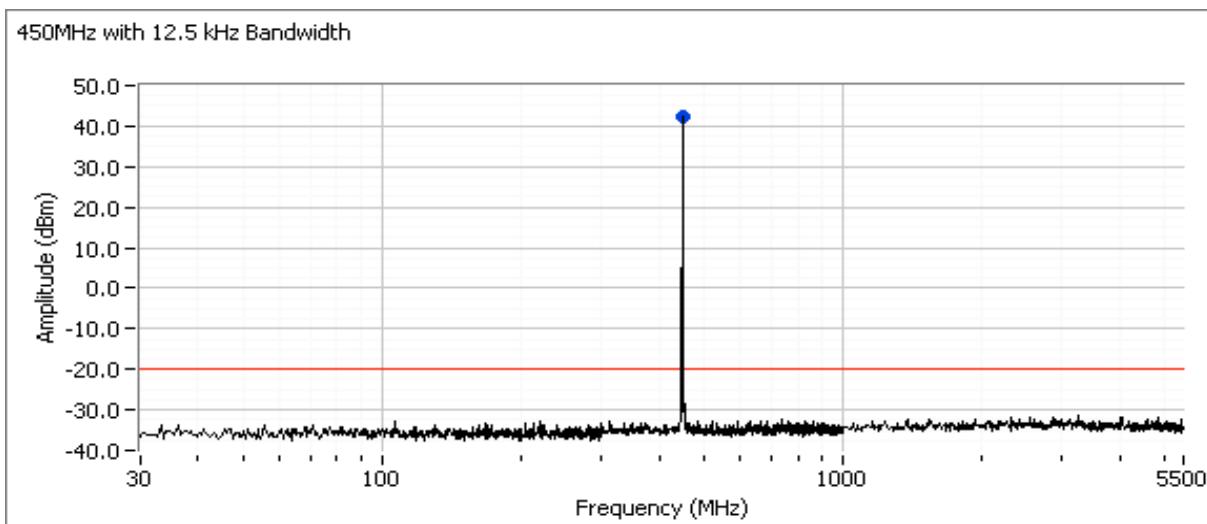
Note 2: Power setting - the software power setting used during testing, included for reference only.


Run #2: Unwanted emissions (Masks)



Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

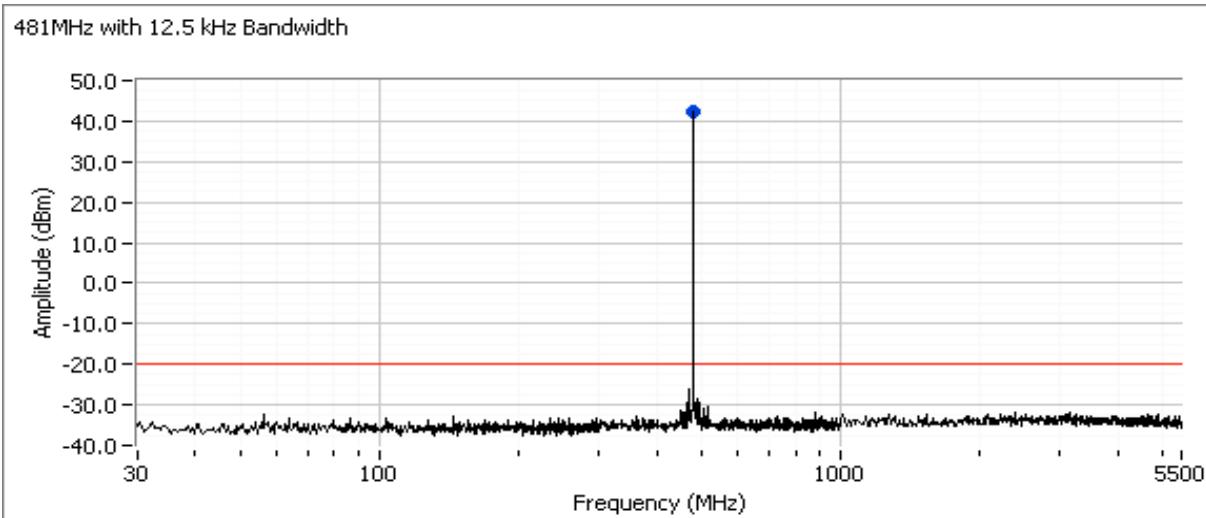
Run #3: Signal Bandwidth, 12.5kHz

Power Setting	Frequency (MHz)	Resolution Bandwidth	Bandwidth (kHz) 99%
37	450	300 Hz	9.05
37	481	300 Hz	8.75
37	512	300 Hz	8.92


Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

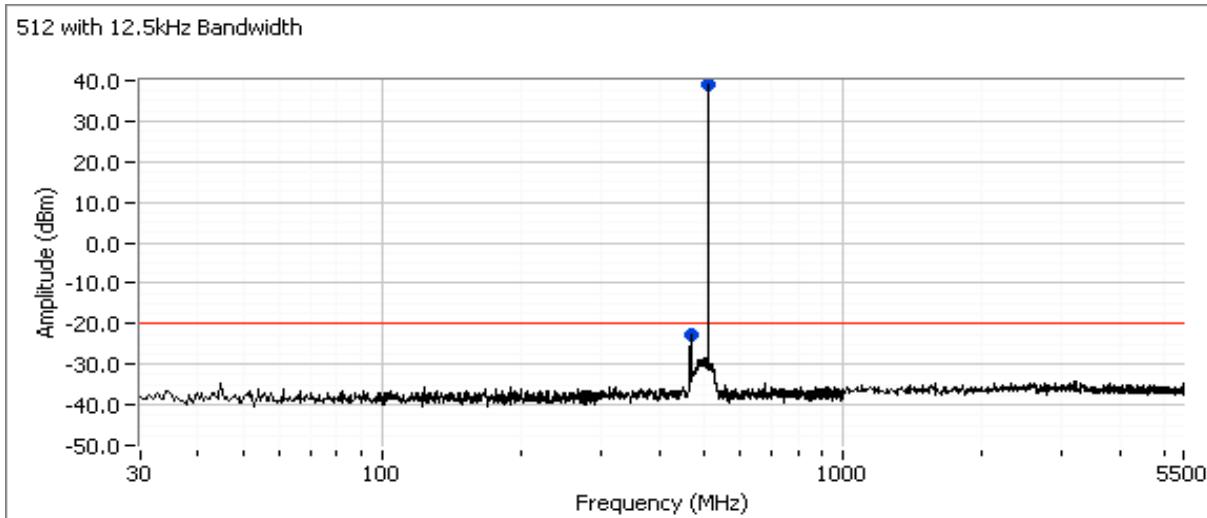
Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

Run #4: Antenna Port Conducted Spurious Emissions 30 - 5500 MHz


Run #4a: 450 MHz with power setting of 45

Frequency MHz	Level dBm	Port	FCC Part 90 Limit		Detector	Channel	Mode	Comments
450.018	44.5	RF Port	-	-	Peak	450 MHz	12.5kHz	Fundamental with short duty cycle
449.994	45.1	RF Port	-	-	Peak	450 MHz	12.5kHz	Fundamental with 100% duty cycle

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A


Run #4b: 481MHz with power setting of 45

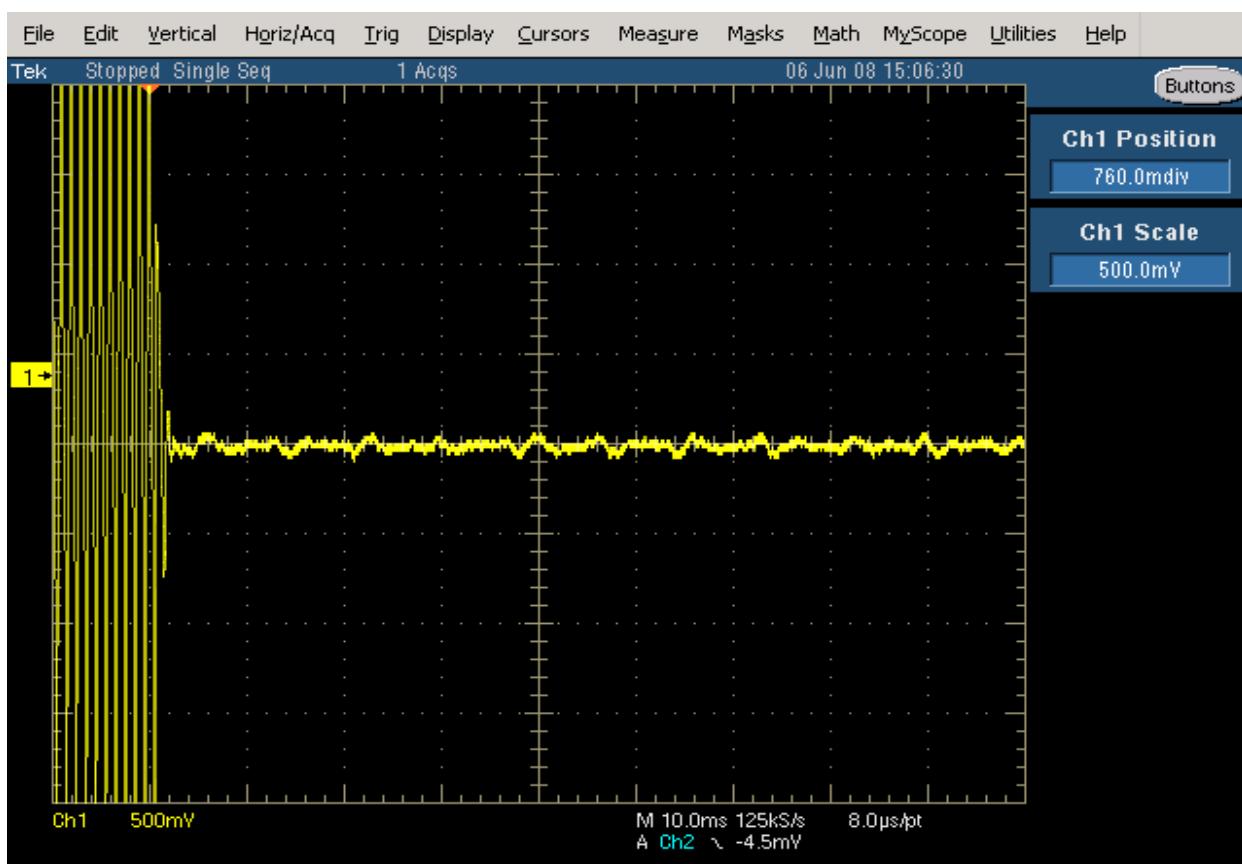
Frequency MHz	Level dBm	Port	FCC Part 90		Detector	Channel	Mode	Comments
			Limit	Margin				
481.019	45.6	RF Port	-	-	Peak	481 MHz	12.5kHz	Fundamental with short duty cycle
481.019	45.4	RF Port	-	-	Peak	481 MHz	12.5kHz	Fundamental with 100% duty cycle

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

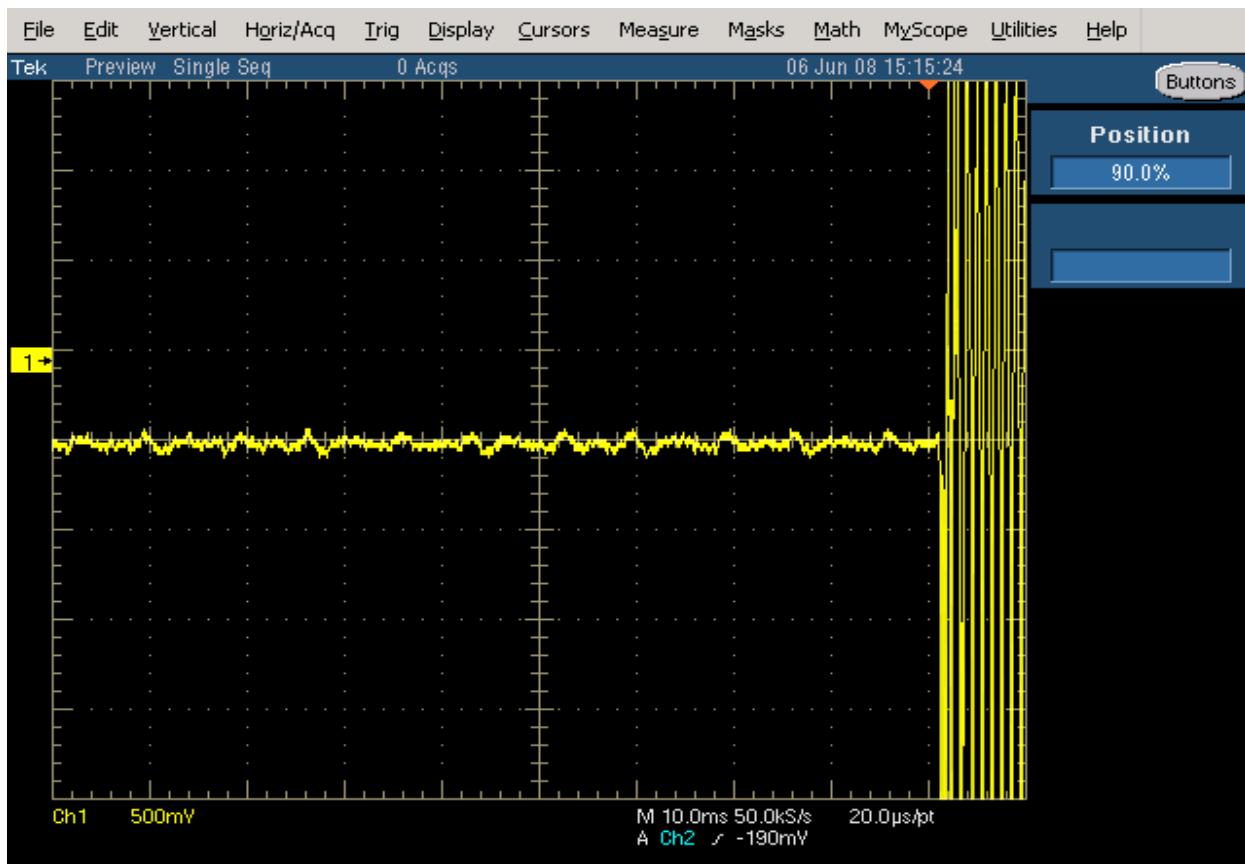
Run #4c: 512 MHz with power setting of 44

Frequency MHz	Level dBm	Port	FCC Part 90		Detector	Channel	Mode	Comments
			Limit	Margin				
469.167	-22.7	RF Port	-20.0	-2.7	Peak	512 MHz	12.5kHz	100% duty cycle
511.993	39.0	RF Port	-	-	Peak	512 MHz	12.5kHz	100% duty cycle

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A


Run #5: Transient Frequency Behavior

Carrier Frequency: 450 MHz


Channel Spacing: 12.5 kHz

Modulation: FM with 9600 bps data rate.

Description: Switch on condition ton, t1, and t2

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

RSS 119 and FCC Part 90 Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/4 & 6/5/2008 7:27:00 PM Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Refer to each run EUT Voltage: 13.8Vdc

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

The measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

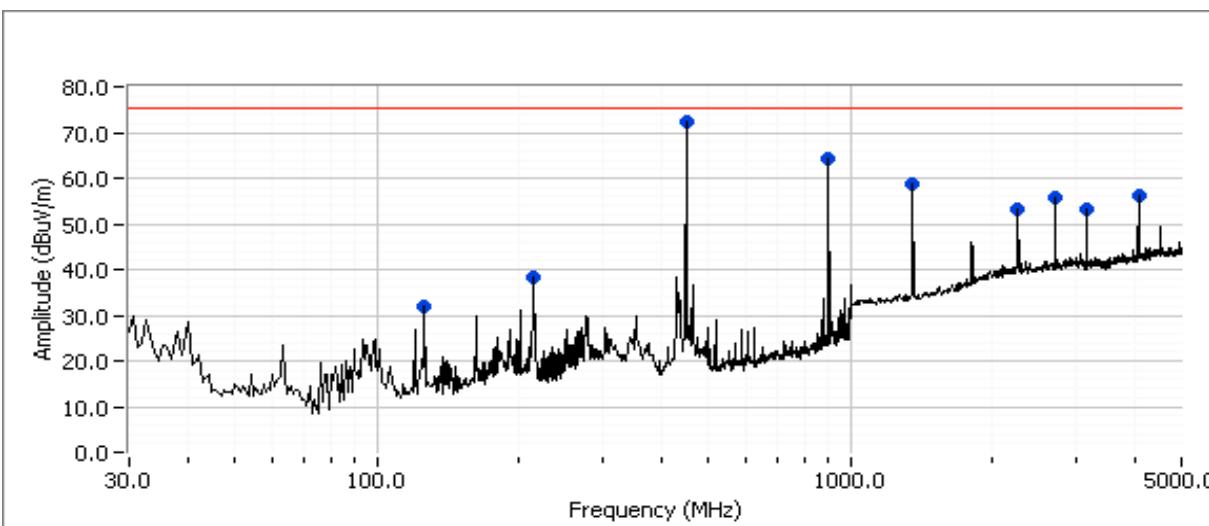
Temperature: 12 °C
Rel. Humidity: 75 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
2	Spurious Emissions Transmit Mode, 30 - 5000 MHz	FCC 90.210/ RSS 119 -20dBm erp	Pass	-21.4dBm @ 4096MHz (-1.4dB)

Modifications Made During Testing

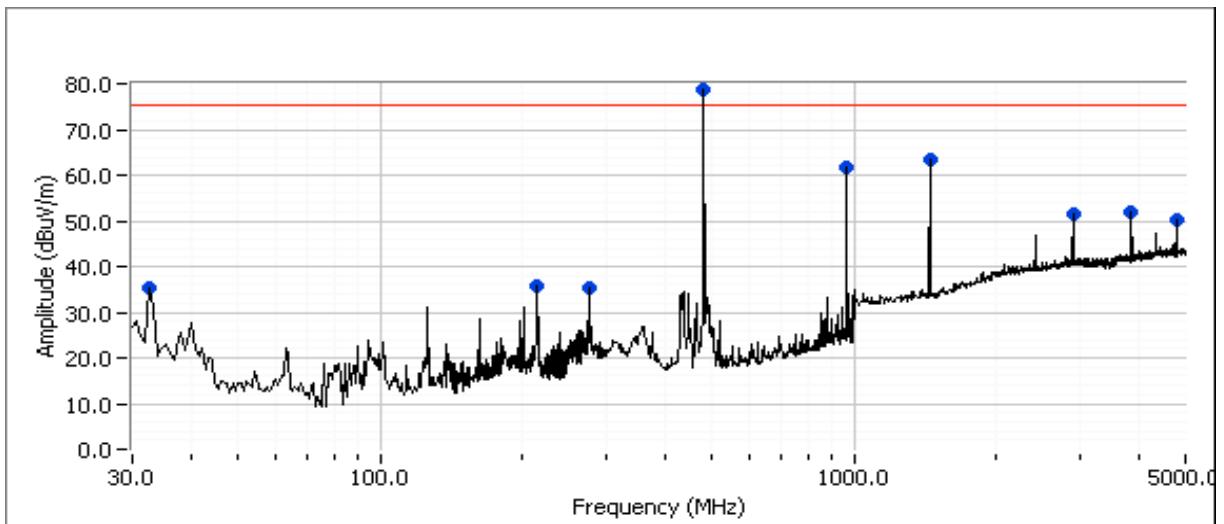
No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

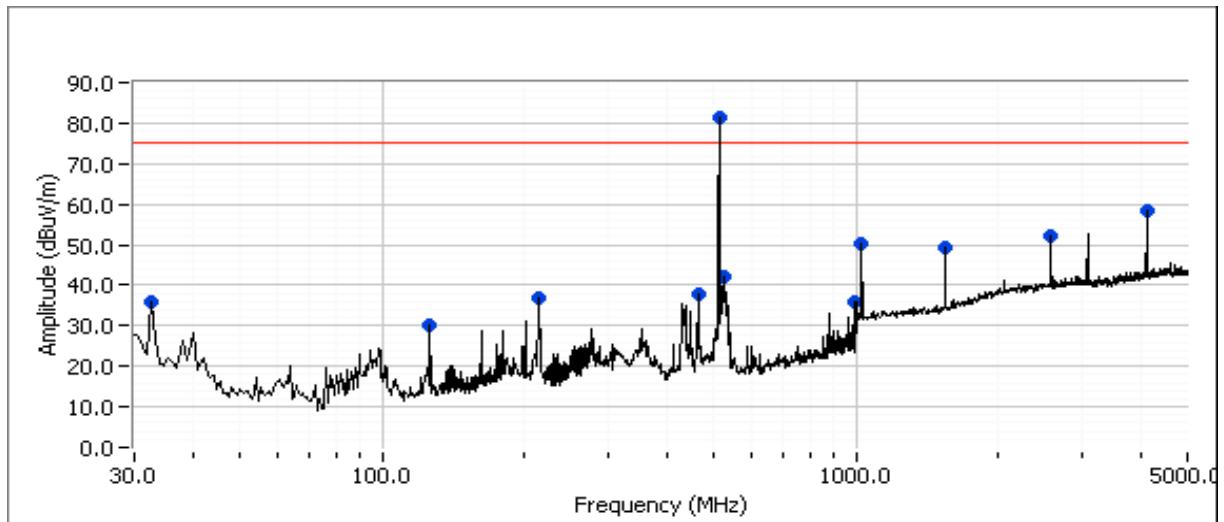
Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

Run #1: Radiated Spurious Emissions, Transmit Mode, 30 - 5000 MHz (Perform at chamber #2)


Run #1a: EUT @ 450 MHz

Frequency	Level	Pol	FCC 90.210		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
125.850	31.9	H	77.4	-45.5	Peak	238	1.7	
214.950	38.5	V	77.4	-38.9	Peak	61	1.7	
450.000	72.2	H	-	-	Peak	173	1.7	Fundamental
900.097	64.1	V	77.4	-13.3	Peak	30	1.7	
1350.090	58.6	H	77.4	-18.8	Peak	140	1.7	
2258.750	53.3	V	77.4	-24.1	Peak	219	1.7	
2700.220	55.6	H	77.4	-21.8	Peak	165	1.7	
3157.250	53.3	V	77.4	-24.1	Peak	195	1.7	
4055.000	56.2	V	77.4	-21.2	Peak	350	1.7	

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A


Run #1b: EUT @ 481 MHz

Frequency	Level	Pol	FCC 90.210		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
481.000	78.8	H	-	-	Peak	259	1.7	Fundamental
962.080	61.5	H	77.4	-15.9	Peak	131	1.7	
275.025	35.3	V	77.4	-42.1	Peak	149	1.7	
214.950	35.6	V	77.4	-41.8	Peak	28	1.7	
32.700	35.2	H	77.4	-42.2	Peak	271	1.7	
1443.020	63.5	V	77.4	-13.9	Peak	34	1.7	
2895.250	51.5	V	77.4	-25.9	Peak	343	1.7	
3850.250	52.0	V	77.4	-25.4	Peak	9	1.7	
4811.000	50.4	V	77.4	-27.0	Peak	344	1.7	

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

Run #1c: EUT @ 512 MHz

Frequency	Level	Pol	FCC 90.210		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
32.700	36.1	H	77.4	-41.3	Peak	241	1.7	
125.850	30.0	V	77.4	-47.4	Peak	149	1.7	
214.950	36.7	H	77.4	-40.7	Peak	121	1.7	
464.500	37.9	H	77.4	-39.5	Peak	150	1.7	
512.000	81.2	H	-	-	Peak	230	1.7	Fundamental
527.500	42.0	H	77.4	-35.4	Peak	240	1.7	
987.750	35.8	V	77.4	-41.6	Peak	319	1.7	
1028.500	50.3	H	77.4	-27.1	Peak	227	1.7	
1541.500	49.4	V	77.4	-28.0	Peak	36	1.7	
2567.500	52.2	V	77.4	-25.2	Peak	213	1.7	
4096.010	58.3	V	77.4	-19.1	Peak	207	1.7	

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

Run #2: Radiated Spurious Emissions, Transmit Mode: Final Field Strength and Substitution Measurements
Test performed at SVOATS #2

Frequency MHz	Level dB μ V/m	Pol v/h	FCC 90.210 Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	Operating Frequency
900.000	72.6	V	77.4	-4.8	PK	166	1.1		450 MHz
962.000	73.5	H	77.4	-3.9	PK	44	1.0		481 MHz
1442.760	66.4	V	77.4	-11.0	PK	1	1.0		481 MHz
1350.070	59.9	H	77.4	-17.5	PK	126	1.1		450 MHz
4096.010	73.6	V	77.4	-3.8	PK	335	1.0		512 MHz
1024.020	70.7	H	75.3	-4.6	PK	212	1.0		512 MHz
1536.050	61.7	V	77.4	-15.7	PK	161	1.0		512 MHz
2560.000	67.4	V	77.4	-10.0	PK	109	1.0		512 MHz
1442.720	75.5	V	77.4	-1.9	PK	162	1.0		481 MHz
2885.990	74.6	V	77.4	-2.8	PK	162	1.0		481 MHz
3847.870	68.7	V	77.4	-8.7	PK	162	1.0		481 MHz
4809.850	64.3	V	77.4	-13.1	PK	162	1.0		481 MHz
2699.940	71.2	V	77.4	-6.2	PK	125	1.0		450 MHz
2250.320	65.8	V	77.4	-11.6	PK	125	1.0		450 MHz
3255.410	49.5	V	77.4	-27.9	PK	125	1.0		450 MHz
4049.940	66.5	V	77.4	-10.9	PK	126	1.0		450 MHz
2699.910	69.2	H	77.4	-8.2	PK	132	1.0		450 MHz

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	N/A

Horizontal

Frequency MHz	Substitution measurements			Site Factor ⁴	EUT measurements			eirp Limit dBm	erp Limit dBm	Margin dB
	Pin ¹	Gain ²	FS ³		FS ⁵	eirp (dBm)	erp (dBm)			
962.000	-13.8	6.0	90.6	98.4	73.5	-24.9	-27.1		-20.0	-7.1
1350.000	-14.6	3.1	87.3	98.8	59.9	-38.9	-41.1		-20.0	-21.1
1024.000	-13.9	2.2	88.0	99.7	70.7	-29.0	-31.2		-20.0	-11.2
2699.100	-17.1	6.0	87.2	98.3	69.2	-29.1	-31.3		-20.0	-11.3

Vertical

Frequency MHz	Substitution measurements			Site Factor ⁴	EUT measurements			eirp Limit dBm	erp Limit dBm	Margin dB
	Pin ¹	Gain ²	FS ³		FS ⁵	eirp (dBm)	erp (dBm)			
4096.000	-19.1	8.4	82.1	92.8	73.6	-19.2	-21.4		-20.0	-1.4
1442.720	-14.7	4.8	84.8	94.7	75.5	-19.2	-21.4		-20.0	-1.4
900.000	-13.7	7.1	88.0	94.6	72.6	-22.0	-24.2		-20.0	-4.2
2885.990	-17.9	6.4	85.7	97.2	74.6	-22.6	-24.8		-20.0	-4.8
2699.940	-17.1	6.0	86.4	97.5	71.2	-26.3	-28.5		-20.0	-8.5
3847.870	-19.3	8.4	85.6	96.5	68.7	-27.8	-30.0		-20.0	-10.0
2560.000	-16.8	5.0	85.3	97.1	67.4	-29.7	-31.9		-20.0	-11.9
4049.940	-19.0	8.4	86.6	97.2	66.5	-30.7	-32.9		-20.0	-12.9
4809.850	-19.7	9.2	84.8	95.3	64.3	-31.0	-33.2		-20.0	-13.2
1442.700	-14.7	3.2	86.6	98.1	66.4	-31.7	-33.9		-20.0	-13.9
2250.320	-16.3	4.0	85.5	97.8	65.8	-32.0	-34.2		-20.0	-14.2
1536.050	-14.9	4.8	85.6	95.7	61.7	-34.0	-36.2		-20.0	-16.2
3255.410	-18.9	7.0	86.0	97.9	49.5	-48.4	-50.6		-20.0	-30.6

Note 1: Pin is the input power (dBm) to the substitution antenna

Note 2: Gain is the gain (dBi) for the substitution antenna. A dipole has a gain of 2.2dBi.

Note 3: FS is the field strength (dBuV/m) measured from the substitution antenna.

Note 4: Site Factor - this is the site factor to convert from a field strength in dBuV/m to an eirp in dBm.

Note 5: EUT field strength as measured during initial run.

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	A

Receiver Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/3/2008 18:40

Config. Used: 1

Test Engineer: Rafael Varelas

Config Change: None

Test Location: Chamber #2

EUT Voltage: 13.8Vdc

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

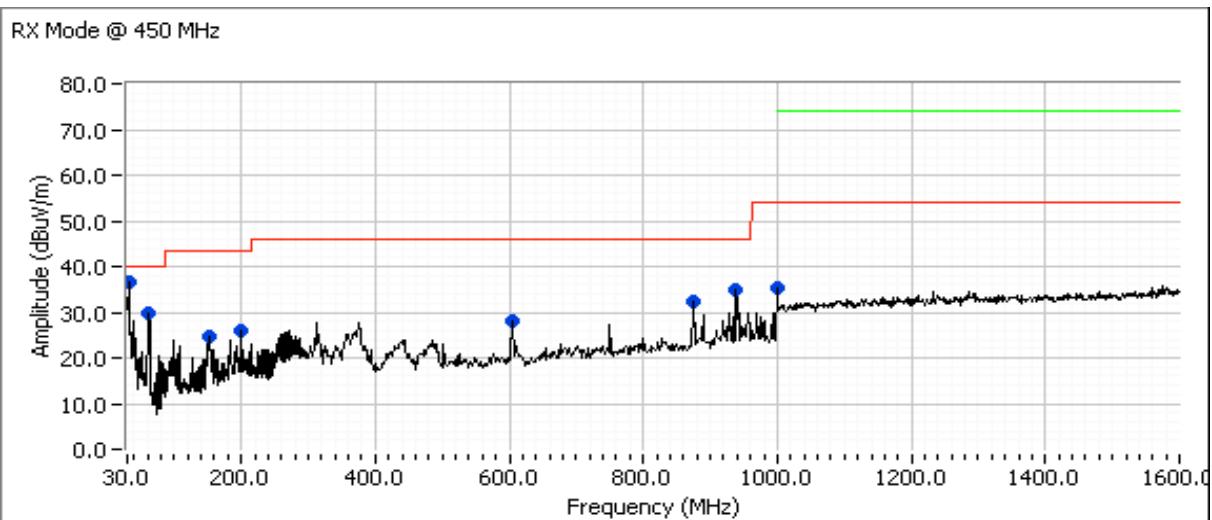
Ambient Conditions:	Temperature:	12 °C
	Rel. Humidity:	77 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 1600MHz, Maximized Emissions	FCC Class B	Pass	34.5dB μ V/m @ 937.521MHz (-11.5dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

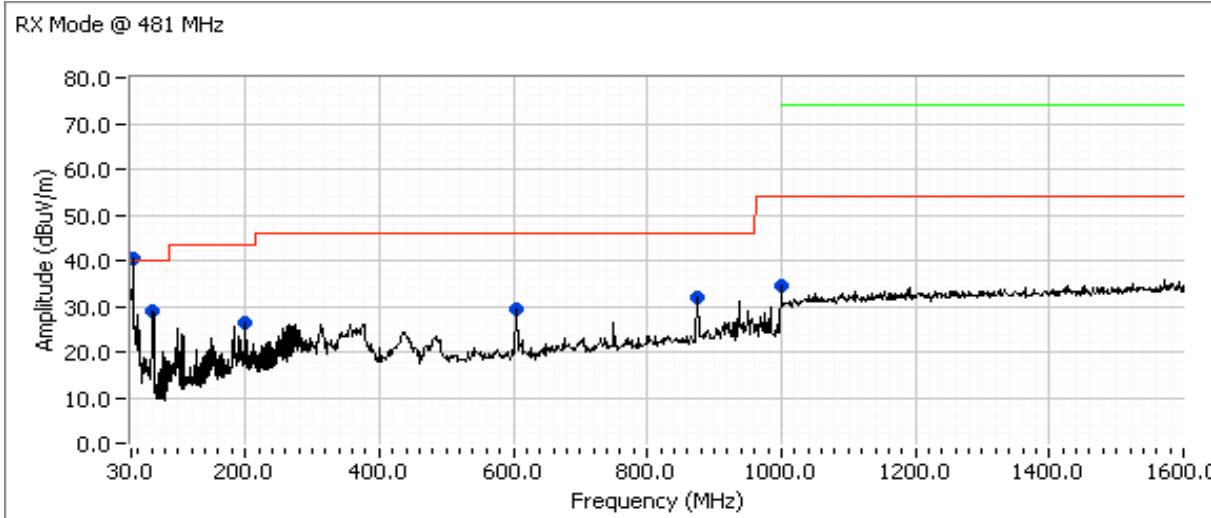
Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	A

Run #1a: Preliminary Radiated Emissions, 30-1600 MHz
RX 450 MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
32.535	36.8	H	40.0	-3.2	Peak	91	1.7	
62.294	29.7	V	40.0	-10.3	Peak	328	1.7	
151.008	24.6	H	43.5	-18.9	Peak	272	1.7	
199.986	25.9	H	43.5	-17.6	Peak	61	1.7	
603.309	28.1	V	46.0	-17.9	Peak	343	1.7	
875.047	32.3	H	46.0	-13.7	Peak	232	1.7	
937.550	35.0	H	46.0	-11.0	Peak	132	1.7	
1000.000	35.4	H	54.0	-18.6	Peak	154	1.7	

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	A


Run #1b: Maximized Readings From Run #1a

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC Class B	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
937.521	34.5	H	46.0	-11.5	QP	66	1.0
875.447	32.2	H	46.0	-13.8	QP	45	1.0
1000.000	34.5	H	54.0	-19.5	QP	77	1.0
32.535	17.4	H	40.0	-22.6	QP	360	1.0
199.986	18.3	H	43.5	-25.2	QP	40	1.0
603.509	20.4	V	46.0	-25.6	QP	0	1.0
62.559	14.4	V	40.0	-25.6	QP	106	1.0
151.308	15.9	H	43.5	-27.6	QP	40	1.0

Run #2a: Preliminary Radiated Emissions, 30-1600 MHz
RX 481 MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	A

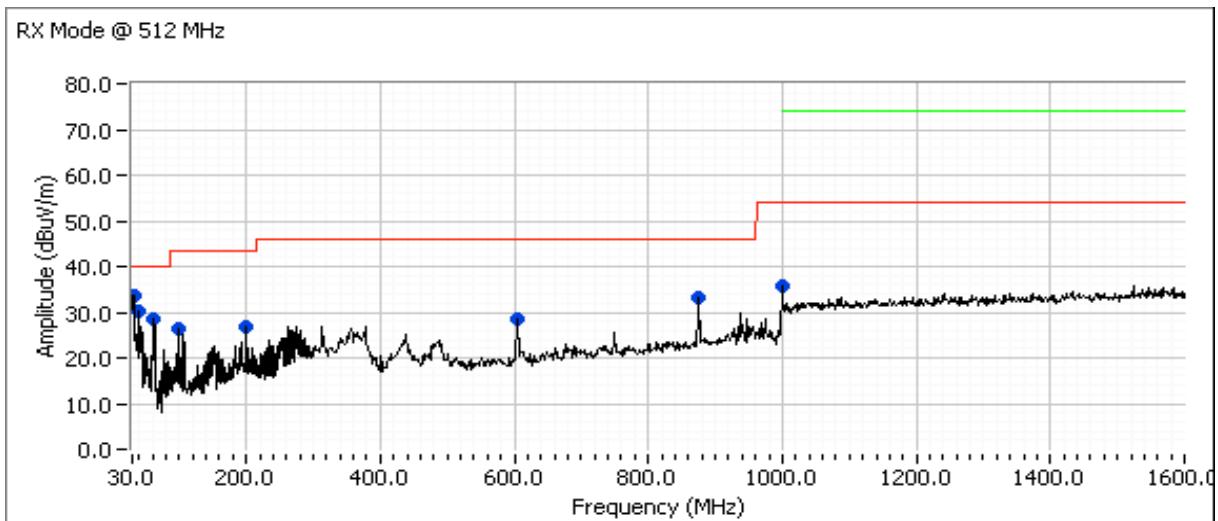
Run #2a: Continued

Frequency	Level	Pol	FCC Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
32.559	40.4	H	40.0	0.4	Peak	59	1.7	
61.528	29.0	V	40.0	-11.0	Peak	3	1.7	
200.092	26.3	H	43.5	-17.2	Peak	59	1.7	
1000.000	34.5	H	54.0	-19.5	Peak	162	1.7	
875.047	32.0	H	46.0	-14.0	Peak	230	1.7	
600.040	29.4	V	46.0	-16.6	Peak	43	1.7	

Run #2b: Maximized Readings From Run #2a

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
874.933	33.3	H	46.0	-12.7	QP	181	1.0	Signal Sub
1000.000	34.1	H	54.0	-19.9	QP	30	1.0	
600.040	24.1	V	46.0	-21.9	QP	106	1.0	
32.559	17.8	H	40.0	-22.2	QP	100	1.0	
200.492	18.8	H	43.5	-24.7	QP	26	1.0	
62.528	14.8	V	40.0	-25.2	QP	15	1.0	


EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	A

Run #3a: Preliminary Radiated Emissions, 30-1000 MHz

RX 512 MHz

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC Class B		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
32.606	33.5	H	40.0	-6.5	Peak	91	1.7	
40.007	30.3	V	40.0	-9.7	Peak	178	1.7	
61.846	28.3	V	40.0	-11.7	Peak	328	1.7	
97.707	26.4	H	43.5	-17.1	Peak	181	1.7	
199.255	26.6	H	43.5	-16.9	Peak	61	1.7	
603.309	28.3	V	46.0	-17.7	Peak	184	1.7	
875.047	33.0	H	46.0	-13.0	Peak	65	1.7	
1000.000	35.9	H	54.0	-18.1	Peak	163	1.7	

EMC Test Data

Client:	GE MDS LLC	Job Number:	J71687
Model:	LCT450	T-Log Number:	T71884
Contact:	Dennis McCarthy	Account Manager:	Susan Pelzl
Standard:	RSS 119, FCC Part 90 and 15	Class:	A

Run #3b: Maximized Readings From Run #3a

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC Class B	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters
875.004	33.5	H	46.0	-12.5	QP	176	1.0
1000.000	33.6	H	54.0	-20.4	QP	80	1.0
600.040	23.8	V	46.0	-22.2	QP	101	1.0
32.535	17.4	H	40.0	-22.6	QP	255	1.0
199.986	18.3	H	43.5	-25.2	QP	32	1.0
40.001	20.4	V	46.0	-25.6	QP	0	1.0
62.559	14.4	V	40.0	-25.6	QP	12	1.0
97.804	15.9	H	43.5	-27.6	QP	38	1.0

EXHIBIT 3: Test Configuration Photographs – Radiated Emissions

1 Page

EXHIBIT 4: Theory of Operation GE MDS LLC Model LCT450

EXHIBIT 5: Proposed FCC ID Label & Label Location

EXHIBIT 6: Detailed Photographs GE MDS LLC Model LCT450

EXHIBIT 7: Installation Guide GE MDS LLC Model LCT450

EXHIBIT 8: Block Diagram GE MDS LLC Model LCT450

EXHIBIT 9: Schematic Diagrams GE MDS LLC Model LCT450