

APPLICATION FOR FCC CERTIFICATION

DIRECT SEQUENCE SPREAD SPECTRUM TRANSMITTER

Samsung Electro-Mechanics
314, Maetan-3Dong, Paldal-Gu, Suwon,
Kyunggi-Do, Korea, 442-743
+82-331-210-6662

Model: Magic Wave PCMCIA Card SWL-2000N

FCC ID: E2XSWL-2000N

August 3, 1999

This report concerns (check one): Equipment Type: PCMCIA Board	Original Grant: <input checked="" type="checkbox"/>	Class II Change:
Deferred grant requested per 47 CFR 0.457 (d) (1) (ii)? If yes, defer until: _____	Yes: <input type="checkbox"/>	No: <input checked="" type="checkbox"/>
<i>Date</i>		
Company name agrees to notify the Commission by: _____ (date) of the intended date of announcement of the product so that the grant can be issued on that date.		
Transition Rules Request per 15.37? Yes: <input checked="" type="checkbox"/> No: <input type="checkbox"/> If no, assumed Part 15, subpart B for unintentional radiators - the new 47 CFR [10-1-90 Edition] provision..		

REPORT PREPARED BY:

EMI Technician: **Daniel W. Baltzell**
Administrative Writer: **Melissa Fleming**

Rhein Tech Laboratories, Inc.

Document Number: 990362

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.

TABLE OF CONTENTS

1.0	GENERAL INFORMATION.....	1
1.1	PRODUCT DESCRIPTION	1
1.2	RELATED SUBMITTAL(S)/GRANT(S).....	2
1.3	TEST SYSTEM DETAILS	2
1.4	CONFIGURATION OF TESTED SYSTEM	2
1.5	TEST METHODOLOGY	3
1.6	TEST FACILITY	3
2.0	PRODUCT LABELING.....	3
3.0	SYSTEM TEST CONFIGURATION	4
3.1	JUSTIFICATION.....	4
3.2	EUT EXERCISE SOFTWARE	4
3.3	SPECIAL ACCESSORIES.....	4
3.4	MODULATED BANDWIDTH	5
3.5	POWER OUTPUT.....	5
3.6	CONDUCTED SPURIOUS EMISSIONS	5
3.7	RADIATED SPURIOUS EMISSIONS	5
3.8	POWER SPECTRAL DENSITY.....	5
3.9	PROCESSING GAIN	6
3.10	COMPLIANCE WITH THE RESTRICTED BAND EDGE 2.4850 TO 2.5000 GHz.....	9
3.11	RF EXPOSURE CALCULATIONS FOR SAMSUNG's HIGH GAIN ANTENNAS ERROR! BOOKMARK NOT DEFINED.	
3.12	CONFORMANCE STATEMENT	10
4.0	MEASUREMENT PLOTS.....	ERROR! BOOKMARK NOT DEFINED.
5.0	ANTENNA SPECIFICATIONS.....	11
5.0	BLOCK DIAGRAM/SCHEMATICS OF MAGIC WAVE PCMCIAERROR! BOOKMARK NOT DEFINED.	
7.0	CONDUCTED, FIELD STRENGTH CALCULATION, AND RADIATED TEST METHODOLOGY	12
7.1	FIELD STRENGTH CALCULATION	12
7.2	RADIATED MEASUREMENT	13
8.0	CONDUCTED EMISSION DATA.....	14
8.1	CONDUCTED MEASUREMENT PHOTOS	ERROR! BOOKMARK NOT DEFINED.
9.0	RADIATED EMISSION DATA.....	20
	FREQUENCY	23
9.1	RADIATED MEASUREMENT PHOTOS.....	ERROR! BOOKMARK NOT DEFINED.
10.0	PHOTOS OF TESTED EUT	ERROR! BOOKMARK NOT DEFINED.

APPENDIX LISTING

APPENDIX A: EMISSIONS EQUIPMENT LIST	26
APPENDIX B: USER'S MANUAL I	27

FIGURE INDEX

FIGURE 1: LOCATION OF LABEL ON EUT	3
FIGURE 2: PROCESSING GAIN PLOT.....	8
FIGURE 3: CHANNEL 1 POWER SPECTRAL DENSITY -33.3dBmERROR! BOOKMARK NOT DEFINED.
FIGURE 4: CHANNEL 1 BANDWIDTH 16.94 MHzERROR! BOOKMARK NOT DEFINED.
FIGURE 5: CHANNEL 1 CONDUCTED SPURIOUS NOISE 10 kHz – 30 MHzERROR! BOOKMARK NOT DEFINED.
FIGURE 6: CHANNEL 1 CONDUCTED SPURIOUS NOISE 30 MHz – 2 GHz.....	.ERROR! BOOKMARK NOT DEFINED.
FIGURE 7: CHANNEL 1 CONDUCTED SPURIOUS NOISE 2-10 GHz.....	.ERROR! BOOKMARK NOT DEFINED.
FIGURE 8: CHANNEL 1 CONDUCTED SPURIOUS NOISE 10-24 GHzERROR! BOOKMARK NOT DEFINED.
FIGURE 9: CHANNEL 6 POWER SPECTRAL DENSITY -29.2dBm.....	.ERROR! BOOKMARK NOT DEFINED.
FIGURE 10: CHANNEL 6 BANDWIDTH 16.92 MHzERROR! BOOKMARK NOT DEFINED.
FIGURE 11: CHANNEL 6 CONDUCTED SPURIOUS NOISE 10 kHz – 30 MHzERROR! BOOKMARK NOT DEFINED.
FIGURE 12: CHANNEL 6 CONDUCTED SPURIOUS NOISE 30 MHz – 2 GHzERROR! BOOKMARK NOT DEFINED.
FIGURE 13: CHANNEL 6 CONDUCTED SPURIOUS NOISE 2-10 GHz.....	.ERROR! BOOKMARK NOT DEFINED.
FIGURE 14: CHANNEL 6 CONDUCTED SPURIOUS NOISE 10-24 GHzERROR! BOOKMARK NOT DEFINED.
FIGURE 15: CHANNEL 11 POWER SPECTRAL DENSITY -26.0dBmERROR! BOOKMARK NOT DEFINED.
FIGURE 16: CHANNEL 11 BANDWIDTH 17.03 MHzERROR! BOOKMARK NOT DEFINED.
FIGURE 17: CHANNEL 11 CONDUCTED SPURIOUS NOISE 10 kHz – 30 MHzERROR! BOOKMARK NOT DEFINED.
FIGURE 18: CHANNEL 11 CONDUCTED SPURIOUS NOISE 30 MHz – 2 GHz.....	.ERROR! BOOKMARK NOT DEFINED.
FIGURE 19: CHANNEL 20 CONDUCTED SPURIOUS NOISE 2-10 GHzERROR! BOOKMARK NOT DEFINED.
FIGURE 20: CHANNEL 11 CONDUCTED SPURIOUS NOISE 10-24 GHzERROR! BOOKMARK NOT DEFINED.
FIGURE 21: PCM FRONT.....	.ERROR! BOOKMARK NOT DEFINED.
FIGURE 22: PCM COMPONENT SIDEERROR! BOOKMARK NOT DEFINED.
FIGURE 23: PCM SOLDER SIDEERROR! BOOKMARK NOT DEFINED.
FIGURE 29: PCM BACK SIDEERROR! BOOKMARK NOT DEFINED.
FIGURE 24: STUB ANTENNA FRONT SIDEERROR! BOOKMARK NOT DEFINED.
FIGURE 25: STUB ANTENNA BACK SIDE.....	.ERROR! BOOKMARK NOT DEFINED.
FIGURE 26: STUB ANTENNAERROR! BOOKMARK NOT DEFINED.

TABLE INDEX

TABLE 1: CONDUCTED EMISSIONS (CHANNEL 1 WITH THE STUB ANTENNA).....	14
TABLE 2: CONDUCTED EMISSIONS (CHANNEL 6 WITH THE STUB ANTENNA).....	15
TABLE 3: CONDUCTED EMISSIONS (CHANNEL 11 WITH THE STUB ANTENNA).....	16
TABLE 4: CONDUCTED EMISSIONS (CHANNEL 1 WITH THE INTERNAL ANTENNA).....	17
TABLE 5: CONDUCTED EMISSIONS (CHANNEL 6 WITH THE INTERNAL ANTENNA).....	18
TABLE 6: CONDUCTED EMISSIONS (CHANNEL 11 WITH THE INTERNAL ANTENNA).....	19
TABLE 7: RADIATED EMISSIONS (CHANNEL 1 WITH THE STUB ANTENNA).....	20
TABLE 8: RADIATED EMISSIONS (CHANNEL 6 WITH THE STUB ANTENNA).....	21
TABLE 9: RADIATED EMISSIONS (CHANNEL 11 WITH THE STUB ANTENNA)	22
TABLE 10: RADIATED EMISSIONS (CHANNEL 1 WITH THE INTERNAL ANTENNA).....	23
TABLE 11: RADIATED EMISSIONS (CHANNEL 6 WITH THE INTERNAL ANTENNA).....	24
TABLE 12: RADIATED EMISSIONS (CHANNEL 11 WITH THE INTERNAL ANTENNA).....	25

1.0 GENERAL INFORMATION

The following Application for FCC Certification for a Direct Sequence Spread Spectrum transmitter is prepared on behalf of Samsung Electro-Mechanics in accordance with Part 15.247 of the Federal Communications Commissions rules and regulations. The Equipment Under Test (EUT) was the Samsung Electro-Mechanics Magic Wave PCMCIA Card SWL-2000N, FCC ID: E2XSWL-2000N. The test results reported in this document relate only to the item that was tested.

All measurements contained in this Application were conducted in accordance with ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 1992. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Some accessories are used to increase sensitivity and prevent overloading of the measuring instrument. These are explained in the appendix of this report. Calibration checks are performed regularly on the instruments, and all accessories including the high pass filter, preamplifier and cables.

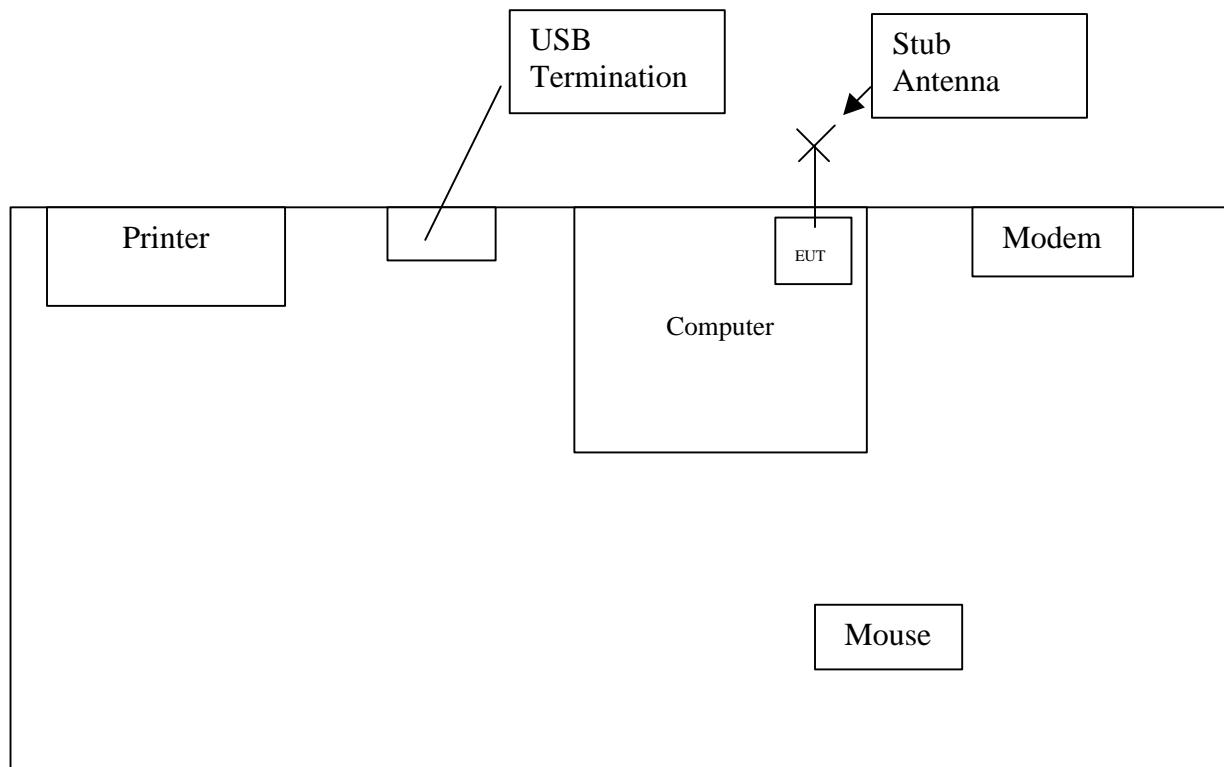
All radiated and conducted emissions measurement were performed manually at Rhein Tech, Incorporated. The radiated emissions measurements required by the rules were performed on the three meter, open field, test range maintained by Rhein Tech Laboratories, Inc., 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. Complete description and site attenuation measurement data have been placed on file with the Federal Communications Commission. The power line conducted emission measurements were performed in a shielded enclosure also located at the Herndon, Virginia facility. Rhein Tech, Labs, Inc. is on the FCC accepted lab list as a Facility available to do measurement work for others on a contract basis.

1.1 PRODUCT DESCRIPTION

The model SWL-2000N (referred to as the EUT in this report) is a Direct Sequence Spread Spectrum wireless LAN, PCMCIA network card. The EUT provides wireless communications between computers. The EUT is designed to be installed into the PCMCIA slot of a notebook computer or desktop computer with a PCMCIA slot. The EUT communicates with other wireless LAN cards using the frequency range from 2.411 GHz to 2.462 GHz. The EUT is powered from the PCMCIA slot, and does not have an external power supply. The EUT uses a stub antenna attached to a left-turn SMA connector or an internal PCB trace antenna. The EUT uses 2-bits encoded to 4 complex code words; 2-DQPSK CCK modulation technique with 8 Chips per symbol, spread clock rate is 1.375 MHz symbol/sec, and the data rate = 11 MBPS.

1.2 RELATED SUBMITTAL(S)/GRANT(S)

This is an original application for certification.


1.3 TEST SYSTEM DETAILS

The FCC Identifiers for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

External Components

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
COMPUTER	COMPAQ	ARMADA 3500	3J95CBZ1B0HS	3872B746	N/A	N/A
AUDIO DEVICE	RADIO SHACK	SCP-59	N/A	N/A	SHIELDED I/O	900691
MICROPHONE	TELEX	700358	N/A	N/A	SHIELDED I/O	009578
MODEM	US ROBOTICS	0413	839032B26M4P N	DoC	SHIELDED I/O UNSHIELDED POWER	900407
MOUSE	HEWLETT PACKARD	M-S34	LCA5353508449	10:DZL21D472	SHIELDED I/O	N/A
WIRELESS LAN PCMCIA CARD	SAMSUNG			E2XSWL-2000N	N/A	N/A
PRINTER	HEWLETT PACKARD	C3941A	JPPJ-072076	B94C3941A	SHIELDED I/O UNSHIELDED POWER	10272

1.4 CONFIGURATION OF TESTED SYSTEM

1.5 TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 1992. Radiated testing was performed at an antenna to EUT distance of 3 meters. Emissions above 1 GHz were video averaged.

1.6 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report dated March 3, 1994, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 1992).

2.0 PRODUCT LABELING

The label is made of coated polyester with permanent adhesive. The compliance statements are listed in the user's manual. The label is placed on the top of the card as shown in figure 1. The label size is 4 x 6.3cm and it is blue with white lettering.

FIGURE 1: LOCATION OF LABEL ON EUT

3.0 SYSTEM TEST CONFIGURATION

3.1 JUSTIFICATION

The EUT was tested in all three orthogonal planes in order to determine worst case emission. Channel 1 at 2.411GHz, Channel 6 at 2.437GHz and Channel 11 at 2.463GHz were tested and investigated from 9kHz to 24GHz. All three channels were investigated and tested. Data for all three channels are presented in this report.

To complete the configuration required by the FCC, the transmitter was tested in a note computer with the stub antenna as well an internal antenna connected to the antenna port similar to its intended use.

The transmitter external antenna connector is a unique reverse-thread and is non-interchangeable.

The EUT was investigated with the 5" stub and internal trace antenna. The 5" stub antenna was considered the worst case configuration. The worst case radiated spurious noise data is presented in this report.

3.2 EUT EXERCISE SOFTWARE

The EUT was enabled to continuously transmit, which was verified by a receiving unit during testing. The carrier was also checked to verify that the information was being transmitted.

3.3 SPECIAL ACCESSORIES

N/A.

3.4 MODULATED BANDWIDTH

The minimum 6 dB bandwidth per FCC 15.247(a)(2) was measured using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 100 kHz. The Minimum 6 dB modulated bandwidths are the following:

Channel 1 = 16.94 MHz
Channel 6 = 16.92 MHz
Channel 11 = 17.03MHz

The 6dB bandwidth is listed in figures ---,--- and ---.

3.5 POWER OUTPUT

The power output per FCC 15.247(b) was measured on the EUT using an HP peak power meter. The output power using the HP power meter are the following:

Channel 1=0.24mW
Channel 6= 0.4mW
Channel 11= 0.8mW

3.6 ANTENNA CONDUCTED SPURIOUS EMISSIONS

Antenna spurious emission per FCC 15.247(c) was measured from the EUT antenna port using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 300 kHz. The modulated carrier was identified at 2.411GHz for Channel 1, 2.437GHz for Channel 6 and 2.462GHz for Channel 11. No other harmonics or spurs were found within 20 dB of the carrier level, and from 9kHz to the carriers 10th harmonic. See antenna conducted spurious noise plots, figures 3 through 20.

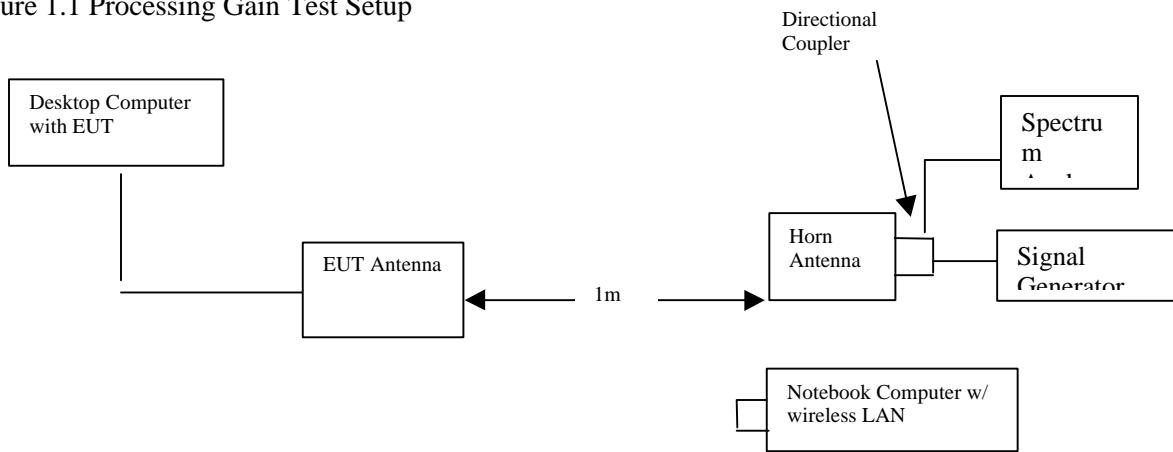
3.7 RADIATED SPURIOUS EMISSIONS

Radiated Spurious Emissions applies to harmonics and spurious emissions that fall in the restricted and non-restricted bands. The restricted bands are listed in Section 15.205. The maximum permitted average field strength for the restricted band is listed in Section 15.209.

Please, refer to section 3.7 for data test results.

3.8 POWER SPECTRAL DENSITY

The Power spectral density per FCC 15.247(d) was measured from the antenna port of the EUT using a 50 ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 3kHz, and the sweep time set at 17 second. The spectral lines were resolved for the modulated carriers at 2.412GHz, 2.437GHz and 2.462GHz with amplitudes of -33.3dBm, -29.2dBm and -26.0dBm, respectively. These levels are well below the +8 dBm limit. See power spectral density plots figures 3, 9, and 15.


3.9 PROCESSING GAIN:

The Processing Gain was measured using the CW jamming margin method. Figure 1.1 shows the test configuration.

The test consists of stepping a signal generator in 50 kHz increments across the passband of the system. At each frequency, the generator level required to produce the recommended Bit Error Rate (BER) is recorded. This level is the jammer level. The output power of the transmitting unit is measured at the same point. The Jammer to Signal (J/S) ratio is then calculated. The worst 20% of the J/S data points were Discard. The lowest remaining J/S ratio is used when calculating the Processing Gain.

Since the spreading/despread function of the EUT remains constant at all channels, the measurement was performed at a mid point within the operating band. Implementation losses of the system are limited to 2dB Max as permitted by the FCC guidelines.

Figure 1.1 Processing Gain Test Setup

The Notebook computer was sending data. The desktop computer was receiving information using wireless communications and continuously monitoring the Bit Error Rate. Since a radiated test was performed, the effective radiated peak power from an equivalent isotropic source was calculated using the following equation:

$$\text{Equation #1: } P = \frac{(Ed)^2}{30}$$

Where: E= measured maximum field strength in V/m using a wide band peak power meter.

G= the numeric gain of the notebook transmitting antenna over isotropic.

D= 3.0 meters is the distance in meters from which the field strength was measured.

P= Power in watts.

(Processing gain (Gp) is thus defined by the following equation:

$$Gp = (S/N)_0 + Mj + Lsys$$

Where $(S/N)_0$ =signal/noise ratio=21.64dB

$Mj = J/S$ ration, selected as described = 22dB for the following frequency:

Freq. (GHz)	J Level EIRP	S. EIRP	J/S (dB)
2.44166	0.189	2.41E5	25.73

$Lsys = \text{System losses (dB)}$ with $Lsys = 2\text{dB}$

The signal to noise ratio, $(S/N)_0$, is related to the receivers bit error rate. Although the precise relationship will vary with the demodulation scheme used, for an ideal non-coherent receiver, the probability of error (bit error rate) is related to $(S/N)_0$ by:

$$\text{Probability of bit error} = .5 \times e(-5 \times (S/N)_0)$$

Conclusion: Processing gain = 49.37 dB

See processing gain plot at 2.44166 GHz

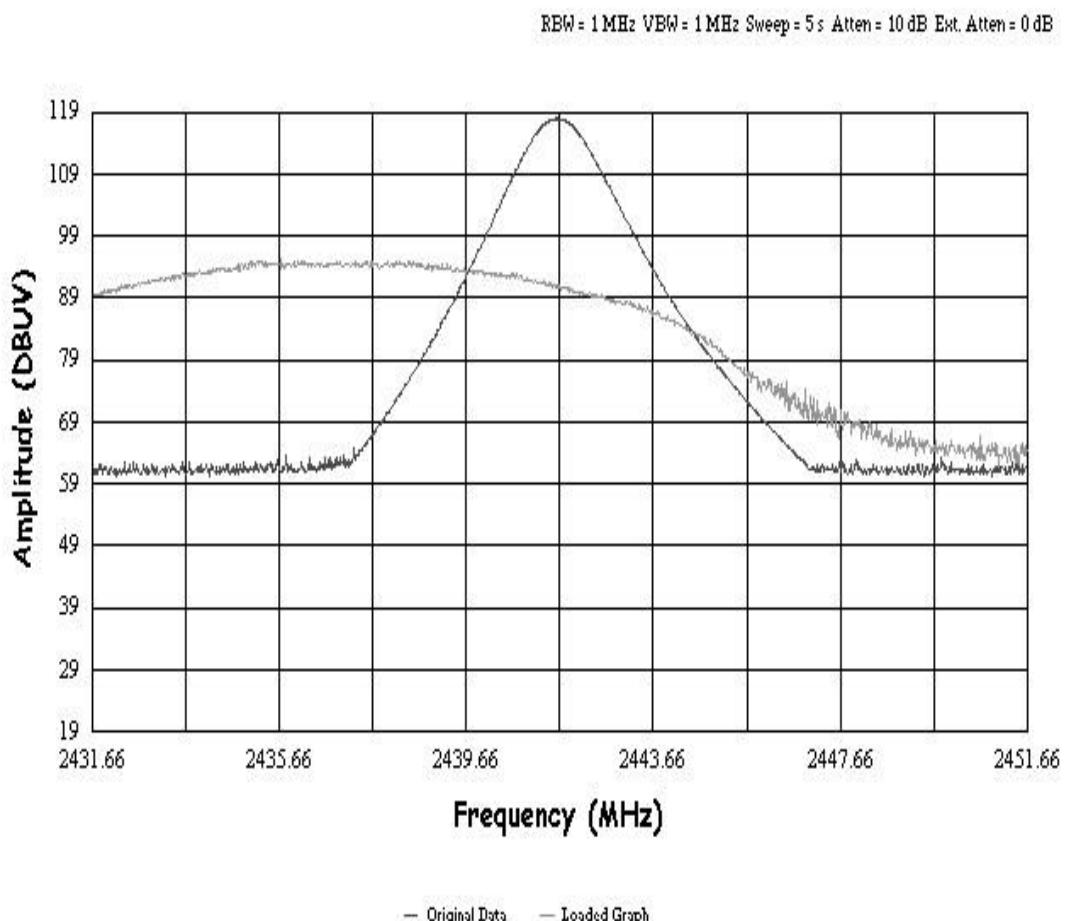
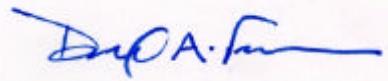

Processing gain

FIGURE 2: Processing Gain Plot

3.10 Compliance with the restricted band edge 2.4850 to 2.5000 GHz**Compliance with the restricted band edge 2.4850 to 2.5000 GHz.**

The conducted carrier power was measured at -12.2dBm for channel 11, at 2.4618 GHz by setting the resolution/video bandwidth to 100kHz/300kHz. The highest spurious emission within 2.4835 GHz and 2.5000 GHz was measured -48.2dBm at 2.4882 GHz. The difference between the two measurements was subtracted from the radiated 3 meter field strength of the carrier at channel 11. The emission was in the restricted band at 2.4882 GHz = 88.5dBuV/m -36dB=52.5dBuV/m.


3.12 CONFORMANCE STATEMENT

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this attached test record. No modifications were made during testing to the equipment in order to achieve compliance with these standards.

Furthermore, there was no deviation from, additions to or exclusions from the ANSI C63.4 test methodology.

Typed/Printed Name: Desmond A. Fraser

Signature

Date: August 3, 1999

Position: President, (NVLAP Signatory)

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 20061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

5.0 ANTENNA SPECIFICATIONS

5" Stub Antenna

Electrical Specifications:

Model No.	ACE-2450R
Frequency Range	2.4-2.5GHz
Bandwidth	100MHz
Gain	2.15±1dBi
V.S.W.R	<1.9
Radiation Pattern	Omni-Directional
Polarization	Vertical
Impedance	50ohms
Operating Temperature	-30C – 60C

Electrical Specifications:

Dimension	124 ± 2.0mm
Pulling Strength	More than 3kgf
Swivel Torque	More than 3kgf
Input Connector	SMA-Male (REVERSE)

Internal trace antenna

Electrical Specifications:

Model No.	Samsung Internal Antenna
Frequency Range	2.4-2.5GHz
Bandwidth	100MHz
Gain	2.15dBi
V.S.W.R	<1.9
Radiation Pattern	Omni-Directional
Polarization	Horizontal
Impedance	50ohms
Operating Temperature	-30C – 60C

Electrical Specifications:

Dimension	26 ± 2.0mm
Pulling Strength	N/A
Swivel Torque	N/A
Input Connector	Directly etched on PCB board

7.0 Conducted Field Strength Calculation, and Radiated Test Methodology

7.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FI(\text{dBuV/m}) = SAR(\text{dBuV}) + SCF(\text{dB/m})$$

FI = Field Intensity

SAR = Spectrum Analyzer Reading

SCF = Site Correction Factor

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

$$SCF(\text{dB/m}) = - PG(\text{dB}) + AF(\text{dB/m}) + CL(\text{dB})$$

SCF = Site Correction Factor

PG = Pre-amplifier Gain

AF = Antenna Factor

CL = Cable Loss

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(\text{uV/m}) = 10^{FI(\text{dBuV/m})/20}$$

For example, assume a signal at a frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

$$49.3 \text{ dBuV} - 11.5 \text{ dB/m} = 37.8 \text{ dBuV/m}$$

$$10^{37.8/20} = 10^{1.89} = 77.6 \text{ uV/m}$$

7.2 Radiated measurement

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one meter and three-meter distances if necessary in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to 10GHz MHz (10th harmonic of carrier frequency) using a Hewlett Packard 8566B spectrum analyzer, a Hewlett Packard 85650A quasi-peak adapter, HP11790 mixers, and EMCO log periodic, EMCO horn antennas and biconical antenna. In order to gain sensitivity, a cougar preamplifier (from 30 to 2GHZ), and an HP preamplifier (from 1GHz to 26.5 GHz) was connected in series between the antenna and the input of the spectrum analyzer.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations. The spectrum analyzer's 6 dB resolution bandwidth was set to 120 kHz for measurements below 1GHz, and 1MHz for measurements above 1GHz. The analyzer was operated in peak detection mode below 1GHz and in the peak mode with 10Hz video averaging above 1 GHz. No video filter less than 10 times the resolution bandwidth was used when measuring below 1GHz. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as daily calibration methods, technician training, and emphasis to employees on avoiding error.

8.0 CONDUCTED EMISSION DATA

The following table lists worst case conducted emission data. Specifically: Emission Frequency, Test Detector, Analyzer Reading, Site Correction Factor, corrected Emission Level, Quasi Peak Limit and Margin, and the Average Limit and Margin.

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. If the conducted emissions exceed the limit with the instrument set to the quasi-peak mode, then measurements are made in the average mode.

The conducted test was performed with the EUT exercise program loaded, and the emissions were scanned between 150 kHz to 30 MHz on the NEUTRAL SIDE and HOT SIDE, herein referred to as L1 and L2, respectively.

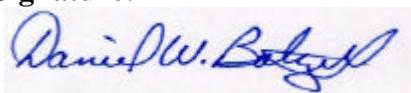
TABLE 1: CONDUCTED EMISSIONS (CHANNEL 1 WITH THE STUB ANTENNA)

NEUTRAL SIDE (Line 1)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.450	Qp	44.6	0.6	45.2	48.0	-2.8	48.0	-2.8
0.450	Av	34.8	0.6	35.4	48.0	-12.6	48.0	-12.6
0.959	Qp	32.5	0.7	33.2	48.0	-14.8	48.0	-14.8
0.959	Av	11.8	0.7	12.5	48.0	-35.5	48.0	-35.5
4.214	Pk	43.7	1.7	45.4	48.0	-2.6	48.0	-2.6
4.968	Pk	43.6	1.9	45.5	48.0	-2.5	48.0	-2.5
13.142	Pk	28.8	2.9	31.7	48.0	-16.3	48.0	-16.3
24.257	Pk	25.3	3.8	29.1	48.0	-18.9	48.0	-18.9

HOT SIDE (Line 2)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.460	Qp	44.6	0.6	45.2	48.0	-2.8	48.0	-2.8
0.460	Av	31.0	0.6	31.6	48.0	-16.4	48.0	-16.4
3.326	Pk	41.5	1.6	43.1	48.0	-4.9	48.0	-4.9
4.082	Pk	44.0	1.7	45.7	48.0	-2.3	48.0	-2.3
4.937	Pk	41.4	1.9	43.3	48.0	-4.7	48.0	-4.7
10.910	Pk	28.5	2.7	31.2	48.0	-16.8	48.0	-16.8
13.220	Pk	29.5	3.1	32.6	48.0	-15.4	48.0	-15.4


⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: July 29, 1999

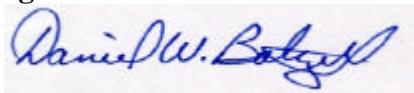
Signature:

TABLE 2: CONDUCTED EMISSIONS (CHANNEL 6 WITH THE STUB ANTENNA)**NEUTRAL SIDE (Line 1)**

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.462	Qp	44.3	0.6	44.9	48.0	-3.1	48.0	-3.1
0.462	Av	13.3	0.6	13.9	48.0	-34.1	48.0	-34.1
3.544	Pk	40.3	1.5	41.8	48.0	-6.2	48.0	-6.2
4.131	Pk	42.9	1.6	44.5	48.0	-3.5	48.0	-3.5
4.992	Pk	43.8	1.9	45.7	48.0	-2.3	48.0	-2.3
10.820	Pk	29.1	2.6	31.7	48.0	-16.3	48.0	-16.3
13.250	Pk	27.7	2.9	30.6	48.0	-17.4	48.0	-17.4

HOT SIDE (Line 2)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.451	Qp	44.3	0.6	44.9	48.0	-3.1	48.0	-3.1
0.451	Av	11.9	0.6	12.5	48.0	-35.5	48.0	-35.5
3.410	Pk	41.6	1.6	43.2	48.0	-4.8	48.0	-4.8
4.110	Pk	43.8	1.7	45.5	48.0	-2.5	48.0	-2.5
4.910	Pk	41.4	1.9	43.3	48.0	-4.7	48.0	-4.7
10.880	Pk	28.0	2.7	30.7	48.0	-17.3	48.0	-17.3
13.360	Pk	28.7	3.1	31.8	48.0	-16.2	48.0	-16.2


⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: July 29, 1999

Signature:

TABLE 3: CONDUCTED EMISSIONS (CHANNEL 11 WITH THE STUB ANTENNA)

NEUTRAL SIDE (Line 1)								
Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.465	Qp	45.2	0.6	45.8	48.0	-2.2	48.0	-2.2
0.465	Av	17.2	0.6	17.8	48.0	-30.2	48.0	-30.2
4.194	Pk	44.6	1.7	46.3	48.0	-1.7	48.0	-1.7
4.367	Pk	44.8	1.7	46.5	48.0	-1.5	48.0	-1.5
4.368	Qp	34.6	1.7	36.3	48.0	-11.7	48.0	-11.7
4.368	Av	26.4	1.7	28.1	48.0	-19.9	48.0	-19.9
5.049	Pk	42.1	1.9	44.0	48.0	-4.0	48.0	-4.0
11.050	Pk	28.0	2.6	30.6	48.0	-17.4	48.0	-17.4
24.641	Pk	25.6	3.8	29.4	48.0	-18.6	48.0	-18.6

HOT SIDE (Line 2)								
Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.483	Qp	42.9	0.6	43.5	48.0	-4.5	48.0	-4.5
0.483	Av	20.1	0.6	20.7	48.0	-27.3	48.0	-27.3
4.123	Pk	44.3	1.7	46.0	48.0	-2.0	48.0	-2.0
4.138	Pk	43.4	1.7	45.1	48.0	-2.9	48.0	-2.9
5.018	Pk	38.6	1.9	40.5	48.0	-7.5	48.0	-7.5
13.897	Pk	31.1	3.2	34.3	48.0	-13.7	48.0	-13.7
24.208	Pk	23.3	4.0	27.3	48.0	-20.7	48.0	-20.7


⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: July 29, 1999

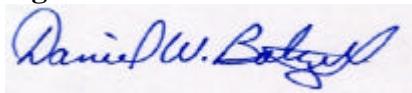
Signature:

TABLE 4: CONDUCTED EMISSIONS (CHANNEL 1 WITH THE INTERNAL ANTENNA)**NEUTRAL SIDE (Line 1)**

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.473	Qp	42.9	0.6	43.5	48.0	-4.5	48.0	-4.5
0.473	Av	12.2	0.6	12.8	48.0	-35.2	48.0	-35.2
4.530	Qp	38.6	1.8	40.4	48.0	-7.6	48.0	-7.6
4.530	Av	23.3	1.8	25.1	48.0	-22.9	48.0	-22.9
9.140	Pk	31.3	2.4	33.7	48.0	-14.3	48.0	-14.3
11.530	Pk	33.9	2.7	36.6	48.0	-11.4	48.0	-11.4
13.660	Pk	33.4	3.0	36.4	48.0	-11.6	48.0	-11.6
17.940	Pk	24.8	3.4	28.2	48.0	-19.8	48.0	-19.8

HOT SIDE (Line 2)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.453	Qp	42.9	0.6	43.5	48.0	-4.5	48.0	-4.5
0.453	Av	13.3	0.6	13.9	48.0	-34.1	48.0	-34.1
4.722	Qp	40.9	1.8	42.7	48.0	-5.3	48.0	-5.3
4.722	Av	22.8	1.8	24.6	48.0	-23.4	48.0	-23.4
9.200	Pk	32.3	2.5	34.8	48.0	-13.2	48.0	-13.2
11.530	Pk	34.9	2.8	37.7	48.0	-10.3	48.0	-10.3
13.570	Pk	36.2	3.2	39.4	48.0	-8.6	48.0	-8.6
15.400	Pk	32.4	3.4	35.8	48.0	-12.2	48.0	-12.2


⁽¹⁾**Pk** = Peak; **QP** = Quasi-Peak; **Av** = Average

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

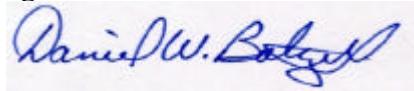
Date: July 29, 1999

Signature:

TABLE 5: CONDUCTED EMISSIONS (CHANNEL 6 WITH THE INTERNAL ANTENNA)

NEUTRAL SIDE (Line 1)								
Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.513	Qp	41.0	0.6	41.6	48.0	-6.4	48.0	-6.4
0.513	Av	18.0	0.6	18.6	48.0	-29.4	48.0	-29.4
3.544	Pk	40.4	1.5	41.9	48.0	-6.1	48.0	-6.1
4.745	Qp	41.6	1.8	43.4	48.0	-4.6	48.0	-4.6
4.745	Av	23.7	1.8	25.5	48.0	-22.5	48.0	-22.5
9.110	Pk	31.3	2.4	33.7	48.0	-14.3	48.0	-14.3
11.270	Pk	33.1	2.7	35.8	48.0	-12.2	48.0	-12.2
13.660	Pk	33.0	3.0	36.0	48.0	-12.0	48.0	-12.0

HOT SIDE (Line 2)								
Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.457	Qp	42.5	0.6	43.1	48.0	-4.9	48.0	-4.9
0.457	Av	12.2	0.6	12.8	48.0	-35.2	48.0	-35.2
3.140	Pk	40.0	1.5	41.5	48.0	-6.5	48.0	-6.5
4.676	Qp	41.3	1.8	43.1	48.0	-4.9	48.0	-4.9
4.676	Av	41.6	1.8	43.4	48.0	-4.6	48.0	-4.6
9.430	Pk	32.4	2.6	35.0	48.0	-13.0	48.0	-13.0
10.790	Pk	29.9	2.7	32.6	48.0	-15.4	48.0	-15.4
13.630	Pk	32.6	3.2	35.8	48.0	-12.2	48.0	-12.2


⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: July 29, 1999

Signature:

TABLE 6: CONDUCTED EMISSIONS (CHANNEL 11 WITH THE INTERNAL ANTENNA)**NEUTRAL SIDE (Line 1)**

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.460	Qp	40.9	0.6	41.5	48.0	-6.5	48.0	-6.5
0.460	Av	13.3	0.6	13.9	48.0	-34.1	48.0	-34.1
4.526	Qp	38.3	1.8	40.1	48.0	-7.9	48.0	-7.9
4.526	Av	21.3	1.8	23.1	48.0	-24.9	48.0	-24.9
9.148	Pk	31.5	2.4	33.9	48.0	-14.1	48.0	-14.1
11.650	Pk	31.9	2.7	34.6	48.0	-13.4	48.0	-13.4
13.660	Pk	31.4	3.0	34.4	48.0	-13.6	48.0	-13.6
17.920	Pk	23.4	3.4	26.8	48.0	-21.2	48.0	-21.2

HOT SIDE (Line 2)

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)
0.455	Qp	40.9	0.6	41.5	48.0	-6.5	48.0	-6.5
0.455	Av	9.6	0.6	10.2	48.0	-37.8	48.0	-37.8
3.520	Pk	38.8	1.6	40.4	48.0	-7.6	48.0	-7.6
4.576	Qp	39.7	1.8	41.5	48.0	-6.5	48.0	-6.5
4.576	Av	24.9	1.8	26.7	48.0	-21.3	48.0	-21.3
10.170	Pk	30.7	2.7	33.4	48.0	-14.6	48.0	-14.6
11.770	Pk	31.9	2.8	34.7	48.0	-13.3	48.0	-13.3
14.190	Pk	31.1	3.2	34.3	48.0	-13.7	48.0	-13.7

⁽¹⁾Pk = Peak; QP = Quasi-Peak; Av = Average

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: July 29, 1999

Signature:

9.0 RADIATED EMISSION DATA

The following data lists the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, plus the limit. Explanation of the Correction Factor is given in paragraph 6.3.

TABLE 7: RADIATED EMISSIONS (CHANNEL 1 WITH THE STUB ANTENNA)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV/m)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail	Comments
219.995	Qp	H	220	1.4	50.8	-19.1	31.7	46.0	-14.3	Pass	
263.995	Qp	H	210	1.1	47.3	-13.9	33.4	46.0	-12.6	Pass	
307.995	Qp	H	215	1.1	61.1	-13.9	47.2	65.3	-18.1	Pass	
351.995	Qp	H	165	1.0	45.4	-12.2	33.2	46.0	-12.8	Pass	
396.000	Qp	V	180	1.0	45.9	-11.1	34.8	46.0	-11.2	Pass	
615.995	Qp	V	70	1.0	41.2	-5.9	35.3	46.0	-10.7	Pass	
626.995	Qp	V	60	1.0	43.4	-6.3	37.1	46.0	-8.9	Pass	
648.995	Qp	V	45	1.0	43.4	-6.4	37.0	46.0	-9.0	Pass	
659.995	Qp	V	55	1.0	50.7	-6.3	44.4	46.0	-1.6	Pass	
670.995	Qp	H	195	1.4	43.3	-5.9	37.4	46.0	-8.6	Pass	
692.995	Qp	H	190	1.1	42.7	-5.8	36.9	46.0	-9.1	Pass	
748.000	Qp	V	280	1.0	53.3	-4.8	48.5	65.3	-16.8	Pass	
780.995	Qp	V	45	1.0	41.4	-4.8	36.6	46.0	-9.4	Pass	
2037.997	Av	V	165	1.0	31.4	-3.2	28.2	65.3	-37.1	Pass	
2412.3	Av	V	190	1.0	86.1	-0.8	85.3				fundamental
4075.987	Av	H	245	1.3	34.4	-4.1	30.3	54.0	-23.7	Pass	
4820.000	Av	H	0	1.0	22.2	17.5	39.7	54.0	-14.3	Pass	

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: July 29, 1999

Signature:

TABLE 8: RADIATED EMISSIONS (CHANNEL 6 WITH THE STUB ANTENNA)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV/m)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail	Comments
219.995	Qp	H	205	1.4	51.5	-19.1	32.4	46.0	-13.6	Pass	
263.995	Qp	H	215	1.1	47.2	-13.9	33.3	46.0	-12.7	Pass	
307.995	Qp	H	220	1.1	63.0	-13.9	49.1	68.2	-19.1	Pass	
351.995	Qp	H	175	1.2	46.2	-12.2	34.0	46.0	-12.0	Pass	
395.995	Qp	V	165	1.0	41.3	-11.1	30.2	46.0	-15.8	Pass	
615.995	Qp	V	75	1.0	41.3	-5.9	35.4	46.0	-10.6	Pass	
626.995	Qp	V	65	1.0	45.0	-6.3	38.7	46.0	-7.3	Pass	
648.995	Qp	V	40	1.0	44.5	-6.4	38.1	46.0	-7.9	Pass	
659.995	Qp	V	60	1.0	42.0	-6.3	35.7	46.0	-10.3	Pass	
670.995	Qp	V	50	1.0	45.4	-5.7	39.7	46.0	-6.3	Pass	
692.995	Qp	V	45	1.0	43.2	-5.7	37.5	46.0	-8.5	Pass	
747.995	Qp	V	40	1.0	53.1	-4.8	48.3	68.2	-19.9	Pass	
780.995	Qp	V	45	1.0	42.0	-4.8	37.2	46.0	-8.8	Pass	
2062.987	Av	V	225	1.0	31.3	-3.0	28.3	68.2	-39.9	Pass	
2438.28	Av	V	200	1.0	88.5	-0.3	88.2				fundamental
4125.995	Av	H	170	1.5	36.3	-4.0	32.3	54.0	-21.7	Pass	
4873.800	Av	H	0	1.0	30.3	18.6	48.9	54.0	-5.1	Pass	

TEST PERSONNEL:**Typed/Printed Name:** Daniel W. Baltzell**Date:** July 29, 1999**Signature:**

TABLE 9: RADIATED EMISSIONS (CHANNEL 11 WITH THE STUB ANTENNA)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV/m)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail	Comments
219.995	Qp	H	210	1.4	52.4	-19.1	33.3	46.0	-12.7	Pass	
263.995	Qp	H	220	1.1	48.2	-13.9	34.3	46.0	-11.7	Pass	
307.995	Qp	H	175	1.1	61.0	-13.9	47.1	68.5	-21.4	Pass	
351.995	Qp	H	180	1.1	47.1	-12.2	34.9	46.0	-11.1	Pass	
395.995	Qp	H	285	1.0	43.6	-11.4	32.2	46.0	-13.8	Pass	
615.995	Qp	V	65	1.0	41.4	-5.9	35.5	46.0	-10.5	Pass	
626.995	Qp	V	55	1.0	45.1	-6.3	38.8	46.0	-7.2	Pass	
648.995	Qp	V	40	1.0	44.4	-6.4	38.0	46.0	-8.0	Pass	
659.995	Qp	V	65	1.0	41.7	-6.3	35.4	46.0	-10.6	Pass	
670.995	Qp	V	50	1.0	45.5	-5.7	39.8	46.0	-6.2	Pass	
692.995	Qp	V	35	1.0	43.3	-5.7	37.6	46.0	-8.4	Pass	
747.995	Qp	V	50	1.0	53.3	-4.8	48.5	68.5	-20.0	Pass	
758.995	Qp	V	55	1.0	42.9	-4.4	38.5	46.0	-7.5	Pass	
780.995	Qp	V	45	1.0	41.9	-4.8	37.1	46.0	-8.9	Pass	
2087.992	Av	H	190	1.1	31.8	-2.8	29.0	68.5	-39.5	Pass	
2462.000	Av	V	210	1.4	88.6	0.1	88.5				fundamental
4176.003	Av	H	180	1.0	38.6	-3.9	34.7	54.0	-19.3	Pass	
4924.000	Av	H	0	1.0	22.3	19.7	42.0	54.0	-12.0	Pass	
6263.998	Av	H	210	1.0	26.3	-1.9	24.4	68.5	-44.1	Pass	

TEST PERSONNEL:**Typed/Printed Name:** Daniel W. Baltzell**Date:** July 29, 1999**Signature:**

TABLE 10: RADIATED EMISSIONS (CHANNEL 1 WITH THE INTERNAL ANTENNA)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV/m)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail	Comments
219.995	Qp	H	220	1.2	51.9	-19.1	32.8	46.0	-13.2	Pass	
263.995	Qp	H	215	1.1	47.4	-13.9	33.5	46.0	-12.5	Pass	
307.995	Qp	H	225	1.0	64.8	-13.2	51.6	64.4	-12.8	Pass	
319.000	Qp	V	180	1.0	45.2	-13.2	32.0	46.0	-14.0	Pass	
330.000	Qp	V	180	1.0	43.7	-13.2	30.5	46.0	-15.5	Pass	
341.000	Qp	V	175	1.0	43.1	-12.5	30.6	46.0	-15.4	Pass	
352.000	Qp	V	175	1.0	44.5	-11.7	32.8	46.0	-13.2	Pass	
396.000	Qp	V	140	1.0	44.8	-11.1	33.7	46.0	-12.3	Pass	
627.000	Qp	V	80	1.0	40.0	-5.8	34.2	46.0	-11.8	Pass	
649.000	Qp	V	200	1.0	38.7	-5.7	33.0	46.0	-13.0	Pass	
670.998	Qp	V	80	1.0	40.3	-5.6	34.7	46.0	-11.3	Pass	
692.998	Qp	V	80	1.0	38.5	-5.8	32.7	46.0	-13.3	Pass	
747.998	Qp	V	180	1.0	44.0	-4.3	39.7	46.0	-6.3	Pass	
748.000	Qp	V	305	1.0	47.1	-4.3	42.8	64.4	-21.6	Pass	
2038.000	Av	H	180	1.0	33.2	-3.2	30.0	64.4	-34.4	Pass	
2411.000	Av	V	180	1.0	85.2	-0.8	84.4				Fundamental
4075.000	Av	H	180	1.0	39.3	-4.1	35.2	54.0	-18.8	Pass	
4820.000	Av	H	0	1.0	22.2	17.5	39.7	54.0	-14.3	Pass	

TEST PERSONNEL:

Typed/Printed Name: Daniel W. Baltzell

Date: July 29, 1999

Signature:



TABLE 11: RADIATED EMISSIONS (CHANNEL 6 WITH THE INTERNAL ANTENNA)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV/m)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail	Comments
131.998	Qp	V	150	1.0	40.9	-18.2	22.7	43.5	-20.8	Pass	
219.998	Qp	V	270	1.0	49.4	-17.8	31.6	46.0	-14.4	Pass	
308.000	Qp	H	250	1.0	61.7	-13.9	47.8	63.7	-15.9	Pass	
351.998	Qp	V	180	1.0	44.0	-12.3	31.7	46.0	-14.3	Pass	
395.998	Qp	V	175	1.0	47.9	-11.1	36.8	46.0	-9.2	Pass	
538.998	Qp	V	190	1.0	43.8	-7.6	36.2	46.0	-9.8	Pass	
715.000	Qp	H	280	1.0	34.3	-5.6	28.7	46.0	-17.3	Pass	
748.000	Qp	H	150	1.0	44.8	-4.8	40.0	63.7	-23.7	Pass	
2062.000	Av	H	180	1.0	33.7	-3.0	30.7	63.7	-33.0	Pass	
2436.000	Av	V	180	1.0	84.1	-0.4	83.7				fundamental
4126.000	Av	H	180	1.0	41.9	-4.0	37.9	54.0	-16.1	Pass	
4873.480	Av	H	0	1.0	22.2	18.6	40.8	54.0	-13.2	Pass	

TEST PERSONNEL:**Typed/Printed Name:** Daniel W. Baltzell**Date:** July 29, 1999**Signature:**

TABLE 12: RADIATED EMISSIONS (CHANNEL 11 WITH THE INTERNAL ANTENNA)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV/m)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail	Comments
220.000	Qp	H	260	1.0	57.4	-19.1	38.3	46.0	-7.7	Pass	
253.000	Qp	H	260	1.0	47.2	-14.8	32.4	46.0	-13.6	Pass	
264.000	Qp	H	250	1.0	50.3	-13.9	36.4	46.0	-9.6	Pass	
275.000	Qp	H	260	1.0	48.2	-14.7	33.5	46.0	-12.5	Pass	
297.000	Qp	H	200	1.0	48.7	-14.5	34.2	46.0	-11.8	Pass	
308.000	Qp	V	170	1.7	65.7	-14.0	51.7	65.5	-13.8	Pass	
352.000	Qp	V	175	1.5	55.0	-12.3	42.7	46.0	-3.3	Pass	
396.000	Qp	V	175	1.0	59.5	-11.1	48.4	46.0	-17.1	Pass	
429.000	Qp	V	175	1.0	47.8	-9.8	38.0	46.0	-8.0	Pass	
473.000	Qp	V	155	1.0	47.0	-8.8	38.2	46.0	-7.8	Pass	
484.000	Qp	H	150	1.0	46.9	-8.3	38.6	46.0	-7.4	Pass	
495.000	Qp	V	165	1.0	47.5	-9.1	38.4	46.0	-7.6	Pass	
506.000	Qp	H	135	1.0	42.8	-8.8	34.0	46.0	-12.0	Pass	
517.000	Qp	V	170	1.0	46.2	-8.1	38.1	46.0	-7.9	Pass	
539.000	Qp	V	190	1.0	46.4	-7.6	38.8	46.0	-7.2	Pass	
649.000	Qp	H	350	1.5	39.3	-6.2	33.1	46.0	-12.9	Pass	
660.000	Qp	H	340	1.3	40.1	-6.2	33.9	46.0	-12.1	Pass	
671.000	Qp	H	230	1.3	44.0	-5.9	38.1	46.0	-7.9	Pass	
682.000	Qp	H	190	2.4	38.7	-5.9	32.8	46.0	-13.2	Pass	
693.000	Qp	H	190	2.4	43.3	-5.8	37.5	46.0	-8.5	Pass	
693.000	Qp	V	30	2.0	45.3	-5.7	39.6	46.0	-6.4	Pass	
704.000	Qp	H	190	1.1	41.6	-5.9	35.7	46.0	-10.3	Pass	
715.000	Qp	V	45	1.9	47.0	-5.2	41.8	46.0	-4.2	Pass	
748.000	Qp	V	30	1.7	51.9	-4.8	47.1	65.5	-18.4	Pass	
2087.000	Av	H	180	1.0	34.1	-2.8	31.3	65.5	-34.2	Pass	
2440.010	Av	H	190	1.0	36.7	0.3	37.0	65.5	-28.5	Pass	
2462.000	Av	V	180	1.0	85.6	0.1	85.5				Fundamental
4175.000	Av	H	180	1.0	41.5	-3.9	37.6	54.0	-16.4	Pass	
4924.000	Av	V	0	1.0	29.9	19.7	49.6	54.0	-4.4	Pass	

TEST PERSONNEL:**Typed/Printed Name:** Daniel W. Baltzell**Date:** July 29, 1999**Signature:**

APPENDIX A: Emissions Equipment List

DESCRIPTION	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. LAB
AMPLIFIER	HEWLETT PACKARD	11975A	2304A00348	TEST EQUITY
AMPLIFIER (S/A 1)	RHEIN TECH	PR-1040	00001	RTL
AMPLIFIER (S/A 2)	RHEIN TECH	RTL2	900723	RTL
AMPLIFIER (S/A 3)	RHEIN TECH	8447F	2944A03783	RTL
AMPLIFIER (S/A 4)	RHEIN TECH	8447D	2727A05397	RTL
BICONICAL/LOG ANTENNA 1	ANTENNA RESEARCH	LPB-2520	1037	LIBERTY LABS
BICONICAL/LOG ANTENNA 2	ANTENNA RESEARCH	LPB-2520	1036	LIBERTY LABS
FIELD SITE SOURCE	EMCO	4610	9604-1313	RTL
FILTER (ROOM 1)	SOLAR	8130	947305	RTL
FILTER (ROOM 2)	SOLAR	8130	947306	RTL
HARMONIC MIXER 1	HEWLETT PACKARD	11970K	2332A00563	TELOGY
HARMONIC MIXER 2	HEWLETT PACKARD	11970A	2332A01199	TELOGY
HORN ANTENNA 1	EMCO	3160-10	9606-1033	EMCO
HORN ANTENNA 2	EMCO	3160-9	9605-1051	EMCO
HORN ANTENNA 3	EMCO	3160-7	9605-1054	EMCO
HORN ANTENNA 4	EMCO	3160-8	9605-1044	EMCO
HORN ANTENNA 5	EMCO	3160-03	9508-1024	EMCO
LISN (ROOM 1/L1)	SOLAR	7225-1	900727	ACUCAL
LISN (ROOM 1/L2)	SOLAR	7225-1	900726	ACUCAL
LISN (ROOM 2/L1)	SOLAR	7225-1	900078	ACUCAL
LISN (ROOM 2/L2)	SOLAR	7225-1	900077	ACUCAL
PRE-AMPLIFIER	HEWLETT PACKARD	8449B OPT	3008A00505	TELOGY
QUASI-PEAK ADAPTER (S/A 1)	HEWLETT PACKARD	85650A	3145A01599	ACUCAL
QUASI-PEAK ADAPTER (S/A 2)	HEWLETT PACKARD	85650A	2811A01276	ACUCAL
QUASI-PEAK ADAPTER (S/A 3)	HEWLETT PACKARD	85650A	2521A00473	ACUCAL
QUASI-PEAK ADAPTER (S/A 4)	HEWLETT PACKARD	85650A	2521A01032	ACUCAL
RF PRESELECTOR (S/A 1)	HEWLETT PACKARD	85685A	3146A01309	ACUCAL
SIGNAL GENERATOR (HP)	HEWLETT PACKARD	8660C	1947A02956	ACUCAL
SIGNAL GENERATOR (WAVETEK)	WAVETEK	3510B	4952044	ACUCAL
SPECTRUM ANALYZER 1	HEWLETT PACKARD	8566B	3138A07771	ACUCAL
SPECTRUM ANALYZER 2	HEWLETT PACKARD	8567A	2841A00614	ACUCAL
SPECTRUM ANALYZER 4	HEWLETT PACKARD	8567A	2727A00535	ACUCAL
TUNABLE DIPOLE	EMCO	3121	274	LIBERTY LABS
ANTENNA	ATM	WR08	08443-6	ATM
MIXER	OLESON	M08HW	F80814-1	OLESON
MIXER	OLESON	M05HW	G80814-1	OLESON
DIPLEXER	OLESON	M05HW	G80814-1	OLESON
MIXER	HEWLETT PACKARD	11970U	2332A01110	ACUCAL
MIXER	HEWLETT PACKARD	11970V	2521A00512	TELOGY
MIXER	HEWLETT PACKARD	11970W	2521A00710	TELOGY
ANTENNA	ATM	WR15	15-443-6	ATM
ANTENNA	ATM	WR10	10-443-6	ATM
ANTENNA	ATM	WR05	05-443-6	ATM
SWEEP GENERATOR	HEWLETT PACKARD	83752A	3610A00866	HEWLETT PACKARD

Calibration Certification available upon request.

APPENDIX B:

USER'S MANUAL I
