

Appendix E - Calibration Certificate for Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Eurofins E&E Wireless

New Taipei City

Certificate No. D750V3-1222_Jun24

CALIBRATION CERTIFICATE

Object D750V3 - SN:1222

Calibration procedure(s) QA CAL-05,v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: June 19, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	22-May-24 (No. DAE4-601_May24)	May-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Holled
Approved by:	Sven Kühn	Technical Manager	111111

Issued: June 19, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1222_Jun24

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528; Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	• • • • • • • • • • • • • • • • • • • •
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.0 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.76 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.70 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1222_Jun24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω - 0.7 jΩ
Return Loss	- 31.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.036 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D750V3-1222_Jun24 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 19.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1222

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.88 \text{ S/m}$; $\varepsilon_r = 43$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 03.11.2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 22.05.2024

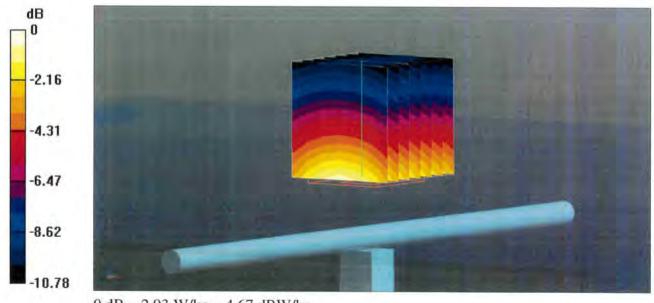
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.08 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 3.32 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg

Smallest distance from peaks to all points 3 dB below = 21.9 mm

Ratio of SAR at M2 to SAR at M1 = 64.7%

Maximum value of SAR (measured) = 2.93 W/kg

0 dB = 2.93 W/kg = 4.67 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

Taoyuan City

Certificate No.

D835V2-4d082 May25

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d082

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date May 20, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Calibrated by

Krešimir Franjić

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: May 21, 2025

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	:
Distance Dipole Center - TSL	15 mm	with spacer
Zoom Scan Resolution	dx, $dy = 6mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	835MHz ±1MHz	i

HSL parameters at 835 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	41.5	0.900 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	42.6 ±6%	0.940 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 835 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	2.38 W/kg
SAR for nominal HSL parameters	normalized to 1W	9.47 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	1.54 W/kg
SAR for nominal HSL parameters	normalized to 1W	6.13 W/kg ±16.5% (k = 2)

Gertificate No: D835V2-4d082_May25

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 835 MHz

Impedance	49.8 Ω – 5.2 jΩ
Return Loss	-25.6 dB

General Antenna Parameters and Design

Floatrical Doloy (one direction)	1 000 ma
I Electrical Delay (one direction)	1.585.08

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole erms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint mey be damaged.

Additional EUT Data

Manufactured by SPEAG

Certificate No: D835V2-4d082_May25 Page 4 of 6

System Performance Check Report

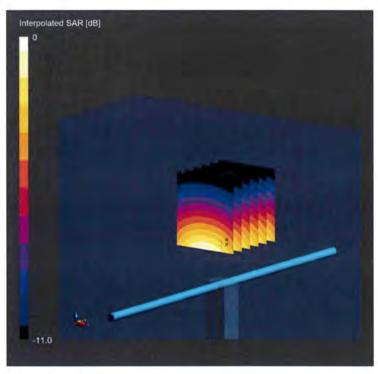
-					
Si	117	m	m	3	m/

Dipole	Frequency [MHz]	TSL	Power [dBm]	
D835V2 - SN4d082	835	HSL	24	

Exposure Conditions

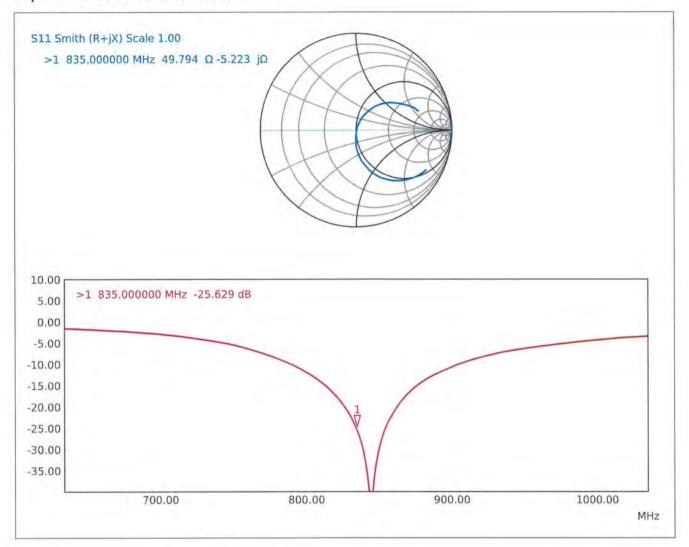
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	15		CW, 0	835, 0	9.51	0.94	42.6

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
Flat V4.9 mod	HSL, 2025-05-20	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17	

Scans Setup

reura secup		
	Zoom Scan	
Grid Extents [mm]	30 × 30 × 30	
Grid Steps [mm]	6.0 x 6.0 x 1.5	
Sensor Surface [mm]	1.4	
Graded Grid	Yes	
Grading Ratio	1,5	
MAIA	N/A	
Surface Detection	VMS + 6p	
Scan Method	Measured	


Measurement Results

	Zoom Scan
Date	2025-05-20
psSAR1g [W/Kg]	2,38
psSAR10g [W/Kg]	1,54
Power Drift [dB]	-0.03
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 3.79 W/Kg

Impedance Measurement Plot for HSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

New Taipei City

Certificate No. D1800V2-2d167 Jun24

IBRATION CERTIFICATE

Object D1800V2 - SN:2d167

QA CAL-05.v12 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: June 18, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	22-May-24 (No. DAE4-601_May24)	May-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Aidonia Georgiadou	Laboratory Technician	1/21
Approved by:	Sven Kühn	Technical Manager	CL

Issued: June 20, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

	<u> </u>	
DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	• • • • • • • • • • • • • • • • • • • •
Phantom	Modular Flat Phantom	·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	-
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	n	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.0 W/kg ± 16.5 % (k=2)

Certificate No: D1800V2-2d167_Jun24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.0 Ω - 3.6 jΩ
Return Loss	- 26.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.215 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged,

Additional EUT Data

I Manufactured by	SPEAG
,	, <u> </u>

Certificate No: D1800V2-2d167_Jun24

DASY5 Validation Report for Head TSL

Date: 18.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d167

Communication System: UID 0 - CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.63, 8.63, 8.63) @ 1800 MHz; Calibrated: 03.11.2023

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 22.05.2024

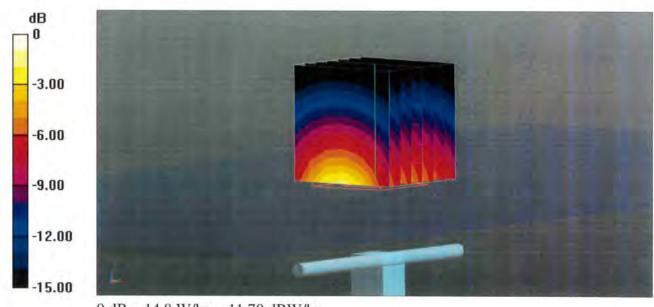
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

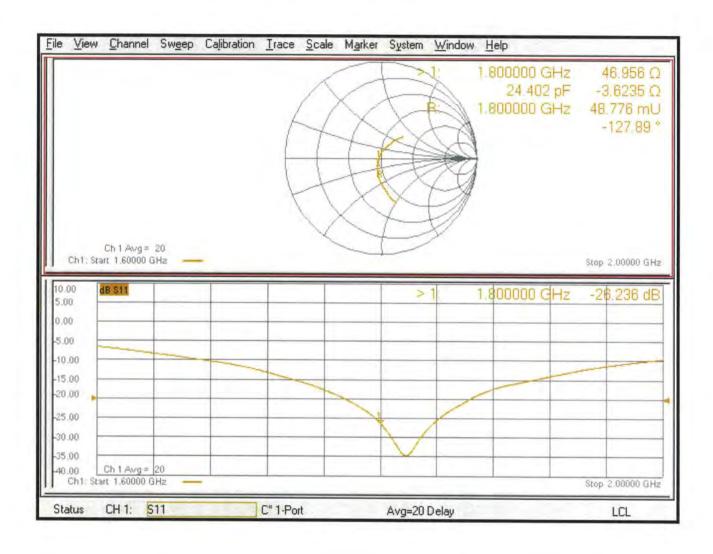
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.3 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.49 W/kg; SAR(10 g) = 4.95 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 54.1%

Maximum value of SAR (measured) = 14.8 W/kg

0 dB = 14.8 W/kg = 11.70 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Eurofins E&E Wireless

New Taipei City

Certificate No. D1900V2-5d111_Jun24

CALIBRATION CERTIFICATE

Object D1900V2 - SN:5d111

Calibration procedure(s) QA CAL-05,v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: June 13, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	22-May-24 (No. DAE4-601_May24)	May-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Krešimir Franjić	Laboratory Technician	The state of the s
Approved by:	Sven Kühn	Technical Manager	1 11111

Issued: June 14, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d111_Jun24

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	100
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$49.4~\Omega + 5.0~\mathrm{j}\Omega$
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excassive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D1900V2-5d111_Jun24 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 13.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d111

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 03.11.2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 22.05.2024

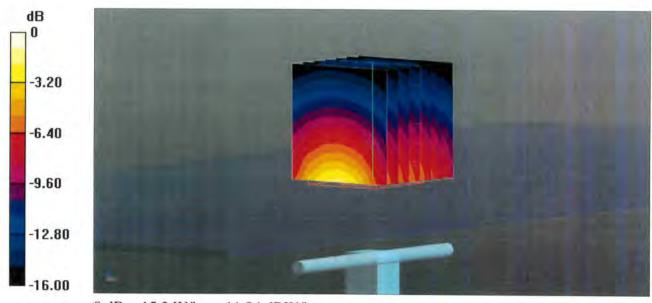
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

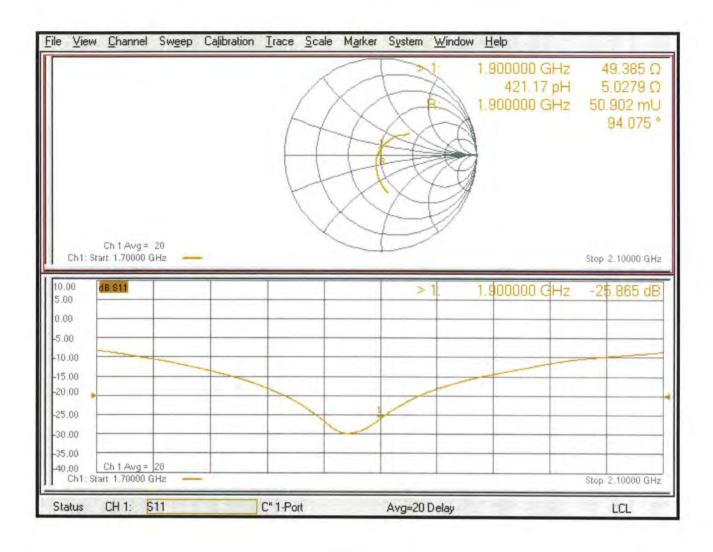
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.1 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.0 W/kg; SAR(10 g) = 5.23 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm


Ratio of SAR at M2 to SAR at M1 = 54.9%

Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.84 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Eurofins E&E Wireless

Taoyuan City

Certificate No.

D2300V2-1005_May25

CALIBRATION CERTIFICATE

Object

Client

D2300V2 - SN: 1005

Calibration procedure(s)

QA CAL-05,v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

May 19, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID	Cal Date (Certificate No.)	Scheduled Cal
SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26
	SN: 100967 SN: 101859 SN: 101832 SN: 1152 SN: 1016 SN: 1249 SN: 7349	SN: 100967 26-Mar-25 (No. 217-04290) SN: 101859 06-Feb-25 (No. 4030A315009541) SN: 101832 29-Jan-25 (No. 4030A315009658) SN: 1152 24-Mar-25 (No. 217-04293) SN: 1016 24-Sept-24 (No. OCP-DAK12-1016_Sep24) SN: 1249 23-Sept-24 (No. OCP-DAK3.5-1249_Sep24) SN: 7349 10-Jan-25 (No. EX3-7349_Jan25)

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Paulo Pina

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: May 19, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2300V2-1005_May25

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2300V2-1005_May25 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	***
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2300MHz ±1MHz	

HSL parameters at 2300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	39.5	1.67 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	38.2 ±6%	1.69 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 2300 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	12.1 W/kg
SAR for nominal HSL parameters	normalized to 1W	48.2 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	5.85 W/kg
SAR for nominal HSL parameters	normalized to 1W	23.3 W/kg ±16.5% (k = 2)

Certificate No: D2300V2-1005_May25 Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 2300 MHz

Impedance	46.7 Ω – 2.9 jΩ
Return Loss	-26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.17 ns		
--	--	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
,	

Certificate No: D2300V2-1005_May25 Page 4 of 6

System Performance Check Report

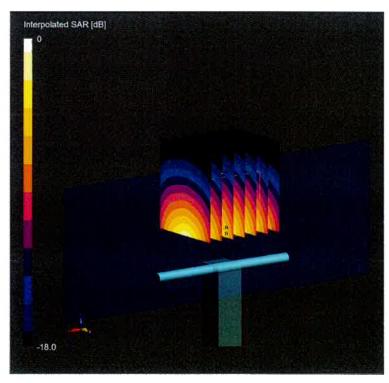
c		m	n	2.7		
J	ч	111	ш	10	u,	У

Dipole	Frequency [MHz]	TSL	Power [dBm]
D2300V2 - SN1005	2300	HSL	24

Exposure Conditions

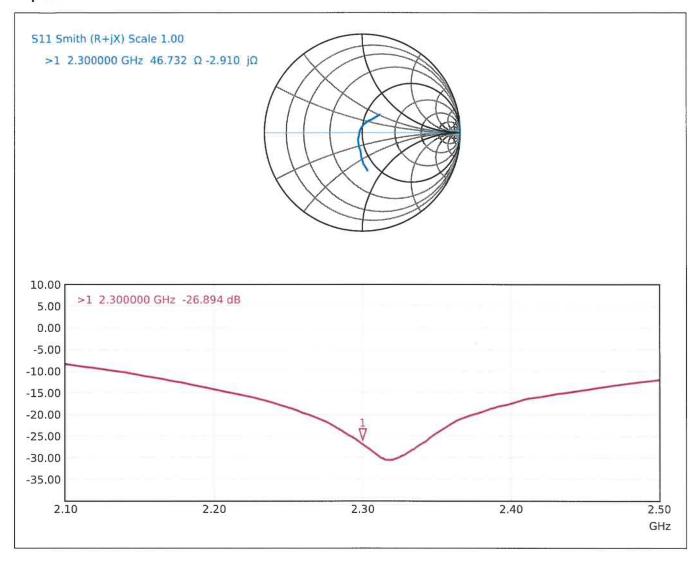
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2300, 0	7.48	1.69	38.2

Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2025-05-19	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17	

Scans Setup

	Zoom Scan
Grid Extents [mm]	30 × 30 × 30
Grid Steps [mm]	5.0 x 5.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured


Measurement Results

	Zoom Scan
Date	2025-05-19
psSAR1g [W/Kg]	12.1
psSAR10g [W/Kg]	5.85
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 23.7 W/Kg

Impedance Measurement Plot for HSL

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

Taoyuan City

Certificate No.

D2600V2-1007_May25

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1007

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date May 19, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch SMA-240522)	May-25

Name Function Signature

Calibrated by Paulo Pina Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: May 19, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1007_May25 Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulatina liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	2600MHz ±1MHz	

HSL parameters at 2600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	39.0	1.96 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	37.1 ±6%	2.01 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 2600 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	14.1 W/kg
SAR for nominal HSL parameters	normalized to 1W	56.1 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	6.35 W/kg
SAR for nominal HSL parameters	normalized to 1W	25.3 W/kg ±16.5% (k = 2)

Certificate No: D2600V2-1007_May25

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 2600 MHz

Impedance	49.5 Ω – 2.9 jΩ
Return Loss	-30.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
,	31 27 16

Certificate No: D2600V2-1007_May25

System Performance Check Report

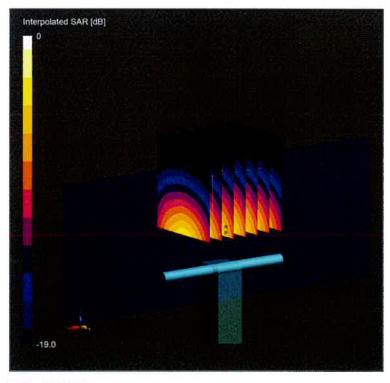
Su	n	n	na	rv

Dipole	Frequency [MHz]	TSL	Power [dBm]	
D2600V2 - SN1007	2600	HSL	24	

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2600, 0	7.26	2.01	37.1

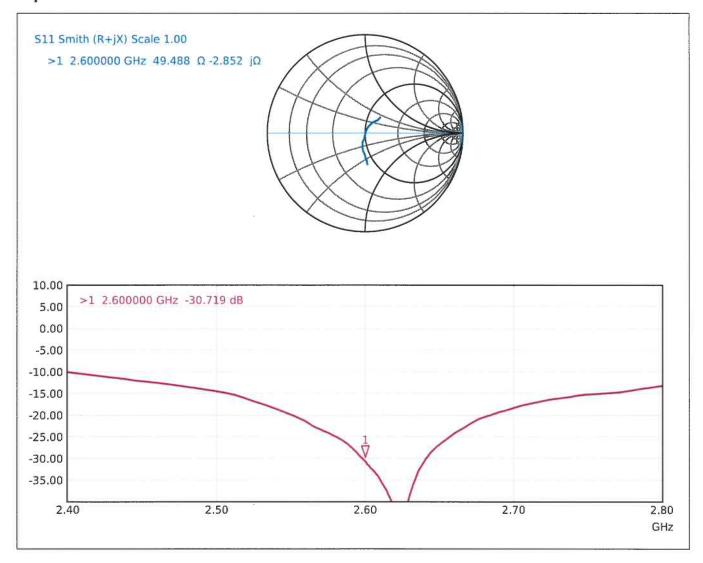
Hardware Setup


Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2025-05-19	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17	

Scans Setup

	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	5.0 x 5.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	
MAIA	
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results


	Zoom Scan
Date	2025-05-19
psSARIg [W/Kg]	14,1
psSAR10g [W/Kg]	6.35
Power Drift [dB]	0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 30.4 W/Kg

D2600V2 - SN: 1007 May 19, 2025

Impedance Measurement Plot for HSL

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

New Taipel City

Certificate No.

D3500V2-1013_Aug24

CALIBRATION CERTIFICATE

Object D3500V2 - SN: 1013

Calibration procedure(s) QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date August 22, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3,5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836 Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Calibrated by

Krešimir Franjić

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: August 22, 2024

Signature,

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3500V2-1013_Aug24

Page 1 of 9

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.4mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	3400MHz ±1MHz 3500MHz ±1MHz 3600MHz ±1MHz	

Head TSL parameters at 3400 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	38.0	2.81 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.5 ±6%	2.85 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3400 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.1 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.64 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.4 W/kg ±19.5% (k = 2)

Certificate No: D3500V2-1013_Aug24

Head TSL parameters at 3500 MHz

The following parameters and calculations were applied.

İ	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.3 ±6%	2.92 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	· · · · · · · · · · · · · · · · · · ·
SAR for nominal Head TSL parameters	20 dBm input power	6.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.1 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ±19.5% (k = 2)

Head TSL parameters at 3600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.8	3.02 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.2 ±6%	3.00 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.55 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.5 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ±19.5% (k = 2)

Certificate No: D3500V2-1013_Aug24

August 22, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3400 MHz

Impedance	44.7 Ω – 7.3 jΩ		
Return Loss	-20.5 dB		

Antenna Parameters with Head TSL at 3500 MHz

Impedance	53.1 Ω – 5.5 jΩ
Return Loss	-24.2 dB

Antenna Parameters with Head TSL at 3600 MHz

Impedance	60.3 Ω – 1.7 jΩ
Return Loss	-20.5 dB

General Antenna Parameters and Design

	No. of the second secon
Fig. 1. 15 1 / no discostinut	1 122 po
Electrical Delay (one direction)	1.133 ns
Electrical Delay (one one offer)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

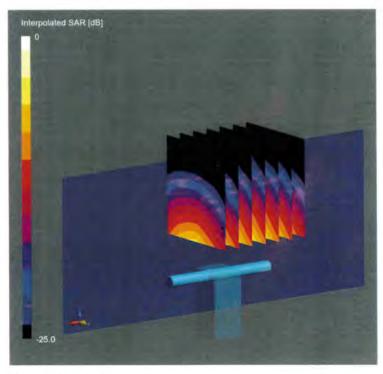
System Performance Check Report

		ry

Dipole	Frequency [MHz] TSL Power [dBm]		TSL Power [dBm]				Frequency [MHz] TSL Power [dBm]		Frequency [MHz] TSL Power [dBm]	
D3500V2 - SN1013	3400	HSL	20							

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	3400, 0	6.56	2.85	38.5


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Right	HSL, 2024-08-22	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

Scans Setup

cans setup	
	Zoom Scan
Grid Extents [mm]	28 × 28 × 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

	Zoom Scan
Date	2024-08-22
psSAR1g [W/Kg]	6.91
psSAR10g [W/Kg]	2.64
Power Drift [dB]	-0.06
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 17.7 W/Kg

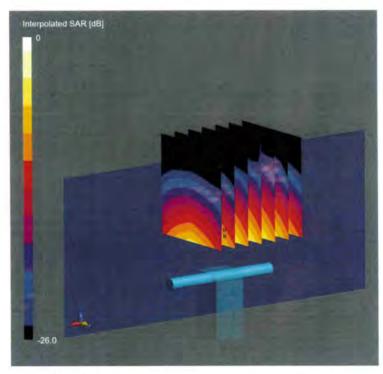
System Performance Check Report

~					
Su	m	m	а	n	,

Dipole	Frequency [MHz]	TSL	Power [dBm]	
D3500V2 - SN1013	3500	HSL	20	

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	3500, 0	6.61	2.92	38.3


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Right	HSL, 2024-08-21	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

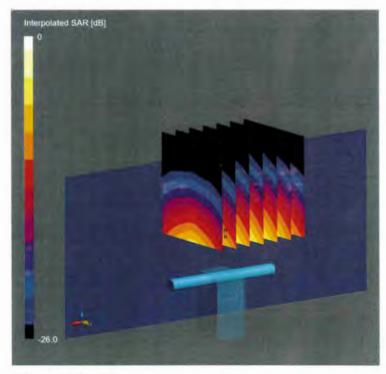
Scans Setup

cans setup	
	Zoom Scan
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured
Scan Method	

leasurement Results	
	Zoom Scan
Date	2024-08-21
psSAR1g [W/Kg]	6.61
psSAR10g [W/Kg]	2.50
Power Drift [dB]	0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

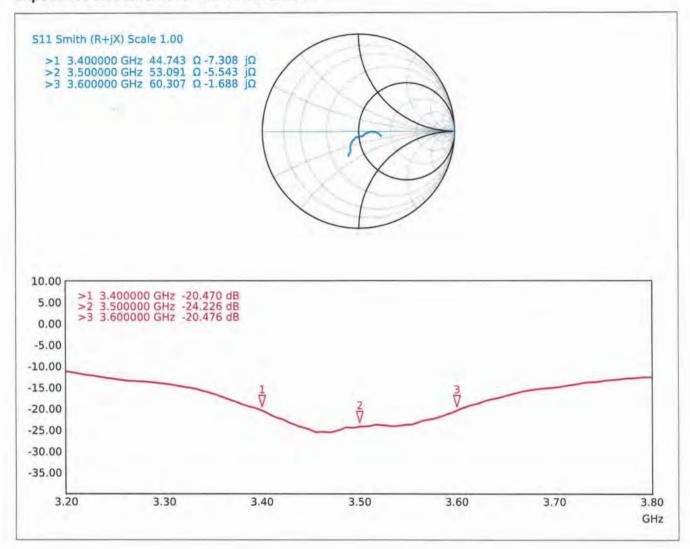
0 dB = 17.6 W/Kg

System Performance Check Report


Dipole	Frequency [MHz]	TSL	Power [dBm]	
D3500V2 - SN1013	3600	HSL	20	

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	3600, 0	6.61	3.00	38.2

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Right	HSL, 2024-08-21	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10


	Zoom Scan
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results	
	Zoom Scan
Date	2024-08-21
psSAR1g [W/Kg]	6.55
psSAR10g [W/Kg]	2.47
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 17.6 W/Kg

Impedance Measurement Plot for Head TSL

Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

New Taipel City

Certificate No.

D3700V2-1034 Aug24

CALIBRATION CERTIFICATE

Object

D3700V2 - SN: 1034

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

August 19, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Leif Klysner

Laboratory Technician

Issued: August 20, 2024

Approved by

Sven Kühn

Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- . SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3700V2-1034_Aug24 Page 2 of 8

D3700V2 - SN: 1034 August 19, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.4mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	3700MHz ±1MHz 3800MHz ±1 M Hz	

Head TSL parameters at 3700 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.1 ±6%	3.08 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3700 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.0 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ±19.5% (k = 2)

August 19, 2024

Head TSL parameters at 3800 MHz

D3700V2 - SN: 1034

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.6	3.22 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.0 ±6%	3.16 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.4 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ±19.5% (k = 2)

August 19, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3700 MHz

Impedance	44.7 Ω – 0.1 jΩ		
Return Loss	-25.0 dB		

Antenna Parameters with Head TSL at 3800 MHz

impedance	49.9 Ω + 1.3 jΩ
Return Loss	-37.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.132 ns
,	LVANT

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole erms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D3700V2-1034_Aug24

D3700V2 - SN: 1034 August 19, 2024

System Performance Check Report

Su		

Dipole	Frequency [MHz]	TSL	Power [dBm]	
D3700V2 - SN1034	3700	HSL	20	

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	3700, 0	6.34	3.08	38.1

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Right	HSL, 2024-08-19	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

Scans Setur

Zoom Scan
28 x 28 x 28
5.0 x 5.0 x 1.4
1.4
Yes
1.5
N/A
VMS + 6p
Measured

veasurement Results	
	Zoom Scan
Date	2024-08-19
psSAR1g [W/Kg]	6.80
psSAR10g [W/Kg]	2.49
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 18.5 W/Kg

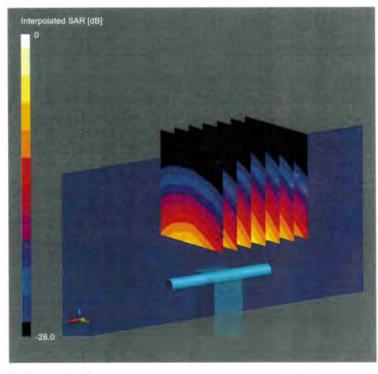
August 19, 2024 D3700V2 - SN: 1034

System Performance Check Report

un		

Dipole	Frequency [MHz]	TSL	Power [dBm]	
D3700V2 - SN1034	3800	HSL	20	

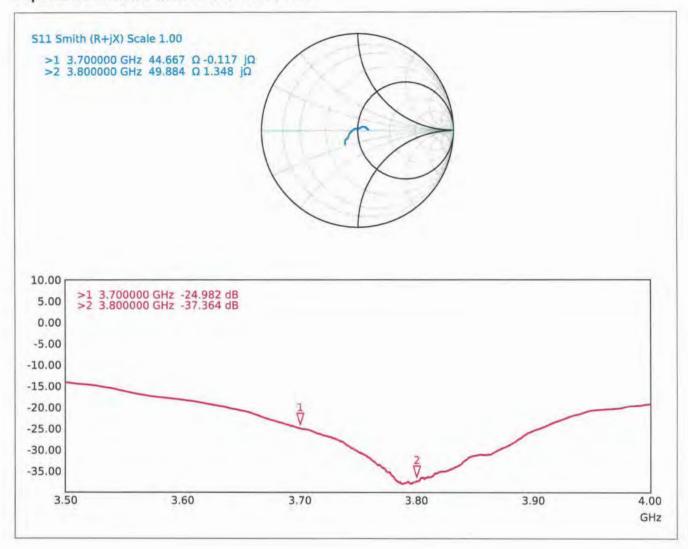
Exposure Conditions


Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	3800, 0	6.34	3.16	38.0

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Right	HSL, 2024-08-19	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

	Zoom Scan
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured


neasurement Results	
	Zoom Scan
Date	2024-08-19
psSAR1g [W/Kg]	6.54
psSAR10g [W/Kg]	2.40
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 18.0 W/Kg

D3700V2 - SN: 1034 August 19, 2024

Impedance Measurement Plot for Head TSL

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

New Taipei City

Certificate No.

D3900V2-1014 Aug24

CALIBRATION CERTIFICATE

Object

D3900V2 - SN: 1014

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

August 20, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Calibrated by

Krešimir Franjić

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: August 21, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- . Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 5mm, dz = 1.4mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	3900MHz ±1MHz 4000MHz ±1MHz 4100MHz ±1MHz	

Head TSL parameters at 3900 MHz

The following perameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.9 ±6%	3.25 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3900 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.2 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ±19.5% (k = 2)

Certificate No: D3900V2-1014_Aug24

Head TSL parameters at 4000 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.4	3.43 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.8 ±6%	3.34 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4000 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.8 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ±19.5% (k = 2)

Head TSL parameters at 4100 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.2	3.53 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.6 ±6%	3.43 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4100 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	6.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.1 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ±19.5% (k = 2)

Certificate No: D3900V2-1014_Aug24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3900 MHz

Impedance	48.0 Ω – 7.3 jΩ
Return Loss	-22.3 dB

Antenna Parameters with Head TSL at 4000 MHz

Impedance	56.5 Ω – 4.6 jΩ
Return Loss	-22.5 dB

Antenna Parameters with Head TSL at 4100 MHz

Impedance	61.8 Ω – 1.1 jΩ
Return Loss	-19.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.1 ns	\neg

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D3900V2-1014_Aug24 Page 5 of 9

System Performance Check Report

-			-		
Su	m	m	а	nv.	

Dipole	Frequency [MHz]	TSL	Power [dBm]	
D3900V2 - SN1014	3900	HSL	20	

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	3900, 0	6.39	3.25	37.9

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date		
MFP V8.0 Right	HSL, 2024-08-20	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10		

Scans Setur

cans setup	
	Zoom Scan
Grid Extents [mm]	28 x 28 x 28
Grid Steps [mm]	5.0 x 5.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

neasurement nesures	
	Zoom Scan
Date	2024-08-20
psSAR1g [W/Kg]	6.82
psSAR10g [W/Kg]	2.39
Power Drift [dB]	-0.02
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 19.1 W/Kg

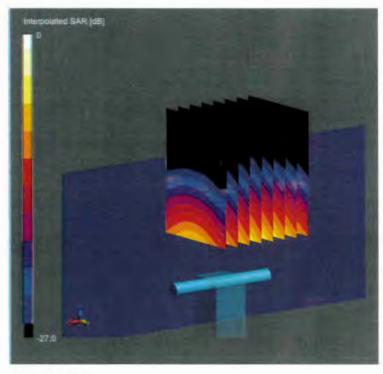
System Performance Check Report

-				
oc.	 m	m	a	m/

Dipole	Frequency [MHz]	TSL	Power [dBm]	
D3900V2 - SN1014	4000	HSL	20	

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	4000, 0	6.39	3.34	37.8


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Right	HSL, 2024-08-20	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

Scans Setur

	Zoom Scan
Grid Extents [mm]	25 x 25 x 25
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

neusurement resurts	
	Zoom Scan
Date	2024-08-20
psSAR1g [W/Kg]	6.78
psSAR10g [W/Kg]	2.39
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 19.5 W/Kg

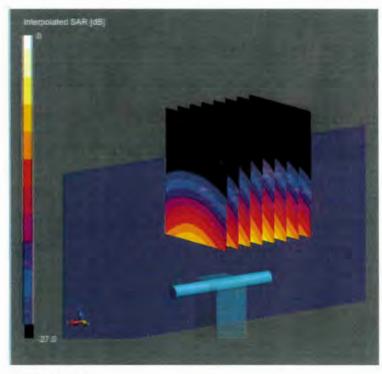
System Performance Check Report

		rv

- Dannina II				
Dipole	Frequency [MHz]	TSL	Power [dBm]	
D3900V2 - SN1014	4100	HSL	20	

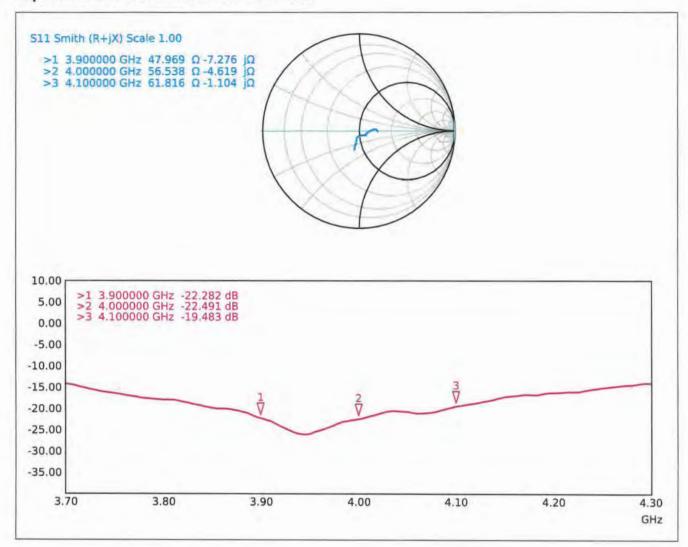
Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	4100, 0	6.31	3.43	37.6


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Right	HSL, 2024-08-20	EX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

Scans Setur


cans Setup	
	Zoom Scan
Grid Extents [mm]	25 x 25 x 25
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

Measurement Results	
	Zoom Scan
Date	2024-08-20
psSAR1g [W/Kg]	6.81
psSAR10g [W/Kg]	2.38
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 20.0 W/Kg

Impedance Measurement Plot for Head TSL

Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

Taoyuan City

Certificate No.

D5GHzV2-1021 May25

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1021

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

May 22, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836 Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Paulo Pina

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: May 22, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 9 Certificate No: D5GHzV2-1021_May25

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	. 10 mm	with spacer
Zoom Scan Resolution	dx, dy = 4mm, dz = 1.4mm	Graded Ratio = 1.4 mm (Z direction)
Frequency	5250MHz ±1MHz 5600MHz ±1MHz 5800MHz ±1MHz	

HSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	35.9	4.71 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	36.7 ±6%	4.70 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	7.99 W/kg
SAR for nominal HSL parameters	normalized to 1W	79.9 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	2.25 W/kg
SAR for nominal HSL parameters	normalized to 1W	22.5 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1021_May25 Page 3 of 9

HSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	35.5	5.07 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	36.0 ±6%	5.09 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	8.24 W/kg
SAR for nominal HSL parameters	normalized to 1W	82.4 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	2.33 W/kg
SAR for nominal HSL parameters	normalized to 1W	23.3 W/kg ±19.5% (k = 2)

HSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	35.3	5.27 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	35.8 ±6%	5.32 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	8.09 W/kg
SAR for nominal HSL parameters	normalized to 1W	80.9 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	2.27 W/kg
SAR for nominal HSL parameters	normalized to 1W	22.7 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1021_May25 Page 4 of 9

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 5250 MHz

Impedance	50.8 Ω – 5.2 jΩ
Return Loss	-25.6 dB

Antenna Parameters with HSL at 5600 MHz

Impedance	57.3 Ω – 2.4 jΩ
Return Loss	-22.9 dB

Antenna Parameters with HSL at 5800 MHz

Impedance	58.5 Ω – 1.8 jΩ			
Return Loss	-21.9 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	10.55
Lieuthuai Delay (one direulon)	1.2 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

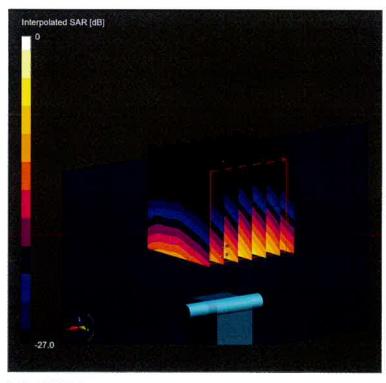
System Performance Check Report

ς	FI	m	11	m	a	ry
~	и		11	31.4	ш	1 A

Dipale	Frequency [MHz]		Power [dBm]
D5GHzV2 - SN1021	5250	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	5250, 0	5.68	4.70	36.7


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2025-05-22	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17	

Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 × 4.0 × 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

	Zoom Scan
Date	2025-05-22
psSAR1g [W/Kg]	7.99
psSAR10g [W/Kg]	2.25
Power Drift [dB]	-0.04
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 32.1 W/Kg

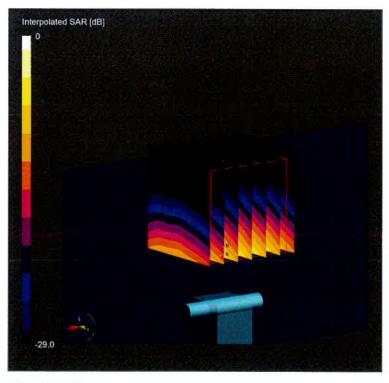
System Performance Check Report

~				
1	117	nr	na	m

Dipole Frequency [MHz]		TSL	Power [dBm]
D5GHzV2 - SN1021	5600	HSL	20

Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	5600, 0	5.21	5.09	36.0


Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2025-05-22	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17	

Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

neasurement Results	
	Zoom Scan
Date	2025-05-22
psSARlg [W/Kg]	8.24
psSAR10g [W/Kg]	2.33
Power Drift [dB]	0.00
Power Scaling	
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 35.6 W/Kg

System Performance Check Report

Su		

Dipole	Frequency [MHz]	TSL	Power [dBm]
D5GHzV2 - SN1021	5800	HSL	20

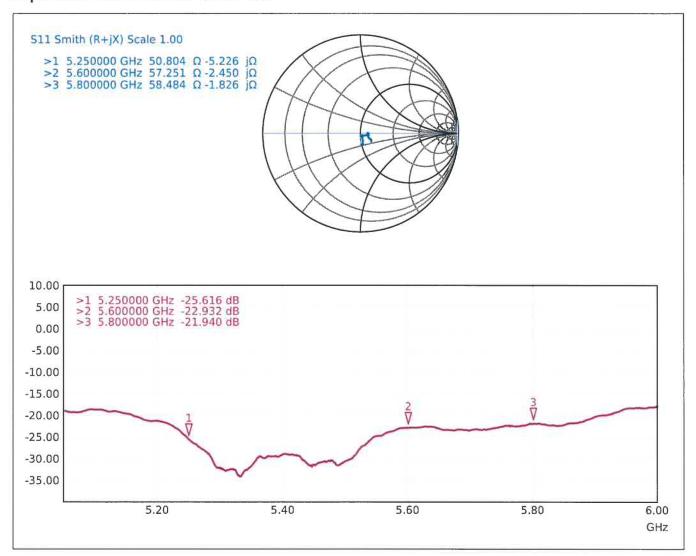
Exposure Conditions

Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	5800, 0	5,17	5.32	35.8

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2025-05-22	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17	

Scans Setup


	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

	Zoom Scan
Date	2025-05-22
psSAR1g [W/Kg]	8.09
psSAR10g [W/Kg]	2.27
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 36.5 W/Kg

Impedance Measurement Plot for HSL

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

Taoyuan City

Certificate No.

D6.5GHzV2-1016_May25

CALIBRATION CERTIFICATE

Object

D6.5GHzV2 - SN: 1016

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

May 22, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	-ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40	SN: 101832	29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination	SN: 1152	24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAE4ip	SN: 1836	17-Apr-25 (No. DAE4ip-1836_Apr25)	Apr-26

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Setup 1	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name

Function

Signature

Calibrated by

Paulo Pina

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: May 22, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1016_May25

Page 1 of 7

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center
 marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D6.5GHzV2-1016 May25 Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version DASY8 Module SAR		16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with spacer
Zoom Scan Resolution	dx, dy = 3.4mm, dz = 1.4mm	Graded Ratio = 1.4 mm (Z direction)
Frequency	6500MHz ±1MHz	

HSL parameters at 6500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal HSL parameters	22.0 °C	34.5	6.07 mho/m
Measured HSL parameters	(22.0 ±0.2)°C	34.8 ±6%	6.15 mho/m ±6%
HSL temperature change during test	< 0.5 °C		

SAR result with HSL at 6500 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	29.8 W/kg
SAR for nominal HSL parameters	normalized to 1W	298 W/kg ±24.7% (k = 2)

SAR averaged over 8 cm ³ (8 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	6.74 W/kg
SAR for nominal HSL parameters	normalized to 1W	67.4 W/kg ±24.4% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	20 dBm input power	5.57 W/kg
SAR for nominal HSL parameters	normalized to 1W	55.7 W/kg ±24.4% (k = 2)

Certificate No: D6.5GHzV2-1016_May25

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 6500 MHz

Impedance	54.9 Ω – 7.0 jΩ
Return Loss	-21.8 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ³	Condition	
APD measured	20 dBm input power	298 W/kg
APD measured	normalized to 1W	2980 W/kg ±29.2% (k = 2)

APD averaged over 4 cm ³	Condition	
APD measured	20 dBm input power	135 W/kg
APD measured	normalized to 1W	1350 W/kg ±28.9% (k = 2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

Certificate No: D6.5GHzV2-1016_May25

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D6.5GHzV2-1016_May25 Page 5 of 7

System Performance Check Report

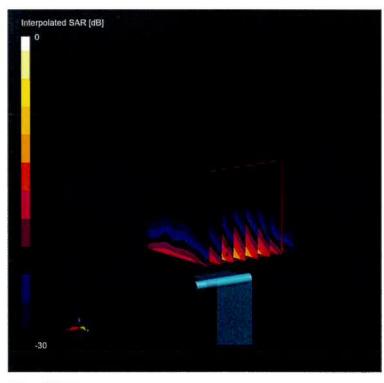
-			
NΙ	ım	ım:	ary
J	40.01		ur y

Dipole	Frequency [MHz]	TSL	Power [dBm]
D6.5GHzV2 - SN1016	6500	HSL	20

Exposure Conditions

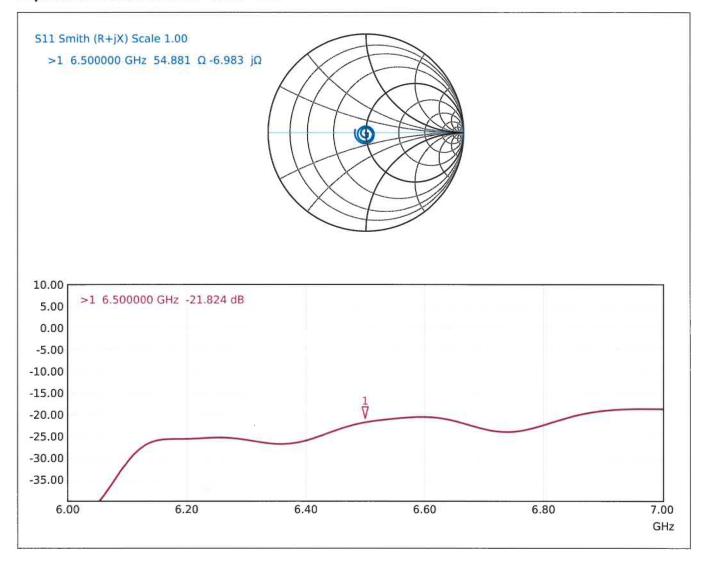
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	5		CW, 0	6500, 0	5.49	6.15	34.8

Hardware Setup

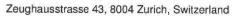

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MFP V8.0 Center	HSL, 2025-05-22	EX3DV4 - SN7349, 2025-01-10	DAE4ip Sn1836, 2025-04-17	

Scans Setup

	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	3.4 × 3.4 × 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured


Measurement Results

Zoom Scan
2025-05-22
29.8
5.57
0.00
Disabled
Positive / Negative


0 dB = 187 W/Kg

Impedance Measurement Plot for HSL

Calibration Laboratory of

Schmid & Partner Engineering AG

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless

Taoyuan City

Certificate No.

5G-Veri10-2003 Feb25

CALIBRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 2003

Calibration procedure(s)

QA CAL-45.v5

Calibration procedure for sources in air > 6 GHz

Calibration date

February 11, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Reference Probe SPEAG EUmmWV3	SN: 9374	28-Aug-24 (No. Eumm_9374_Aug24)	Aug-25
DAE4ip	SN: 1602	06-Nov-24 (No. DAE4ip-1602 Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Signal Generator R&S SMF100A	SN: 100184	26-Nov-24 (No. 5G-Source-Cal-IHC-202411)	Nov-25
Power Sensor R&S NRP18S-10	SN: 101258	26-Nov-24 (No. 5G-Source-Cal-IHC-202411)	Nov-25
Network Analyzer Keysight E5063A	SN: MY54504221	30-Sept-24 (No. 675-CAL18-S4489-Sep24)	Sep-26

Name

Function

Signature

Calibrated by

Joanna Lleshaj

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: February 11, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-2003_Feb25

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

CW Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45. Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes.
 Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical
 positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified
 using mechanical gauges positioned on the flare of the horn.
- E-field distribution: The E-field is measured in two x-y-planes (10mm, 10mm + λ/4) with a vectorial E-field probe. The
 E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm² and 4cm²) power density
 values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10.0 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²)		Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	138.0	286	1.27 dB	217	172	1.28 dB

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	psPDn+, psPDt	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)	
				1cm ²	4cm ²	
10 mm	138.0	286	1.27 dB	216, 216, 218	170, 171, 176	1.28 dB

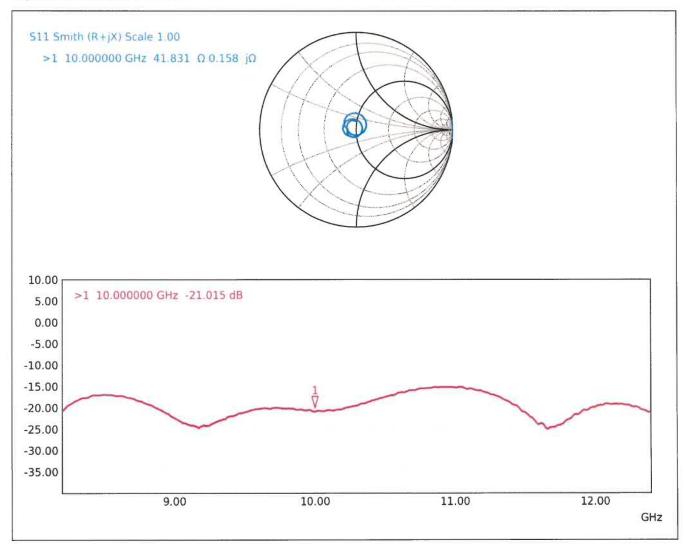
Square Averaging

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg (psPDn+, psF	Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+)	
				1cm ²	4cm ²	
10 mm	138.0	286	1.27 dB	217	172	1.28 dB

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m ²)		Uncertainty (k = 2)
				1cm ²	4cm ²	
10 mm	138.0	286	1.27 dB	216, 216, 218	170, 170, 175	1.28 dB

Max Power Density

Distance Horn Aperture to Measurement Plane	Prad ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density Sn, Stot, Stot (W/m²)	Uncertainty (k = 2)
10 mm	138.0	286	1.27 dB	235, 235, 235	1.28 dB


¹Assessed ohmic and mismatch loss plus numerical offset: 0.60 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	41.8 Ω+0.2 jΩ
Return Loss	-21.0 dB

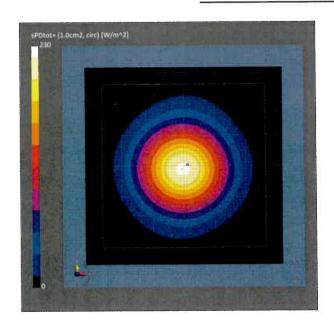
Impedance Measurement Plot

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 2003	=	

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup	
Sensor Surface [mm]	10.0
MAIA	MAIA not used

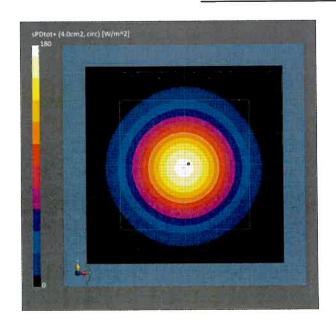
Scan Type	5G Scan
Date	2025-02-11
Avg. Area [cm²]	1.00
Avg. Type	Circular Averaging
psPDn+ [W/m²]	216
psPDtot+ [W/m ²]	216
psPDmod+ [W/m²]	218
Max(Sn) [W/m ²]	235
Max(Stot) [W/m ²]	235
Max(Stot) [W/m²]	235
E _{max} [V/m]	286
Power Drift [dB]	0.0

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 2003	-	

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup	
Sensor Surface [mm]	10.0
MAIA	MAIA not used

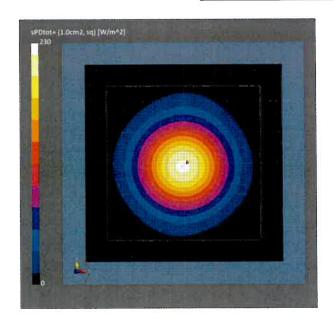
Scan Type	5G Scan
Date	2025-02-11
Avg. Area [cm²]	4.00
Avg. Type	Circular Averaging
psPDn+ [W/m²]	170
psPDtot+ [W/m²]	171
psPDmod+ [W/m²]	176
Max(Sn) [W/m²]	235
Max(Stot) [W/m ²]	235
Max(Stot) [W/m²]	235
E _{max} [V/m]	286
Power Drift [dB]	0.0

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 2003	(=)	

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup 10.0 MAIA MAIA not used

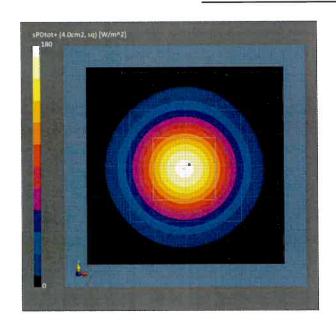
Scan Type	5G Scan
Date	2025-02-11
Avg. Area [cm²]	1.00
Avg. Type	Square Averaging
psPDn+ [W/m²]	216
psPDtot+ [W/m²]	216
psPDmod+ [W/m²]	218
Max(Sn) [W/m²]	235
Max(Stot) [W/m²]	235
Max(Stot) [W/m ²]	235
E _{max} [V/m]	286
Power Drift [dB]	0.0

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000.0 (10000.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type	
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 2003	-	

Exposure Conditions


Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW, 0	10000.0,10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom -	Air -	EUmmWV3 - SN9374_F1-55GHz, 2024-08-28	DAE4ip - SN1602, 2024-11-06

Scans Setup	
Sensor Surface [mm]	10.0
MAIA	MAIA not used

Measurement Results	
Scan Type	5G Scan
Date	2025-02-11
Avg. Area [cm²]	4.00
Avg. Type	Square Averaging
psPDn+ [W/m ²]	170
psPDtot+ [W/m²]	170
psPDmod+ [W/m²]	175
Max(Sn) [W/m ²]	235
Max(Stot) [W/m ²]	235
Max(Stot) [W/m ²]	235
E _{max} [V/m]	286
Power Drift [dB]	0.0

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No. 5G-Veri10-1060_Sep24

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Eurofins E&E Wireless New Taipei City

CALIBRATION CERTIFICATE

Object 5G Verification Source 10 GHz - SN: 1060

Calibration procedure(s) QA CAL-45.v5

Calibration procedure for sources in air above 6 GHz

Calibration date: September 17, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration	
Reference Probe EUmmWV3	SN: 9374	28-Aug-24 (No. EUmm-9374_Aug24)	Aug-25	
DAE4ip	SN: 1602	08-Nov-23 (No. DAE4ip-1602_Nov23)	Nov-24	

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMF100A	SN: 100184	29-Nov-23 (in house check Nov-23)	In house check: Nov-24
Power sensor R&S NRP18S-10	SN: 101258	29-Nov-23 (in house check Nov-23)	In house check: Nov-24
Network Analyzer Keysight E5063A	SN: MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25

Name

Function

Calibrated by:

Joanna Lleshaj

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: September 18, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-1060_Sep24

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1. "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + $\lambda/4$) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-1060_Sep24

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	· · ·
Number of measured planes	2 (10mm, 10mm + λ/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn	Prad1	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Avg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.6	56.5	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+ (W/m²)		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.4, 60.6, 60.8	56.2, 56.5, 56.7	1.28 dB

Square Averaging

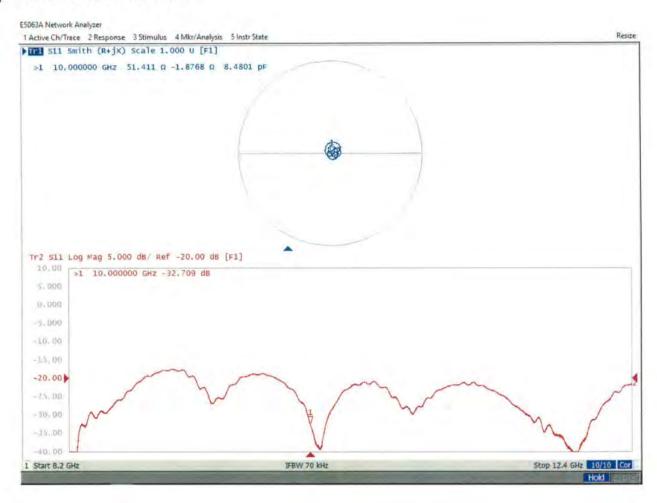
	9					
Distance Horn	Prad	Max E-field	Uncertainty	Avg Power Density		Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	AVg (psPDn+, psPDtot+, psPDmod+)		(k = 2)
Measured Plane				(W/m²)		
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.5	56.4	1.28 dB

Distance Horn Aperture to	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density psPDn+, psPDtot+, psPDmod+		Uncertainty (k = 2)
Measured Plane	()	(•/////	(K = 2)	(W/m²)		(K = 2)
				1 cm ²	4 cm ²	
10 mm	93.3	153	1.27 dB	60.3, 60.5, 60.7	56.1, 56.4, 56.6	1.28 dB

Max Power Density

Distance Horn	Prad¹	Max E-field	Uncertainty	Max Power Density	Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Sn, Stot, Stot	(k = 2)
Measured Plane				(W/m²)	\
10 mm	93.3	153	1.27 dB	61.9, 62.0, 62.2	1.28 dB

Certificate No: 5G-Veri10-1060_Sep24


 $^{^{1}}$ Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	51.4 Ω - 1.9 jΩ		
Return Loss	- 32.7 dB		

Impedance Measurement Plot

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

 Name, Manufacturer
 Dimensions [mm]
 IMEI
 DUT Type

 5G Verification Source 10 GHz
 100.0 x 100.0 x 172.0
 SN: 1060

Exposure Conditions

Phantom Section Position, Test Distance [mm] Band Group, Frequency [MHz], Conversion Factor Channel Number Channel Number 10.0 mm Validation band CW 10000.0. 1.0

5G - 10.0 mm Validation band CW 10000.0, 1.0

Hardware Setup

PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374_F1-55GHz,
2024-08-28DAE4ip Sn1602,
2023-11-08

Scan Setup

5G Scan 5G Scan 2024-09-17, 16:32 Sensor Surface [mm] 10.0 Date MAIA MAIA not used Avg. Area [cm2] 1.00 Avg. Type Circular Averaging psPDn+ [W/m²] 60.4 psPDtot+ [W/m²] psPDmod+ [W/m²] 60.6 60.8 Max(Sn) [W/m²] 61.9 Max(Stot) [W/m2] 62.0 Max(|Stot|) [W/m²] 62.2 E_{max} [V/m] 153

Measurement Results

Power Drift [dB]

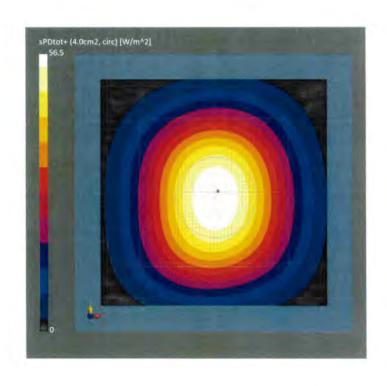
-0.04

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

DUT Type IMEI Name, Manufacturer Dimensions [mm] 100.0 x 100.0 x 172.0 SN: 1060 5G Verification Source 10 GHz

Exposure Conditions


Conversion Factor Frequency [MHz], Position, Test Distance Group, **Phantom Section** Band **Channel Number** [mm] 10000.0. 1.0 Validation band 10.0 mm CW 5G -10000

Hardware Setup

Probe, Calibration Date DAE, Calibration Date Phantom Medium EUmmWV3 - SN9374 F1-55GHz, DAE4ip Sn1602, mmWave Phantom - 1002 Air 2024-08-28 2023-11-08

Scan Setup

Measurement Results 5G Scan 5G Scan 2024-09-17, 16:32 Sensor Surface [mm] 10.0 Date MAIA MAIA not used Avg. Area [cm2] 4.00 Circular Averaging Avg. Type psPDn+ [W/m²] 56.2 psPDtot+ [W/m²] 56.5 psPDmod+ [W/m²] 56.7 Max(Sn) [W/m²] 61.9 Max(Stot) [W/m²] 62.0 Max(|Stot|) [W/m²] 62.2 E_{max} [V/m] 153 Power Drift [dB] -0.04

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

IMEI **DUT Type** Name, Manufacturer Dimensions [mm] 100.0 x 100.0 x 172.0 SN: 1060 5G Verification Source 10 GHz

Exposure Conditions

Conversion Factor Frequency [MHz], **Phantom Section** Position, Test Distance Band Group, **Channel Number** [mm] 10000.0, 1.0 Validation band 5G -10.0 mm CW 10000

Hardware Setup

DAE, Calibration Date **Probe, Calibration Date** Phantom Medium EUmmWV3 - SN9374 F1-55GHz, DAE4ip Sn1602, mmWave Phantom - 1002 Air 2023-11-08 2024-08-28

Scan Setup

Measurement Results 5G Scan 5G Scan 2024-09-17, 16:32 10.0 Sensor Surface [mm] Date Avg. Area [cm²] 1.00 MAIA MAIA not used Square Averaging Avg. Type psPDn+ [W/m²] 60.3 psPDtot+ [W/m²] 60.5 psPDmod+ [W/m²] 60.7 Max(Sn) [W/m²] 61.9 Max(Stot) [W/m²] 62.0 Max(|Stot|) [W/m²] 62.2 E_{max} [V/m] 153 Power Drift [dB] -0.04

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

DUT Type Dimensions [mm] IMEI Name, Manufacturer 5G Verification Source 10 GHz 100.0 x 100.0 x 172.0 SN: 1060

Exposure Conditions

Frequency [MHz], **Conversion Factor** Position, Test Distance **Phantom Section** Band Group, **Channel Number** [mm] Validation band 10000.0, 1.0 10.0 mm CW 5G -10000

Hardware Setup

Probe, Calibration Date DAE, Calibration Date Medium Phantom mmWave Phantom - 1002 EUmmWV3 - SN9374 F1-55GHz, DAE4ip Sn1602, Air 2023-11-08 2024-08-28

Scan Setup

Measurement Results 5G Scan 5G Scan 10.0 2024-09-17, 16:32 Sensor Surface [mm] Date MAIA not used Avg. Area [cm²] 4.00 MAIA Avg. Type Square Averaging psPDn+ [W/m²] 56.1 psPDtot+ [W/m²] 56.4 psPDmod+ [W/m²] 56.6 Max(Sn) [W/m²] 61.9 Max(Stot) [W/m²] 62.0 Max(|Stot|) [W/m2] 62.2 $E_{max}[V/m]$ 153 Power Drift [dB] -0.04

