FCC SAR TEST REPORT

FCC ID : E2KFM350GL

Equipment : 5G Module

Brand Name: Fibocom

Model Name: FM350-GL

Applicant : Fibocom Wireless Inc.

1101, Tower A, Building 6, Shenzhen International, Innovation

Valley, Dashi 1st Rd, Nanshan, ShenZhen, China

Manufacturer: Fibocom Wireless Inc.

1101, Tower A, Building 6, Shenzhen International, Innovation

Valley, Dashi 1st Rd, Nanshan, ShenZhen, China

Standard : FCC 47 CFR Part 2 (2.1093)

The product was installed into Portable Computer (Brand Name DELL, Model Name: P178G, P178G001) during test.

The product was received on Jan. 18, 2023 and testing was started from May 19, 2023 and completed on May 19, 2023. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Laboratory, the test report shall not be reproduced except in full.

Approved by: Cona Huang / Deputy Manager

Gua Guang

Iac-MRA

Report No.: FA2O2008-01

Sporton International Inc. EMC & Wireless Communications Laboratory
No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan

TEL: 886-3-327-3456 Page 1 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

SPORTON LAB. FCC SAR TEST REPORT

Report No. : FA2O2008-01

Table of Contents

1. Statement of Compliance	
2. Guidance Applied	
3. Equipment Under Test (EUT) Information	5
3.1 General Information	5
3.2 General LTE SAR Test and Reporting Considerations	7
3.3 General 5G NR SAR Test and Reporting Considerations	
4. Proximity Sensor Triggering Test	12
5. RF Exposure Limits	
5.1 Uncontrolled Environment	16
5.2 Controlled Environment	16
6. Specific Absorption Rate (SAR)	
6.1 Introduction	
6.2 SAR Definition	
7. System Description and Setup	
7.1 Test Site Location	18
7.2 E-Field Probe	
7.3 Data Acquisition Electronics (DAE)	19
7.4 Phantom	20
7.5 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	22
8.2 Power Reference Measurement	
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	25
10. System Verification	
10.1 Tissue Verification	
10.2 System Performance Check Results	26
11. 5G NR Output Power (Unit: dBm)	27
12. Antenna Location	
13. SAR Test Results	
13.1 Body SAR	
14. Simultaneous Transmission Analysis	
14.1 Body Exposure Conditions	
14.2 SPLSR Evaluation and Analysis	
15. Uncertainty Assessment	
16. References	38
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

History of this test report

Report No.: FA2O2008-01

Report No.	Version	Description	Issued Date
FA2O2008-01	01	Initial issue of report	Jun. 20, 2023

TEL: 886-3-327-3456 Page 3 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) for **Fibocom Wireless Inc.**, **5G Module**, **FM350-GL**, are as follows.

Report No.: FA2O2008-01

			Highest SAR Summary	Highest Simultaneous			
Equipment Class		Frequency Band	Body	Transmission			
Olass		Dana	1g SAR (W/kg)	1g SAR (W/kg)			
		WCDMA II	1.18				
	WCDMA	WCDMA IV	1.11				
		WCDMA V	1.02				
		LTE Band 7	1.05				
		LTE Band 12 / 17	1.01				
		LTE Band 13	1.12				
		LTE Band 14	1.13				
		LTE Band 2 / 25	1.02				
	LTE	LTE Band 5 / 26	1.03				
		LTE Band 30	1.19				
		LTE Band 4 / 66	1.10				
		LTE Band 71	0.89	4.55			
Licensed		LTE Band 38 / 41	1.06	1.55			
		LTE Band 48	1.03				
		FR1 n2	1.04				
		FR1 n5	0.88				
		FR1 n7	1.15				
		FR1 n25	1.09				
	FD4	FR1 n30	0.97				
	FR1	FR1 n66	0.92				
		FR1 n71	0.79				
		FR1 n38 / n41	1.18				
		FR1 n48	0.93				
		FR1 n77 / n78	1.44				
	Date of Testi	ng:	2023	/5/19			

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Daisy Peng</u>

TEL: 886-3-327-3456 Page 4 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

2. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation.

Report No.: FA2O2008-01

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02

3. Equipment Under Test (EUT) Information

3.1 General Information

### SG Module ### SFrand Name	Product Feature & Specification										
### FM350-GL ### FM350-GL ### FM350-GL ### FM350-GL ### WCDMA Band IV: 1710 MHz ~ 1755 MHz ### WCDMA Band IV: 1710 MHz ~ 1755 MHz ### WCDMA Band IV: 1710 MHz ~ 1755 MHz ### WCDMA Band IV: 1710 MHz ~ 1849 MHz ### LTE Band 2: 1850 MHz ~ 940 MHz ### LTE Band 3: 172 MHz ~ 849 MHz ### LTE Band 1: 1750 MHz ~ 1755 MHz ### LTE Band 1: 2500 MHz ~ 1755 MHz ### LTE Band 1: 2500 MHz ~ 176 MHz ### LTE Band 1: 2699 MHz ~ 176 MHz ### LTE Band 1: 770 MHz ~ 176 MHz ### LTE Band 1: 770 MHz ~ 787 MHz ### LTE Band 1: 770 MHz ~ 787 MHz ### LTE Band 1: 770 MHz ~ 787 MHz ### LTE Band 1: 770 MHz ~ 198 MHz ### LTE Band 1: 780 MHz ~ 1915 MHz ### LTE Band 3: 2570 MHz ~ 2620 MHz ### LTE Band 3: 3550 MHz ~ 2620 MHz ### LTE Band 4: 2496 MHz ~ 2620 MHz ### LTE Band 4: 2496 MHz ~ 2620 MHz ### LTE Band 6: 1710 MHz ~ 1780 MHz ### LTE Band 6: 1710 MHz ~ 1780 MHz ### SG NR n3: 2540 MHz ~ 698 MHz ### SG NR n3: 2500 MHz ~ 2915 MHz ### SG NR n3: 2305 MHz ~ 2915 MHz ### SG NR n3: 3205 MHz ~ 2185 MHz ### SG NR n3: 3205 MHz ~ 2315 MHz ### SG NR n6: 1710 MHz ~ 1780 MHz ### SG NR n6: 1710 MHz ~ 1780 MHz ### SG NR n7: 3700 MHz ~ 3900 MHz, 3450MHz ~ 3550MHz ### SG NR n7: 3700 MHz ~ 3900 MHz, 3450MHz ~ 3550MHz ### RNC 12.2Kbps ### Mode ### Mode	quipment Name	5G Module									
### EXEMPTION OF COMMANDERS OF	rand Name	Fibocom									
WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band V: 1710 MHz ~ 1755 MHz WCDMA Band V: 2824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 2: 1850 MHz ~ 2570 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 1755 MHz LTE Band 13: 777 MHz ~ 1755 MHz LTE Band 13: 777 MHz ~ 1757 MHz LTE Band 13: 777 MHz ~ 1787 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 18: 8150 MHz ~ 1915 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 30: 2305 MHz ~ 2315 MHz LTE Band 30: 2305 MHz ~ 2315 MHz LTE Band 41: 2496 MHz ~ 2890 MHz LTE Band 41: 2496 MHz ~ 2620 MHz LTE Band 48: 3550 MHz ~ 3700 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 71: 663 MHz ~ 698 MHz SG NR 0: 1850 MHz ~ 2910 MHz SG NR 0: 1850 MHz ~ 2915 MHz SG NR 0: 3550 MHz ~ 2315 MHz SG NR 0: 3550 MHz ~ 3300 MHz ~ 3550 MHz SG NR 0: 7: 3700 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3700 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3700 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550 MHz SG NR 0: 7: 3800 MHz ~ 3800 MHz, 3450 MHz ~ 3550	lodel Name	FM350-GL									
WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 4: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 7: 2500 MHz ~ 716 MHz LTE Band 1: 777 MHz ~ 787 MHz LTE Band 1: 777 MHz ~ 787 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 38: 2570 MHz ~ 2515 MHz LTE Band 38: 2570 MHz ~ 2500 MHz LTE Band 48: 3550 MHz ~ 2690 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 67: 663 MHz ~ 698 MHz SG NR 71: 2500 MHz ~ 2570 MHz SG NR 71: 663 MHz ~ 698 MHz SG NR 71: 663 MHz ~ 3980 MHz ~ 3550 MHz SG NR 71: 653 MHz ~ 3980 MHz ~ 3550 MHz SG NR 71: 653 MHz ~ 3980 MHz ~ 3550 MHz SG NR 77: 3700 MHz ~ 3880 MHz ~ 3550 MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz SG NR 77: 3700 MHz ~ 3880 MHz, 3450MHz ~ 3550MHz	CC ID	E2KFM350GL									
HSDPA HSUPA DC-HSDPA LTE: QPSK, 16QAM, 64QAM, 256QAM		WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 30: 2305 MHz ~ 2315 MHz LTE Band 30: 2305 MHz ~ 2620 MHz LTE Band 41: 2496 MHz ~ 2690 MHz LTE Band 48: 3350 MHz ~ 3700 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 67: 1850 MHz ~ 849 MHz SG NR n2: 1850 MHz ~ 849 MHz SG NR n5: 824 MHz ~ 849 MHz SG NR n7: 2500 MHz ~ 2570 MHz SG NR n6: 1710 MHz ~ 3700 MHz SG NR n6: 1710 MHz ~ 2315 MHz SG NR n6: 1710 MHz ~ 2315 MHz SG NR n6: 1710 MHz ~ 2316 MHz SG NR n6: 1710 MHz ~ 2570 MHz SG NR n6: 1710 MHz ~ 2780 MHz SG NR n6: 1710 MHz ~ 2780 MHz SG NR n6: 1710 MHz ~ 2780 MHz SG NR n7: 2500 MHz ~ 2316 MHz SG NR n7: 2500 MHz ~ 2380 MHz SG NR n7: 3700 MHz ~ 3890 MHz SG NR n77: 3700 MHz ~ 3890 MHz, 3450MHz ~ 3550MHz SG NR n77: 3700 MHz ~ 3800 MHz, 3450MHz ~ 3550MHz									
	lode	HSDPA HSUPA DC-HSDPA									

TEL: 886-3-327-3456 Page 5 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

	WWAN Antenna Information (LW)											
Main Antenna	Manufacturer	Wistron Corporation	Peak gain(dBi)	1.77								
Maili Alitellia	Part number	0NNTR2	Туре	PIFA								
MIMO2 Antenna	Manufacturer	Wistron Corporation	Peak gain(dBi)	1.88								
WIIWOZ Antenna	Part number	0YH5FP	Туре	PIFA								
MIMO3 Antenna	Manufacturer	Wistron Corporation	Peak gain(dBi)	2.39								
WIIWO3 Antenna	Part number	0YH5FP	Туре	PIFA								
Aux Antenna	Manufacturer	Wistron Corporation	Peak gain(dBi)	1.43								
Aux Antenna	Part number	0NNTR2	Туре	PIFA								

Report No.: FA2O2008-01

Page 6 of 38

Issued Date : Jun. 20, 2023

	Host Information
Equipment Name	Portable Computer
Brand Name	DELL
Model Name	P178G
Integrated WLAN Module	Brand Name: Intel Model Name: AX211D2W
Wireless Technology and Frequency Range	WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5.2GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.3GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.3GHz Band: 5250 MHz ~ 5725 MHz WLAN 5.6GHz Band: 5725 MHz ~ 5725 MHz WLAN 5.8GHz Band: 5725 MHz ~ 5850 MHz WLAN 5.9 GHz Band: 5850 MHz ~ 5895 MHz WLAN 5.9 GHz Band: 5850 MHz ~ 6425 MHz ~ 6525 MHz, 6525 MHz ~ 6875 MHz, 6875 MHz ~ 7125 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz
Mode	WLAN: 802.11a/b/g/n/ac/ax HT20/HT40/VHT20/VHT40/VHT80/VHT160/HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE
EUT Stage	Production Unit
Remark:	

The Intel AX211D2W WLAN/BT module is also integrated into this host. The WLAN 2.4GHz/5GHz and Bluetooth SAR results are referenced from Intel SAR report, report number: 221017-03.TR01 (FCC ID: PD9AX211D2), WLAN 6GHz SAR refers new report No.: 221017-03.TR02 (FCC ID: PD9AX211D2), these result also using for Sim-Tx analysis.

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Template version: 211220

3.2 General LTE SAR Test and Reporting Considerations

Summarize	d necessary ite	ms addres	sed in KD	B 94122	5 D05 v02	r05				
FCC ID	E2KFM350GL									
Equipment Name	5G Module									
Operating Frequency Range of each LTE transmission band	LTE Band 2: 18 LTE Band 4: 17 LTE Band 5: 82 LTE Band 7: 25 LTE Band 12: 6 LTE Band 13: 7 LTE Band 17: 7 LTE Band 25: 1 LTE Band 26: 8 LTE Band 30: 2 LTE Band 41: 2 LTE Band 48: 3 LTE Band 48: 3 LTE Band 66: 1 LTE Band 71: 6	10 MHz ~ 1 4 MHz ~ 84 00 MHz ~ 2 99 MHz ~ 7 77 MHz ~ 7 88 MHz ~ 7 850 MHz ~ 8 305 MHz ~ 8 570 MHz ~ 4 496 MHz ~ 7 550 MHz ~ 7	755 MHz 19 MHz 1570 MHz 16 MHz 176 MHz 178 MHz 1715 MHz							
Channel Bandwidth	LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 5:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 13: 5MHz, 10MHz LTE Band 14: 5MHz, 10MHz LTE Band 14: 5MHz, 10MHz LTE Band 25:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 26:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz LTE Band 30: 5MHz, 10MHz LTE Band 38: 5MHz, 10MHz LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 48: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 48: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz									
uplink modulations used	LTE Band 71: 5 QPSK / 16QAM			ZUIVITIZ						
LTE Voice / Data requirements	Data only									
LTE MPR permanently built-in by design	Table 6.2.3 Modulation QPSK 16 QAM 16 QAM 64 QAM 64 QAM 256 QAM			5 MHz > 8 ≤ 8 > 8 ≤ 8 > 8		bandwidth 15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16 ≤ 16		MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5		
LTE A-MPR	In the base stat A-MPR during (Maximum TTI)	SAR testin	g and the	ation, Ne LTE SA	etwork Setti AR tests w	vas transmi	itting on a	01 to disable I TTI frames		
Spectrum plots for RB configuration	A properly co measurement; t not included in t	therefore, s	pectrum pl							
Power reduction applied to satisfy SAR compliance	Yes, Proximity S	Sensor.								

Report No.: FA2O2008-01

TEL: 886-3-327-3456 Page 7 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

SPORTON LAB. FCC SAR TEST REPORT

	Transmission (H, M, L) channel numbers and frequencies in each LTE band																
							nd 2										
	Bandwidth		Bandwid	th 3 MHz	Ban	dwid	th 5 MHz	Bandwidt			Bandwidtl		Bandwid	th 20 MHz			
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch.	#	Freq. (MHz)	Ch. #		eq. Hz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)			
L	18607	1850.7	18615	1851.5	1862	25	1852.5	18650	18	355	18675	1857.5	18700	1860			
М	18900	1880	18900	1880	1890	00	1880	18900	18	80	18900	1880	18900	1880			
Н	19193	1909.3	19185	1908.5	1917	75	1907.5	19150	19	05	19125	1902.5	19100	1900			
							LTE Ba	nd 4									
	Bandwidth		Bandwid	th 3 MHz	Ban	dwid	th 5 MHz	Bandwidt			Bandwidtl		Bandwid	th 20 MHz			
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch.	#	Freq. (MHz)	Ch. #		eq. Hz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)			
L	19957	1710.7	19965	1711.5	1997	75	1712.5	20000	17	'15	20025	1717.5	20050	1720			
М	20175	1732.5	20175	1732.5	2017	75	1732.5	20175	173	32.5	20175	1732.5	20175	1732.5			
Н	20393	1754.3	20385	1753.5	2037	75	1752.5	20350	17	'50	20325	1747.5	20300	1745			
							LTE Ba	nd 5									
	Band	dwidth 1.4	MHz	Bai	ndwidth	1 3 N	lHz			th 5 N	ИHz		dwidth 10	MHz			
	Ch. #	Fr	eq. (MHz)	Ch. #	:	Fre	q. (MHz)	Ch. #		Fre	eq. (MHz)	Ch. #	: Fr	eq. (MHz)			
L	20407		824.7	20415			825.5	20425			826.5	20450		829			
М	20525		836.5	20525	5		836.5	20525	5		836.5	20525	5	836.5			
Н	20643		848.3	20635	5		847.5	20625	5		846.5	20600)	844			
							LTE Ba	nd 7									
	Bar	ndwidth 5	MHz	Bar	idwidth	10 N	ИHz	Ban	dwidt	h 15 l	MHz		dwidth 20	MHz			
	Ch. #		eq. (MHz)	Ch. #	:	Fre	q. (MHz)	Ch. #		Fre	eq. (MHz)	Ch. #	: Fr	eq. (MHz)			
L	20775		2502.5	20800)		2505	20825	5		2507.5	20850)	2510			
М	21100		2535	21100			2535	21100			2535	21100		2535			
Н	21425		2567.5	21400)		2565	21375	5	2	2562.5	21350)	2560			
							LTE Baı	nd 12									
		dwidth 1.4			ndwidth					th 5 N			dwidth 10				
	Ch. #		eq. (MHz)	Ch. #		Fre	q. (MHz)	Ch. #		Fre	eq. (MHz)	Ch. #	Fr	eq. (MHz)			
L	23017	'	699.7	23025	23025				700.5	23035	5		701.5	23060)	704	
М	23095		707.5	23095			707.5	23095			707.5	23095	5	707.5			
Н	23173		715.3	23165 714.5 23155 713.5		23130)	711									
							LTE Bai	nd 13									
				th 5 MHz								vidth 10 MHz					
		Channel:	#		Freq.(N				Char	nnel #		Freq.(MHz)					
L		23205			779												
М		23230			782	2			232	230			782				
Н		23255			784	.5											
							LTE Bar	nd 14			5	40.1411					
		Ob 1 d		th 5 MHz	Ob surv	-14			Ob		Bandwidtl		F /NALL-				
		Channel #	Ŧ		Chanr				Cnar	nnel #			Freq.(MHz)			
L		23305			790 793			23330		200			702				
М		23330						23330			793						
Н		23355			795	.5	LTE Day	nd 17									
	LTE Band 17 Bandwidth 5 MHz Bandwidth 10 MHz																
		Channel :			Erog (/ILI-2			Char	nnel #	Dandwidti		Erog (MU-	2)			
		23755	+		Freq.(N 706					nei # 780			Freq. (MHz	-)			
M		23790			706							709 710					
Н		23825			713			23790 23800					710				
П		23023			713	.J	LTE Baı	nd 25	230	500			711				
	Bandwidth	1 / MI	Randwid	th 3 MHz	Bon	dwid	th 5 MHz		h 10 l	\/III-z	Bandwidtl	h 15 MUz	15 MHz Bandwidth 20 MHz				
	Ch. #	Freq.	Ch. #	Freq.	Ch.		Freq.	Bandwidth 10 MHz Ch. # Freq.		Ch. #	Freq.	Ch. #	Freq.				
		(MHz)		(MHz)			(MHz)		_ `	Hz)		(MHz)		(MHz)			
M	26047 26340	1850.7 1880	26055 26340	1851.5 1880	2606 2634		1852.5 1880	26090 26340		855 880	26115 26340	1857.5 1880	26140 26340	1860 1880			
IVI	20040	1000	20040	1000	2034	ŦU	1000	20340	10	,00	20040	1000	20040	1000			

Report No.: FA2O2008-01

TEL: 886-3-327-3456 Page 8 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

SPORTON LAB. FCC SAR TEST REPORT

Н	26683	191	4.3	26675	1913.5	266	65	1912.5	26640	1	910	26615	1907.5	265	90	1905
						LTE Band										
	Bandwid	_			andwidth 3				th 5 MHz			vidth 10 M				15 MHz
	Ch. #	Fre	eq. (MH			Freq. (MH		Ch. #	Freq. (MH	z)	Ch. #	Freq.	, ,	Ch. #		req. (MHz)
L	26697		814.7	_		815.5		26715	816.5		26740			26765		821.5
М	26865		831.5			331.5		26865	831.5		26865	83		26865		831.5
Н	27033		848.3	270	025 8	347.5		27015 LTE Bai	846.5	_	26990	82	14	26965		841.5
				Randwid	lth 5 MHz			LIL Dai	10 30			Bandwidt	h 10 MH:	7		
-		Chan	nnel #	Danawia		Freq.(MHz)	\		Cha	nnel #	Danawiat	11 10 1011 12	Freq.(MHz)	
L		276				230		<u> </u>		Ona	111101 //			1 104.(· · · · · · · · · ·	
М		277	710			23′	10			27	7710			23	10	
Н		277	735			231	2.5									
								LTE Ba	nd 38							
	Bar	ndwid	th 5 MF	łz	Bar	dwidth	10 l	MHz	Ban	dwid	lth 15 M	Hz	В	andwidth	1 20 I	ИHz
	Ch. #		Freq	. (MHz)	Ch. #		Fre	eq. (MHz)	Ch. #		Fred	ı. (MHz)	Ch	. #	Fre	eq. (MHz)
L	37775		25	72.5	37800)		2575	37825	j	2	577.5	378	350		2580
М	38000			595	38000			2595	38000		-	2595	380			2595
Н	38225		26	317.5	38200)		2615	38175	<u> </u>	20	312.5	381	50		2610
	D		41. E NAI	-	D	.1 2 .141.	40.1	LTE Ba		40.00	W- 45 M	1.1-			. 00.1	AL 1—
-	ваг Сh. #		th 5 MF	1Z . (MHz)	Ch. #	dwidth		инz eq. (MHz)	Ch. #		Ith 15 M	nz ı. (MHz)	Ch	andwidth #		viHz eq. (MHz)
L	39675			98.5	39700		116	2501	39725			503.5	397		1 10	2506
L	40148			i45.8	40160			2547	40173			548.3	401			2549.5
М																
H	40620		2	593	40620)		2593	40620)	2	2593	406	10620		2593
M	41093		26	40.3	41080)		2639	41068	1	20	637.8	410	41055		2636.5
Н	41565		26	87.5	41540)		2685	41515	<u> </u>	20	682.5	414	90		2680
							10.11	LTE Ba					_			
L		dwidt	h 5 MH			lwidth				dwidi	th 15 MI				idth 20 MHz	
	Ch. # 55265			(MHz) 52.5	Ch. # 55290			q. (MHz) 3555	Ch. # 55315			ı. (MHz) 557.5	Ch 553		Fre	eq. (MHz) 3560
M	55810		36	607	55815		30	607.5	55820		3	3608	558	330		3609
M H	56170		36	643	56165		30	642.5	56160		3	3642	561	50		3641
Н	56715		369	97.5	56690		3	3695	56665		30	692.5	566	640		3690
	Daniel de	4.4.1	\AL I=	Dan dadd	41- O MI I-	D	J	LTE Ba		- 40	NALI-	Daniel de	- 45 MIL	. D	J 2 JE	- 00 MI I-
-	Bandwidth	Fre		Bandwid	Freq.			th 5 MHz Freq.	Bandwidth		req.	Bandwidtl	Freq.			h 20 MHz Freq.
	Ch. #	(Mł		Ch. #	(MHz)	Ch.	#	(MHz)	Ch. #		1Hz)	Ch. #	(MHz)	Ch.	#	(MHz)
L	131979	171	0.7	131987	1711.5	1319	997	1712.5	132022	1	715	132047		1320)72	1720
М	132322	17		132322	1745	1323		1745	132322		745	132322	1745	1323		1745
Н	132665	177	9.3	132657	1778.5	1326	647	1777.5	132622	17	775	132597	1772.5	1325	572 1770	
		المناط	th E NA	l-		ماري را ماليا	10.4		and 71		U-		م م مار ساز ما بدا	41- 00 1414		
-	Bandwidth 5 MHz Ch. # Freq. (MHz)			Bandwidth 1 Ch. #				Bandwi Ch. #		width 15 MHz				th 20 MHz		
,	Ch. #			. (MHZ) 65.5	133172			eq. (MHz)			Freq. (MHz) 670.5		Ch. #		Freq. (MHz) 673	
М	133297			80.5	13317			680.5				133222		680.5		
Н	133447			95.5	13342			693	133397		_	90.5	1333	+	680.5 688	
• •	. 30 147		J.		.00 /2/			300	.00001				1000			500

Report No.: FA2O2008-01

 TEL: 886-3-327-3456
 Page 9 of 38

 FAX: 886-3-328-4978
 Issued Date : Jun. 20, 2023

3.3 General 5G NR SAR Test and Reporting Considerations

				5G NR Info	rmation										
FC	DID		E2KFM350GL												
Equ	ipment Name		5G Module												
	erating Frequency Ran smission band	ige of each 5G NR	5G NR n5: 824 5G NR n7: 2506 5G NR n25: 188 5G NR n30: 230 5G NR n38: 255 5G NR n41: 248 5G NR n48: 35 5G NR n66: 17' 5G NR n71: 665 5G NR n77: 370		3450MHz ~ 3550MH; 3450MHz ~ 3550MH;										
Cha	nnel Bandwidth		5G NR n2: 5MF 5G NR n5: 5MF 5G NR n7: 5MF 5G NR n25: 5MF 5G NR n30: 101 5G NR n38: 101 5G NR n41: 101 5G NR n66: 5MF 5G NR n71: 5MF	Iz, 10MHz, 15MHz, 2(Iz, 10MHz, 15MHz, 2(Iz, 10MHz, 15MHz, 2(Hz, 10MHz, 15MHz, 1 MHz MHz, 15MHz, 20MHz MHz, 15MHz, 20MHz, MHz, 15MHz, 20MHz, Hz, 10MHz, 15MHz, 1 Hz, 10MHz, 15MHz, 1	OMHz OMHz OMHz 20MHz , 40MHz, 50MHz, 60N , 30MHz, 40MHz 20MHz, 40MHz 20MHz	MHz, 80MHz, 90MHz, 60MHz, 80MHz, 90MH									
SCS	3			15KHz, SCS30KHz											
upli	nk modulations used			DFT-s-OFDM: PI/2 BPSK / QPSK / 16QAM / 64QAM / 256QAM CP-OFDM QPSK / 16QAM / 64QAM / 256QAM											
A-N	PR (Additional MPR)	disabled for SAR Test	ing? Yes												
LTE	Anchor Bands for n2		LTE B5/12/13/1	4											
LTE	Anchor Bands for n5		LTE B2/7/30/48	/66											
LTE	Anchor Bands for n41	<u> </u>	LTE B2/41/66												
LTE	Anchor Bands for n66	3	LTE B5/12/13/4	8											
LTE	Anchor Bands for n71		LTE B2/66												
LTE	Anchor Bands for n77	7	LTE B2/5/12/13	LTE B2/5/12/13/14/30/41/66											
LTE	Anchor Bands for n78	3	LTE B2/5/7/38												
				NR Band 2											
	Bandwidt	h 5MHz	Bandwid	th 10MHz	Bandwid	th 15MHz	Bandwid	th 20MHz							
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)							
L	370500	1852.5	371000	1855	371500	1857.5	372000	1860							
М	376000	1880	376000	1880	376000	1880	376000	1880							
Н	381500	1907.5	381000	1905	380500	1902.5	380000	1900							
				NR Ban	nd 5										
	Bandwidt	h 5MHz	Bandwid	th 10MHz	Bandwid	th 15MHz	Bandwid	th 20MHz							
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)											
L	165300	826.5	165800	829	166300	831.5	166800	834							
М	167300	836.5	167300	836.5	167300	836.5	167300	836.5							
Η	169300	846.5	168800	844	168300	841.5	167800	839							
				NR Ban	nd 7										
	Bandwidt	h 5MHz	Bandwid	th 10MHz	Bandwid	th 15MHz	Bandwidth 20MHz								
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. # Freq. (MH								
L	500500	2502.5	501000	2505	501500	2507.5	502000	2510							
М	507000	2535	507000	2535	507000	2535	507000	2535							
Н	513500	2567.5	513000	2565	512500	2562.5	512000	2560							

Report No.: FA2O2008-01

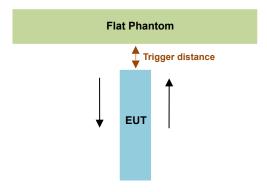
TEL: 886-3-327-3456 Page 10 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

										NR Ba	nd 25								
			Bandwidtl 5MHz	h				Bandwidth Bandwidth 10MHz 15MHz						h				Bandwidth 20MHz	
	Ch	า. #	JIVITIZ	Fre	q. (MHz	<u>z</u>)	C	Ch. #	_	eq. (MHz)		Ch. #		Freq. (MH	z)	Ch. #		Freq.	(MHz)
L	370	500		1	852.5		37	1000		1855		371500		1857.5		37200	00	18	60
М		500		-	882.5			76500	1882.5			376500				376500		188	
Н	382	2500		1	912.5		38	32000		1910 NR Ba	nd 20	381500		1907.5		38100	00	19	05
												,							
ľ					C	h. #			Bandwidth 10MHz Freq. (MHz)										
М					46	2000									2310)			
										NR Ba									
				indwidth IOMHz							andwidth 15MHz						ndwidth 20MHz		
		Ch.	#		- 1	Freq. (N			Ch	. #		Freq. (N	ИHz)		Ch. #			Freq. (MF	łz)
L		51500				2575.0			515			2577.			516000			2580	
M H		51900 52299				2595			519 522			2599 2612.			519000			2595 2610	
111		3229	90			2014.	90		522	NR Ba	nd 41	2012.	49		322000	,		2010	
	Bandwidth10N	ИНz	Bandwid	th15MHz	Band	dwidth2	OMHz	Bandwid	th 40MHz	Bandwidt		Bandwid	th 60MHz	Bandwid	th 80MHz	Bandwid	lth 90MHz	Bandwid	th100MHz
	Ch. # Fre		Ch. #	Freq. (MHz)	Ch.		req. MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	500202 250		500700	2503.5	5012		06.02	503202	2516.01	504204	2521.02	505200	2526	507204	2536.02	508200	2541	509202	2546.01
М	518598 2592	2.99	518598	2592.99	5185	598 25	92.99	518598	2592.99	518598	2592.99	518598	2592.99	518598	2592.99	518598	2592.99	518598	2592.99
Н	537000 26	85	536496	2682.48	5359	998 26	79.99	534000	2670	532998	2664.99	531996	2659.98	529998	2649.99	528996	2644.98	528000	2640
		12.10	400411-			D		N. 41.1-			Band 48			S	201411-		D	L	11-
	Ch. #	awiatr	n10MHz Freg. (M	/ □-/	C	Bandw h. #	_	мнz reg. (МНz	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ch. #	dth20MHz	(MHz)	Ch.	Bandwidth:	Freq. (M	J-7)	Ch. #	dwidth 40M	g. (MHz)
_	637000		3555			7168		3557.52	,	37334		(IVII-12) 60.01	6376		3565.0		638000		3570
M	641666		3624.	-		1666	-	3624.99	_	41666	-	24.99	6416		3624.9		641666		
Н	646332		3694.			3166	_	3692.49	_	46000	_	690	6456		3684.9		645332 3679		679.98
										NR Ba									
		andwi 5MHz					dwidth MHz			Band 15N				Bandwid 20MHz				andwidth 40MHz	
	Ch. #		Freq. (MI	Hz)	Ch.	#		eq. (MHz)	С	h. #	Freq. (MHz)	Ch. #		req. (MH	<u>z</u>)			ą. (MHz)
L	342500		1712.5		3430		1	1715		3500	1717		34400		1720		346000	_	1730
M H	349000 355500		1745 1777.5		3490		+	1745 1775	_	9000 4500	174 1772		34900 35400		1745 1770		349000 352000	_	1745 1760
"	333300		1111.0	<u>, </u>	3330	000		1775	33	NR Ba		2.0	33400		1770		332000		1700
	В	Bandw	vidth 5MH	z			В	andwidth	10MHz			Bandv	vidth 15MI	idth 15MHz Bandwidth 20MHz					
	Ch. #		Fre	eq. (MHz	<u>z</u>)		Ch. #		Freq. (MHz)	C	h. #	Fi	req. (MHz))	Ch. #		Freq.	(MHz)
L	133100			665.5			33600		66			3410		670.5		134600		67	
M H	136100 139100			680.5 695.5			36100 38600		680			6100 3810		680.5 690.5		136100	-	680	
	100100			550.0			22000		03	NR Ba				550.0		.07000			
	Bandwidth10N	ИНz	Bandwid	th15MHz	Banc	lwidth 2	0MHz	Bandwid	h 40MHz	Bandwidt	h 50MHz	Bandwid	th 60MHz	Bandwid	th 80MHz	Bandwid	th 90MHz	Bandwid	th100MHz
	Ch. # Fre		Ch. #	Freq. (MHz)	Ch.		req. MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	647000 37		647168	3707.52	6473		10.01	648000	3720	648334	3725.01	648668	3730.02	649334	3740.01	649668	3745.02	650000	3750
М	656000 38	40	656000	3840	6560	000 3	840	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840	656000	3840
Н	665000 39	75	664832	3972.48	6646	666 39	69.99	664000	3960	663666	3954.99	663332	3949.98	662666	3939.99	662332	3934.98	662000	3930
П	Bandwidth10N	ИНа	Randwid	th15MH	Ranc	lwidth 2	0MHz	Randwid	h 40MHz	NR Ba Bandwidt		Randwid	th 60MHz	Randwid	th 80MHz	Randwid	th 90MHz	Bandwid	th100MHz
-	Ch. # Fre	_	Ch. #	Freq.	Ch.	# F	req.	Ch. #	Freq.	Ch. #	Freq.	Ch. #	Freq.	Ch. #	Freq.	Ch. #	Freq.	Ch. #	Freq.
1	647000 37		647168	(MHz) 3707.52		(1)	MHz) 10.01	648000	(MHz) 3720	648334	(MHz) 3725.01	648668	(MHz) 3730.02	649334	(MHz) 3740.01	649668	(MHz) 3745.02	- 011. <i>11</i>	(MHz)
М	650000 37		650000	3750	6500		3750	650000	3750	650000	3750	650000	3750.02	650000	3750	650000	3750	650000	3750
Н	653000 37		652832	3792.48	_		89.99	652000	3780	651666	3774.99	651332	3769.98	650666	3759.99	650332	3754.98		
									NR Band	77/78(345	0MHz ~ 3	550MHz)							
	Bandwidth10N	_	Bandwid						th 40MHz	Bandwidt		Bandwid					th 90MHz	Bandwid	th100MHz
	Ch. # Fre		Ch. #	Freq. (MHz)	Ch.		req. MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	630334 345		630500	3457.5	_		60.02	631334	3470.01	631668	3475.02	632000	3480	632668	3490.02	633000	3495		
M	633332 3499		6333332	3499.98	_		99.98	6333332	3499.98	6333332	3499.98	6333332	3499.98	6333332	3499.98	633332	3499.98	633332	3499.98
Н	636332 3544	4.90	636166	3542.49	6360	000 3	3540	635332	3529.98	635000	3525	634666	3519.99	634000	3510	633666	3504.99		

Report No.: FA2O2008-01

TEL: 886-3-327-3456 Page 11 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

4. Proximity Sensor Triggering Test


<Proximity Sensor Triggering Distance (KDB 616217 D04 section 6.2)>:

For the device is fully integrated, touch sensing capacitive sensor. It uses a charge transfer capacitive acquisition method that is capable of near range proximity detection. In this device offers a state of the art capacitive sensing engine with an embedded sampling capacitor and voltage regulator allowing the overall solution cost to be reduced and improving system immunity in noisy environments.

Report No.: FA2O2008-01

Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed. The details are illustrated as following, and the shortest triggering distances were reported and used for SAR assessment.

In the preliminary triggering distance testing, the tissue-equivalent medium for different frequency bands were used for verification; no other frequency bands tissue-equivalent medium was found to result in shortest triggering distance than that for 1900MHz, and the tissue-equivalent medium for 1900MHz was used for formal proximity sensor triggering testing.

Proximity Sensor Trigger Distance (mm)											
Antenna Main MIMO2											
Position	Bottom of Laptop Bottom of Laptop										
Minimum	moving toward moving away moving toward moving away										
Minimum	20	20	12	15							

<Proximity Sensor Triggering Coverage (KDB 616217 D04 section 6.3)>:

Since the antenna and sensor are collocated and all of the peak SAR location is overlapping with the sensor pad for this device, therefore, According to KDB 616217 section6.3, these procedures do not apply and are not required for this device. Due to the antenna and sensor are collocated and the peak SAR location is overlapping with the sensor on this device.

TEL: 886-3-327-3456 Page 12 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

Proximity sensor power reduction

Exposure Position /	
wireless mode	Bottom of Laptop (1)
WCDMA Band II Main	8 dB
WCDMA Band IV Main	8.5 dB
WCDMA Band V Main	4 dB
LTE Band 7 Main	7.5 dB
LTE Band 7 MIMO2	4 dB
LTE Band 12 Main / 17 Main	1.5 dB
LTE Band 13 Main	2.5 dB
LTE Band 14 Main	2.5 dB
LTE Band 2 Main / 25 Main	7.5 dB
LTE Band 2 MIMO2 / 25 MIMO 2	2.5 dB
LTE Band 5 Main / 26 Main	3.5 dB
LTE Band 30 Main	5.5 dB
LTE Band 30 MIMO2	0.5 dB
LTE Band 38 Main / 41 Main	4.5 dB
LTE Band 41 MIMO2	2 dB
LTE Band 48 MIMO2	1.5 dB
LTE Band 4 Main / 66 Main	8 dB
LTE Band 4 MIMO2 / 66 MIMO2	2.5 dB
LTE Band 71 Main	0.5 dB
FR1 n2 Main / n25 Main	7.5 dB
FR1 n2 MIMO2 / n 25 MIMO2	2.5 dB
FR1 n5 Main	4 dB
FR1 n7 Main	6.5 dB
FR1 n30 Main	6.5 dB
FR1 n38 Main / n41 Main	5 dB
FR1 n41_HPUE Main	5 dB
FR1 n38 MIMO2 / n41 MIMO2	3.5 dB
FR1 n41_HPUE MIMO2	3.5 dB
FR1 n48_MIMO2	1 dB
FR1 n66 Main	2 dB
FR1 n66 MIMO 2	2 dB
FR1 n77 Main / n78 Main	9.5 dB
FR1 n77_HPUE Main / n78_HPUE Main	9.5 dB
FR1 n77 MIMO2 / n78 MIMO2	7.5 dB
FR1 n77_HPUE MIMO2 / n78_HPUE MIMO2	7.5 dB

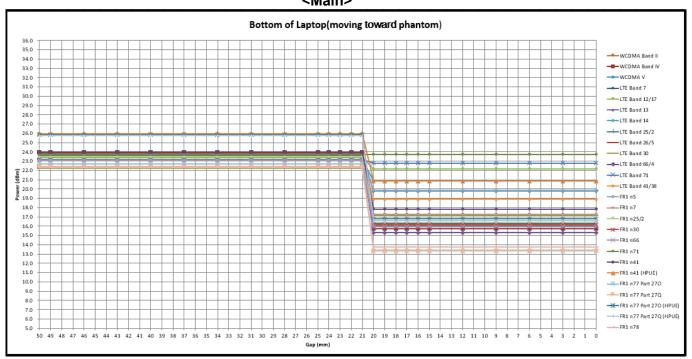
Report No.: FA2O2008-01

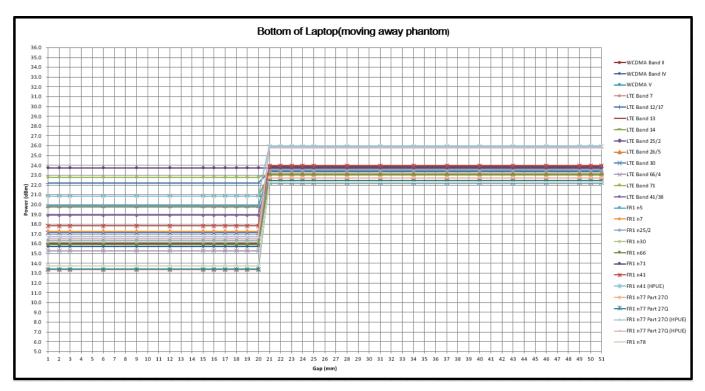
Remark:

- 1. (1): Reduced maximum limit applied by activation of proximity.
- 2. Tests were performed in accordance with KDB 616217 D04 section 6.1, 6.2, 6.3, 6.4 and 6.5 and compliant results are shown as below
- 3. For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at a conservative trigger distance was performed:

Main Antenna:

· Bottom of Laptop: 18 mm

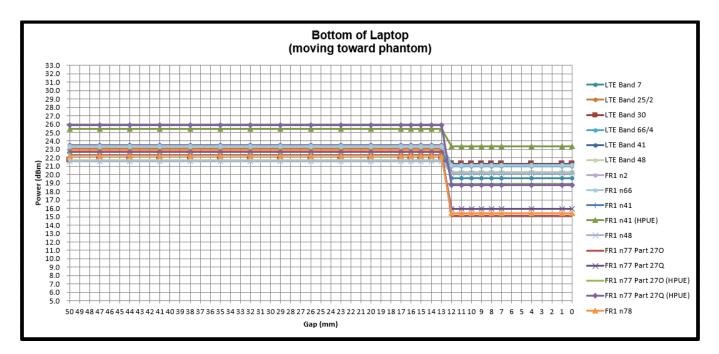

MIMO 2 Antenna:

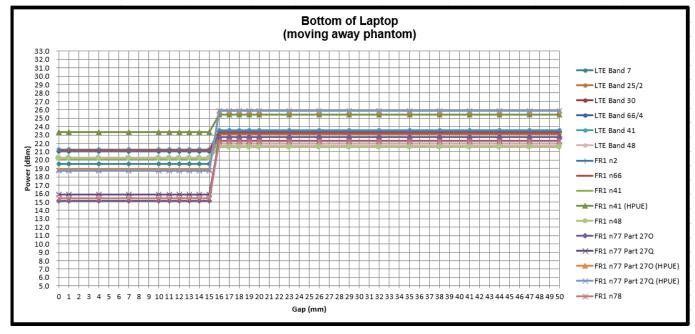

· Bottom of Laptop: 11 mm

TEL: 886-3-327-3456 Page 13 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

Power Measurement during Sensor Trigger distance testing <Main>

Report No.: FA2O2008-01





TEL: 886-3-327-3456 Page 14 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023
Template version: 211220

<MIMO2>

Report No.: FA2O2008-01

TEL: 886-3-327-3456 Page 15 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023
Template version: 211220

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA2O2008-01

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.4	8.0	20.0		

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.08	1.6	4.0		

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: 886-3-327-3456 Page 16 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

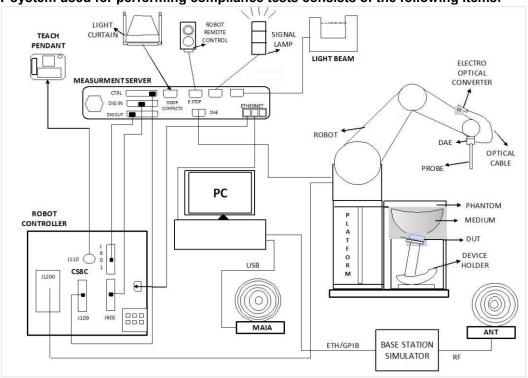
Report No.: FA2O2008-01

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)


$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 886-3-327-3456 Page 17 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA2O2008-01

- The DASY system in SAR Configuration is shown above
- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running windows software and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.1 Test Site Location

The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 3786) and the FCC designation No. TW1190 and TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Test Site	EMC & Wireless Comm	Wensan Laboratory			
	TW1190		TW3786		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist.,		No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd.,		
	Taoyuan City 333, Taiwan		Guishan Dist., Taoyuan City 333010, Taiwan		
	SAR01-HY	SAR03-HY	SAR08-HY	SAR09-HY	SAR15-HY
Test Site No.	SAR04-HY	SAR05-HY	SAR11-HY	SAR12-HY	SAR16-HY
	SAR06-HY	SAR10-HY	SAR13-HY	SAR14-HY	SAR17-HY

TEL: 886-3-327-3456 Page 18 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

7.2 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core			
	Interleaved sensors			
	Built-in shielding against static charges			
	PEEK enclosure material (resistant to organic			
	solvents, e.g., DGBE)			
Frequency	10 MHz – 4 GHz;			
	Linearity: ±0.2 dB (30 MHz – 4 GHz)			
Directivity	±0.2 dB in TSL (rotation around probe axis)			
	±0.3 dB in TSL (rotation normal to probe axis)			
Dynamic Range	5 μW/g – >100 mW/g;			
	Linearity: ±0.2 dB			
Dimensions	Overall length: 337 mm (tip: 20 mm)			
	Tip diameter: 3.9 mm (body: 12 mm)			
	Distance from probe tip to dipole centers: 3.0 mm			

Report No.: FA2O2008-01

<EX3DV4 Probe>

Construction	Symmetric design with triangular core
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic
	solvents, e.g., DGBE)
Frequency	10 MHz – >6 GHz
	Linearity: ±0.2 dB (30 MHz – 6 GHz)
Directivity	±0.3 dB in TSL (rotation around probe axis)
	±0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g – >100 mW/g
	Linearity: ±0.2 dB (noise: typically <1 μW/g)
Dimensions	Overall length: 337 mm (tip: 20 mm)
	Tip diameter: 2.5 mm (body: 12 mm)
	Typical distance from probe tip to dipole centers: 1
	mm

7.3 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: 886-3-327-3456 Page 19 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

7.4 Phantom

<SAM Twin Phantom>

407 till TWIII T Haritonia		
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	-
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA2O2008-01

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

\LLI I Halltolli>		
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

TEL: 886-3-327-3456 Page 20 of 38 Issued Date: Jun. 20, 2023

7.5 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA2O2008-01

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 886-3-327-3456 Page 21 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

8. Measurement Procedures

The measurement procedures are as follows:

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.

Report No.: FA2O2008-01

- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

TEL: 886-3-327-3456 Page 22 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA2O2008-01

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

TEL: 886-3-327-3456 Page 23 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA2O2008-01

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

				> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
uniform grid: $\Delta z_{Zoom}(n)$		grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
surface	$\begin{array}{c} \text{grid} \\ \Delta z_{\text{Zoom}}(n{>}1): \\ \text{between subsequent} \\ \text{points} \end{array}$		$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(\text{n-1})$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

TEL: 886-3-327-3456 Page 24 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration		
Manuracturer	Name of Equipment	i ype/wodei	Seriai Number	Last Cal.	Due Date	
SPEAG	3500MHz System Validation Kit ⁽²⁾	D3500V2	1014	Jan. 17, 2022	Jan. 15, 2024	
SPEAG	3700MHz System Validation Kit	D3700V2	1006	Jun. 20, 2022	Jun. 19, 2023	
SPEAG	Data Acquisition Electronics	DAE4	853	Jul. 20, 2022	Jul. 19, 2023	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7439	Feb. 21, 2023	Feb. 20, 2024	
Testo	Hygro meter	608-H1	45196600	Nov. 02, 2022	Nov. 01, 2023	
SPEAG	Device Holder	N/A	N/A	N/A	N/A	
Anritsu	Signal Generator	MG3710A	6201502524	Oct. 12, 2022	Oct. 11, 2023	
Keysight	ENA Network Analyzer	E5071C	MY46316648	Jul. 25, 2022	Jul. 24, 2023	
SPEAG	Dielectric Probe Kit	DAK-3.5	1126	Sep. 28, 2022	Sep. 27, 2023	
LINE SEIKI	Digital Thermometer	DTM3000-spezial	3252	Jul. 25, 2022	Jul. 24, 2023	
Anritsu	Power Meter	ML2495A	1419002	Aug. 16, 2022	Aug. 15, 2023	
Anritsu	Power Sensor	MA2411B	1911176	Aug. 16, 2022	Aug. 15, 2023	
Anritsu	Power Meter	ML2495A	1804003	Oct. 17, 2022	Oct. 16, 2023	
Anritsu	Power Sensor	MA2411B	1726150	Oct. 17, 2022	Oct. 16, 2023	
Anritsu	Spectrum Analyzer	MS2830A	6201396378	Jul. 21, 2022	Jul. 20, 2023	
Anritsu	Spectrum Analyzer	N9010A	MY53470118	Jan. 10, 2023	Jan. 09, 2024	
Mini-Circuits	Power Amplifier	ZVE-8G+	6418	Oct. 14, 2022	Oct. 13, 2023	
Mini-Circuits	Power Amplifier	ZVE-8G+	479102029	Sep. 15, 2022	Sep. 14, 2023	
ATM	Dual Directional Coupler	C122H-10	P610410z-02	No	te 1	
Warison	Directional Coupler	WCOU-10-50S-10	WR889BMC4B1	No	te 1	
Woken	Attenuator 1	WK0602-XX	N/A	No	te 1	
PE	Attenuator 2	PE7005-10	N/A	No	te 1	
PE	Attenuator 3	PE7005- 3	N/A	No	te 1	

Report No.: FA2O2008-01

General Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

TEL: 886-3-327-3456 Page 25 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

10. System Verification

10.1 Tissue Verification

The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of $18^\circ\mathbb{C}$ to $25^\circ\mathbb{C}$, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within $18^\circ\mathbb{C}$ to $25^\circ\mathbb{C}$ and within $\pm~2^\circ\mathbb{C}$ of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements.

The liquid tissue depth was at least 15cm in the phantom for all SAR testing

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
3500	22.5	2.994	38.417	2.91	37.90	2.89	1.36	±5	2023/5/19
3700	22.5	3.208	38.215	3.12	37.70	2.82	1.37	±5	2023/5/19

10.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

	Date	Frequency (MHz)	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)	Test Site
	2023/5/19	3500	100	D3500V2-1014	EX3DV4 - SN7439	DAE4 Sn853	6.910	67.200	69.1	2.83	SAR05
ĺ	2023/5/19	3700	100	D3700V2-1006	EX3DV4 - SN7439	DAE4 Sn853	6.550	65.600	65.5	-0.15	SAR05

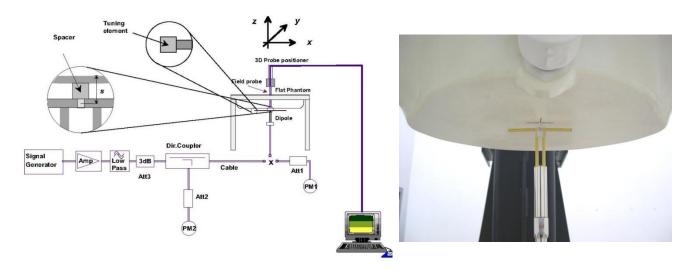


Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

Report No.: FA2O2008-01

TEL: 886-3-327-3456 Page 26 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

11. <u>5G NR Output Power (Unit: dBm)</u>

General Note:

1. The device support SCS 15KHz and 30KHz for NR FDD and TDD and have the same maximum power, in this report only select SCS 15KHz for NR FDD and SCS 30KHz for NR TDD power measurement, due to SCS 15KHz for FDD and SCS 30KHz for TDD have highest support bandwidth, and the NR SAR is < 1g SAR 1.45W/kg. Output power and SAR measurement for SCS30KHz for FDD and SCS15KHz for TDD shall be not necessary.

Report No.: FA2O2008-01

- 2. Referencing the procedure in KDB 941225, the test procedures are outlined as below
 - a. For DFT-OFDM output power measurement, full measurement was done for Pi/2 BPSK and QPSK and for the largest supported bandwidth, repeat test for 16QAM/64QAM/256QAM under 1RB 10ffset configuration. For smaller bandwidth, measure conducted power for Pi/2 BPSK and 1RB 10ffset configuration.
 - b. According to the tune-up, CP-OFDM output power is not ½ dB higher than DFT-OFDM mode, and the reported SAR of DFT-OFDM mode reported SAR is ≤ 1.45 W/kg, SAR test and thus conducted power for CP-OFDM mode is not required.
 - c. To start SAR test for the largest channel bandwidth for PI/2 BPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. Also do SAR test for 50% RB allocation for PI/2 BPSK SAR testing using 1RB PI/2 BPSK allocation procedure
 - d. For PI/2 BPSK with 100% RB allocation, SAR test is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
 - e. For higher modulation QPSK/16QAM/64QAM/256QAM, according to tune-up document the power level is not ½ dB higher than the same configuration in PI/2 BPSK, also reported SAR for the PI/2 BPSK configuration is less than 1.45 W/kg, QPSK/16QAM/64QAM/256QAM SAR testing are not required.
 - f. Smaller bandwidth output power for each RB allocation configuration for this device is not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg, smaller bandwidth SAR testing is not required for this device
- 3. Due to test setup limitations, SAR testing for NR was performed using Factory Test Mode software to establish the connection and perform SAR with 100% transmission. And only for TDD power class2 was performed using Factory Test Mode software to establish the connection and perform SAR with 50% transmission

TEL: 886-3-327-3456 Page 27 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

<3GPP 38.101 MPR for EN-DC>

Report No.: FA2O2008-01

Table 6.2.2-1 Maximum power reduction (MPR) for power class 3

441.47			MPR (dB)						
Modul	ation	Edge RB allocations	Outer RB allocations	Inner RB allocations					
	D'IO DDOI	≤ 3.51	≤ 1.21	≤ 0.21					
	Pi/2 BPSK	≤ 0.5 ²	≤ 0.5 ²	O ²					
DFT-s-OFDM	QPSK		0						
DF1-S-OFDM	16 QAM		≤ 1						
•	64 QAM	≤2.5							
	256 QAM		≤ 4.5						
	QPSK		≤3	≤ 1.5					
CD OFFIN	16 QAM		≤3	≤2					
CP-OFDM	64 QAM		≤ 3.5	22/3/20					
	256 QAM		≤ 6.5						

NOTE 1: Applicable for UE operating in TDD mode with Pi/2 BPSK modulation and UE indicates support for UE capability powerBoosting-pi2BPSK and if the IE powerBoostPi2BPSK is set to 1 and 40 % or less slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79. The reference power of 0 dB MPR is 26 dBm.

NOTE 2: Applicable for UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79 with Pi/2 BPSK modulation and if the IE powerBoostPi2BPSK is set to 0 and if more than 40 % of slots in radio frame are used for III transmission for bands n40, n41, n77, n78, and n79.

for UL transmission for bands n40, n41, n77, n78 and n79.

Table 6.2.2-2 Maximum power reduction (MPR) for power class 2

Modu	lation		MPR (dB)	
		Edge RB allocations	Outer RB allocations	Inner RB allocations
	Pi/2 BPSK	≤ 3.5	≤ 0.5	0
DFT-s-	QPSK	≤ 3.5	≤1	0
OFDM	16 QAM	≤ 3.5	≤2	≤1
OFDIM	64 QAM	≤ 3.5	≤2	2.5
	256 QAM		≤ 4.5	VALUE - 1972 - 1
	QPSK	≤ 3.5	≤ 3	≤ 1.5
CP-OFDM	16 QAM	≤ 3.5	≤3	≤2
CP-OFDIM	64 QAM		≤ 3.5	
	256 QAM		≤ 6.5	

Page 28 of 38 TEL: 886-3-327-3456 FAX: 886-3-328-4978 Issued Date : Jun. 20, 2023

C SAR TEST REPORT Report No. : FA2O2008-01

			<default power<="" th=""><th>(MIMO2) FR1 n48></th><th></th><th></th><th></th></default>	(MIMO2) FR1 n48>			
BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit (dBm)
	Cha	nnel		638000	641666	645332	Tune-up limit
	Frequen	cy (MHz)		3570	3624.99	3679.98	(dBm)
40	PI/2 BPSK	1	1	21.54	21.27	21.25	
40	PI/2 BPSK	1	53	21.48	21.07	21.22	22.0
40	PI/2 BPSK	1	104	21.04	21.08	21.06	
40	PI/2 BPSK	50	0	21.11	20.84	20.82	21.5
40	PI/2 BPSK	50	28	21.07	21.12	21.05	22.0
40	PI/2 BPSK	50	56	21.03	20.84	20.65	21.5
40	PI/2 BPSK	100	0	20.95	20.74	20.65	21.5
40	QPSK	1	1	21.15	21.26	21.20	
40	QPSK	1	53	21.37	21.07	21.19	22.0
40	QPSK	1	104	21.10	21.08	21.09	
40	QPSK	50	0	21.44	21.19	21.05	
40	QPSK	50	28	21.44	21.09	21.07	22.0
40	QPSK	50	56	21.51	21.13	21.19	
40	QPSK	100	0	20.32	20.23	20.15	21.0
40	16QAM	1	1	20.04	19.97	19.84	21.0
40	64QAM	1	1	18.33	18.23	18.04	19.5
40	256QAM	1	1	16.65	16.64	16.59	17.5
	Cha	nnel		637668	641666	645666	Tune-up limit
	Frequen	cy (MHz)		3565.02	3624.99	3684.99	(dBm)
30	PI/2 BPSK	1	1	21.42	21.25	21.17	22.0
	Cha	nnel		637334	641666	646000	Tune-up limit
	Frequen	cy (MHz)		3560.01	3624.99	3690	(dBm)
20	PI/2 BPSK	1	1	21.50	21.07	21.20	22.0
	Cha	nnel		637168	641666	646166	Tune-up limit
	Frequen	cy (MHz)		3557.52	3624.99	3692.49	(dBm)
15	PI/2 BPSK	1	1	21.37	21.24	21.17	22.0
	Cha	nnel		637000	641666	646332	Tune-up limit
	Frequen	cy (MHz)		3555	3624.99	3694.98	(dBm)
10	PI/2 BPSK	1	1	21.40	21.20	21.05	22.0

 TEL: 886-3-327-3456
 Page 29 of 38

 FAX: 886-3-328-4978
 Issued Date : Jun. 20, 2023

<Reduced Power Mode(MIMO2)FR1 n48> Power High Ch. / Freq. Power Power Middle Tune-up limit BW [MHz] Modulation RB Size **RB** Offset Low (dBm) Ch. / Freq. Ch. / Freq. Channel 638000 641666 645332 Tune-up limit (dBm) Frequency (MHz) 3624.99 3679.98 3570 PI/2 BPSK 20.20 20.15 20.14 40 PI/2 BPSK 20.19 20.07 20.02 21.0 PI/2 BPSK 20.00 19.99 20.01 PI/2 BPSK 50 20.06 20.01 20.11 21.0 PI/2 BPSK 19.99 19.98 21.0 20.15 PI/2 BPSK 50 20.11 20.11 20.12 21.0 40 PI/2 BPSK 100 20.03 20.15 19.96 **QPSK** 20.04 19.99 19.96 QPSK 20.13 20.13 20.05 21.0 QPSK 20.00 20.04 20.02 20.11 19.98 40 **QPSK** 50 19.96 **QPSK** 50 20.00 20.08 20.03 21.0 **QPSK** 20.05 20.11 20.07 40 QPSK 20.06 19.96 20.10 21.0 16QAM 20.04 20.02 20.11 21.0 20.0 40 64QAM 19.03 18.99 19.09 256QAM 17.15 17.12 17.07 18.0 Channel 637668 641666 645666 Tune-up limit (dBm) 3565.02 3624.99 3684.99 Frequency (MHz) 30 PI/2 BPSK 20.17 20.09 19.96 21.0 Channel 637334 641666 646000 Tune-up limit (dBm) Frequency (MHz) 3560.01 3624.99 3690 PI/2 BPSK 20.12 20.02 20.09 21.0 Channel 637168 641666 646166 Tune-up limit (dBm) 3624.99 3692.49 Frequency (MHz) 3557.52 PI/2 BPSK 20.12 19.96 20.07 21.0

641666

3624.99

20.06

637000

3555

20.04

646332

3694.98

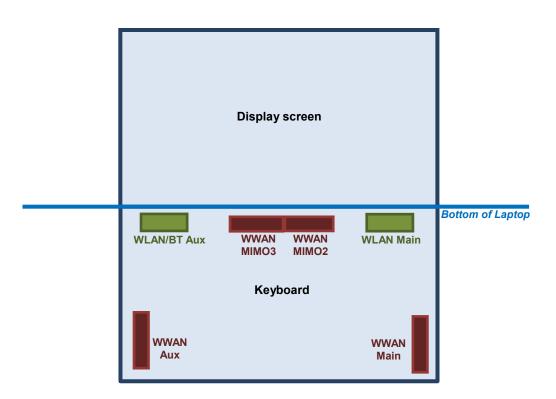
20.07

Tune-up limit (dBm)

21.0

Report No.: FA2O2008-01

TEL: 886-3-327-3456 Page 30 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023


Template version: 211220

Channel

Frequency (MHz)

PI/2 BPSK

12. Antenna Location

Report No.: FA2O2008-01

The separation distance for antenna to edge:

Antenna	To Bottom of Laptop (mm)
WWAN Main Antenna	<5
WWAN Aux Antenna	<5
WWAN MIMO2 Antenna	<5
WWAN MIMO3 Antenna	<5
WLAN Main	<5
WLAN/BT Aux	<5

TEL: 886-3-327-3456 Page 31 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

13. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA2O2008-01

- b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 4. For the exposure positions that proximity sensor power reduction is applied for SAR compliance, additional SAR testing with EUT transmitting full power in sensor trigger distance was performed according to section 4. The test results just verification the sensor trigger distance to meet KDB 616217 requirement, when in normal usage will not operate at trigger distance, therefore, these results were not using performed Sim-Tx analysis.

5G NR Note:

- 1. Referencing the procedure in KDB 941225, the test procedures are outlined as below:
 - a. To start SAR test for the largest channel bandwidth for PI/2 BPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. Also do SAR test for 50% RB allocation for PI/2 BPSK SAR testing using 1RB PI/2 BPSK allocation procedure
 - b. For PI/2 BPSK with 100% RB allocation, SAR test is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
 - c. For higher modulation QPSK/16QAM/64QAM/256QAM, according to tune-up document the power level is not ½ dB higher than the same configuration in PI/2 BPSK, also reported SAR for the PI/2 BPSK configuration is less than 1.45 W/kg, QPSK/16QAM/64QAM/256QAM SAR testing are not required.
 - d. Smaller bandwidth output power for each RB allocation configuration for this device is not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg, smaller bandwidth SAR testing is not required for this device
 - e. Due to test setup limitations, SAR testing for NR was performed using Factory Test Mode software to establish the connection and perform SAR with 100% transmission.

TEL: 886-3-327-3456 Page 32 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

13.1 Body SAR

<5G NR SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.	Freq. (MHz)	Antenna Vendor	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	FR1 n48	40M	BPSK	1	1	Bottom of Laptop	0mm	MIMO 2	ON	638000	3570	Speed	20.20	21.00	1.202	-0.08	0.651	0.783
	FR1 n48	40M	BPSK	50	28	Bottom of Laptop	0mm	MIMO 2	ON	638000	3570	Speed	20.15	21.00	1.216	0.03	0.630	0.766
	FR1 n48	40M	BPSK	1	1	Bottom of Laptop	11mm	MIMO 2	OFF	638000	3570	Speed	21.54	22.00	1.112	0.08	0.236	0.262
	FR1 n48	40M	BPSK	50	28	Bottom of Laptop	11mm	MIMO 2	OFF	641666	3624.99	Speed	21.12	22.00	1.225	-0.1	0.207	0.253
01	FR1 n48	40M	BPSK	1	1	Bottom of Laptop	0mm	MIMO 2	ON	638000	3570	WNC	20.20	21.00	1.202	0	0.775	0.932
	FR1 n48	40M	BPSK	1	1	Bottom of Laptop	0mm	MIMO 2	ON	641666	3624.99	WNC	20.15	21.00	1.216	0.16	0.721	0.877
	FR1 n48	40M	BPSK	1	1	Bottom of Laptop	0mm	MIMO 2	ON	645332	3679.98	WNC	20.14	21.00	1.219	-0.02	0.714	0.870
	FR1 n48	40M	BPSK	50	28	Bottom of Laptop	0mm	MIMO 2	ON	638000	3570	WNC	20.15	21.00	1.216	-0.11	0.703	0.855
	FR1 n48	40M	BPSK	50	28	Bottom of Laptop	0mm	MIMO 2	ON	641666	3624.99	WNC	19.99	21.00	1.262	0.16	0.663	0.837
	FR1 n48	40M	BPSK	50	28	Bottom of Laptop	0mm	MIMO 2	ON	645332	3679.98	WNC	19.98	21.00	1.265	-0.09	0.658	0.832
	FR1 n48	40M	BPSK	100	0	Bottom of Laptop	0mm	MIMO 2	ON	641666	3624.99	WNC	20.15	21.00	1.216	0.01	0.695	0.845

Report No.: FA2O2008-01

TEL: 886-3-327-3456 Page 33 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

14. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations	Body
1.	WWAN Main + WWAN MIMO 2 + 2.4GHz WLAN Main + 2.4GHz WLAN Aux	Yes
2.	WWAN Main + WWAN MIMO 2 + 2.4GHz WLAN Main + Bluetooth Aux	Yes
3.	WWAN Main + WWAN MIMO 2 + 5/6GHz WLAN Main + 5/6GHz WLAN Aux + Bluetooth Aux	Yes
4.	WWAN MIMO 3 + 2.4GHz WLAN Main + 2.4GHz WLAN Aux	Yes
5.	WWAN MIMO 3 + 2.4GHz WLAN Main + Bluetooth Aux	Yes
6.	WWAN MIMO 3 + 5/6GHz WLAN Main + 5/6GHz WLAN Aux + Bluetooth Aux	Yes
7.	WWAN Aux+ 2.4GHz WLAN Main + 2.4GHz WLAN Aux	Yes
8.	WWAN Aux + 2.4GHz WLAN Main + Bluetooth Aux	Yes
9.	WWAN Aux + 5/6GHz WLAN Main + 5/6GHz WLAN Aux + Bluetooth Aux	Yes

General Note:

 The Intel AX211D2W WLAN/BT module is also integrated into this host. The WLAN 2.4GHz/5GHz and Bluetooth SAR results are referenced from Intel SAR report, report number: 221017-03.TR01 (FCC ID: PD9AX211D2), WLAN 6GHz SAR refers new report No.: 221017-03.TR02 (FCC ID: PD9AX211D2)

Report No.: FA2O2008-01

- 2. When the EN-DC is active only operating at WWAN main and MIMO2 antenna combination.
- 3. The worst case reported SAR for each configuration was used for SAR summation. Therefore, the following summations represent the absolute worst cases for simultaneous transmission.
- 4. The Scaled SAR summation is calculated based on the same configuration and test position.
- 5. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
- i) Scalar SAR summation < 1.6W/kg.
- ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)² + (y1-y2)² + (z1-z2)²], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
- iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
- iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
- v) The SPLSR calculated results please refer to section 14.2.

TEL: 886-3-327-3456 Page 34 of 38
FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

14.1 Body Exposure Conditions

Main & MIMO2

	1	2	3	4	5	6	7					
Exposure Position	WWAN Main max	WWAN Mimo2 max	WLAN2.4GHz Main	WLAN2.4GHz Aux	WLAN5/6GHz Main	WLAN5/6GHz Aux	Bluetooth Aux	1+2+3+7 Summed 1g SAR	Summed	1+2+5+6+7 Summed 1q SAR	SPLSR	Case No
	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)		(W/kg)		
Bottom of Laptop at 0mm	1.444	1.414	0.300	0.290	0.780	0.730	0.080	3.238	3.448	4.448	0.03	Case 1

Report No.: FA2O2008-01

MIMO3

	1	2	3	4	5	6					
Exposure Position	WWAN Mimo3 MAX	WLAN2.4GHz Main	WLAN2.4GHz Aux	WLAN5/6GHz Main	WLAN5/6GHz Aux	Bluetooth Aux	1+2+6 Summed 1g SAR	Summed	1+4+5+6 Summed 1g SAR	SPLSR	Case No
	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg) (W/kg)		(W/kg)		
Bottom of Laptop at 0mm	0.349	0.300	0.290	0.780	0.730	0.080	0.729	0.939	1.939	0.03	Case 2

<u>Aux</u>

	1	2	3	4	5	6	1+2+6	1+2+3	1+4+5+6		
Exposure Position	WWAN AUX Max	WLAN2.4GHz Main	WLAN2.4GHz Aux	WLAN5/6GHz Main	WLAN5/6GHz Aux	Bluetooth Aux	Summed	Summed	Summed	SPI SR	Case No
2/1000101 0011011	1g SAR	1g SAR	1g SAR	1g SAR	1g SAR	1g SAR	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	o. 20	5455116
	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(111.9)	(11/1.9)	(11/109)		
Bottom of Laptop at 0mm	1.171	0.300	0.290	0.780	0.730	0.080	1.551	1.761	2.761	0.02	Case 3

TEL: 886-3-327-3456 Page 35 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

14.2 SPLSR Evaluation and Analysis

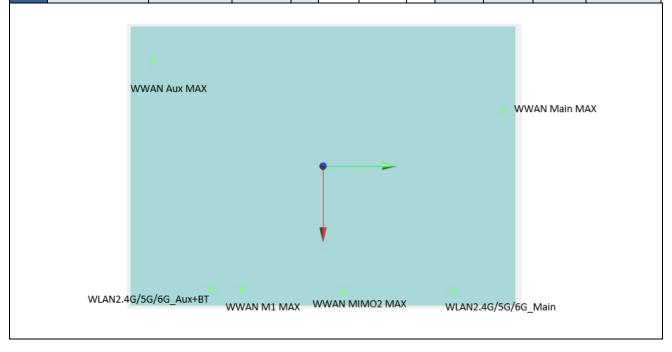
General Note:

1. Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneously transmitting antenna. When the sum of 1-g or 10-g SAR of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. Therefore, the adjacent transmit antennas will be summed first, and then the SPLSR calculation will be evaluated with the farther transmitted antennas.

Report No.: FA2O2008-01

- 2. SPLSR = (SAR₁ + SAR₂)¹.5 / (min. separation distance, mm). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary
- 3. The detail hotspot point for each transmitter in each exposure condition are showing as below figure and the minimum 3D distance for each sum combination is used for SPLSR analysis.

	David -	Position S	SAR (W/kg)	Gap	SAR pea	ak location	(mm)	3D	Summed	SPLSR	Simultaneous	
	Band	Position	SAR (W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR	
	WWAN Main MAX	Bottom of Lantas	1.444	0mm	97.64	1.58	1.36	196.7	2.86	0.02	Not required	
	WWAN MIMO2 MAX	Bottom of Laptop	1.414	0mm	-41.58	140.59	1.01	190.7	2.00	0.02	Not required	
	WWAN Main MAX	Bottom of Laptop	1.444	0mm	97.64	1.58	-177	110.1	1.74	0.02	Not required	
	WLAN2.4GHz Main	Bottom of Laptop	0.3	0mm	86.8	111.1	-177	110.1	1.74	0.02	Not required	
	WWAN Main MAX	Bottom of Laptop	1.444	0mm	97.64	1.58	-177	100.1	1.73	0.02	Not required	
	WLAN2.4GHz Aux	Bottom of Laptop	0.29	0mm	90.2	-98.2	-177	100.1	1.73	0.02	Not required	
_	WWAN Main MAX	Bottom of Laptop	1.444	0mm	97.64	1.58	-177	110.1	2.22	0.03	Not required	
_	WLAN5/6GHz Main	Bottom of Eaptop	0.78	0mm	86.8	111.1	-177	110.1	2.22	0.00	rvot required	
_	WWAN Main MAX	Bottom of Laptop	1.444	0mm	97.64	1.58	-177	100.1	2.17	0.03	Not required	
	WLAN5/6GHz Aux	Bottom of Laptop	0.73	0mm	90.2	-98.2	-177	100.1	2.17	0.03	Not required	
	WWAN Main MAX	Bottom of Laptop	1.444	0mm	97.64	1.58	-177	100.1	1.61	0.02	Not required	
_	Bluetooth Aux	Bottom of Laptop	0.17	0mm	90.2	-98.2	-177	100.1	1.01	0.02	Not required	
Case 1	WWAN MIMO2 MAX	Bottom of Laptop	1.414	0mm	-41.58	140.59	-177	131.7	1.71	0.02	Not required	
Ousc 1	WLAN2.4GHz Main	Bottom of Laptop	0.3	0mm	86.8	111.1	-177	131.7	1.71	0.02	Not required	
	WWAN MIMO2 MAX	Bottom of Laptop	1.414	0mm	-41.58	140.59	-177	272.7	1.70	0.01	Not required	
	WLAN2.4GHz Aux	Bottom of Laptop	0.29	0mm	90.2	-98.2	-177	212.1	1.70	0.01	Not required	
	WWAN MIMO2 MAX	Bottom of Laptop	1.414	0mm	-41.58	140.59	-177	131.7	2.19	0.02	Not required	
	WLAN5/6GHz Main	Bottom of Laptop	0.78	0mm	86.8	111.1	-177	131.7	2.19	0.02	Not required	
	WWAN MIMO2 MAX	Bottom of Laptop	1.414	0mm	-41.58	140.59	-177	272.7	2.14	0.01	Not required	
	WLAN5/6GHz Aux	Bottom of Laptop	0.73	0mm	90.2	-98.2	-177	212.1	2.14	0.01	Not required	
	WWAN MIMO2 MAX	Bottom of Laptop	1.414	0mm	-41.58	140.59	-177	272.7	1.58	0.01	Not required	
_	Bluetooth Aux	Bottom of Laptop	0.17	0mm	90.2	-98.2	-177	212.1	1.50	0.01	Not required	
	WLAN2.4GHz Main	Bottom of Laptop	0.3	0mm	86.8	111.1	-177	209.3	0.59	0.00	Not required	
_	WLAN2.4GHz Aux	Bottom of Laptop	0.29	0mm	90.2	-98.2	-177	209.5	0.59	0.00	Not required	
_	WLAN2.4GHz Main	Bottom of Laptop	0.3	0mm	86.8	111.1	-177	209.3	0.47	0.00	Not required	
_	Bluetooth Aux	Bottom of Eaptop	0.17	0mm	90.2	-98.2	-177	200.0	0.47	0.00	riotrequired	
	WLAN5/6GHz Main	Bottom of Laptop	0.78	0mm	86.8	111.1	-177	209.3	1.51	0.01	Not required	
١	WLAN5/6GHz Aux+ BT	Bottom of Eaptop	0.73	0mm	90.2	-98.2	-177			0.01	Not required	
	Band	Position	SAR (W/kg)	Gap	SAR pea	ak location	(mm)	3D distance	Summed SAR	SPLSR	Simultaneous	
	Ballu	Fosition	SAN (W/Ng)	(mm)	Х	Υ	Z	(mm)	(W/kg)	Results	SAR	
	WWAN Mimo3 MAX	Bottom of Laptop	0.384	0mm	92.84	-63.4	-177	174.6	1.16	0.01	Not required	
	WLAN5/6GHz Main	Bottom of Laptop	0.78	0mm	86.8	111.1	-177	174.0	1.10	0.01	Not required	
Case 2	WWAN Mimo3 MAX	Rottom of Lanton	0.384	0mm	92.84	-63.4	-177	34.9	1.11	0.03	Not required	
Ousc 2	WLAN5/6GHz Aux	Bottom of Laptop	0.73	0mm	90.2	-98.2	-177	34.9	1.11	0.03	Not required	
	WWAN Mimo3 MAX	Rottom of Lanton	0.384	0mm	92.84	-63.4	-177	34.9	0.55	0.01	Not required	
	Bluetooth Aux	Bottom of Laptop	0.17	0mm	90.2	-98.2	-177	34.9	0.55	0.01	Not required	
	WLAN5/6GHz Main	Bottom of Laptop	0.78	0mm	86.8	111.1	-177	209.3	1.68	0.01	Not required	
	WLAN5/6GHz Aux+BT	Bollom of Laptop	0.9	0mm	90.2	-98.2	-177	209.3	1.00	0.01	Not required	
	Pand	Position	SAD (M/km)	Gap	SAR pea	ak location	(cm)	3D distance	Summed	SPLSR	Simultaneous	
Case 3	Band	Position S	SAR (W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR	
	WWAN Aux MAX	Bottom of Laptop	1.171	0mm	-79.16	-132.02	-177	294.4	1.47	0.01	Not required	


TEL: 886-3-327-3456 Page 36 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023

SPORTON LAB. FCC SAR TEST REPORT

WLAN2.4GHz Main		0.3	0mm	86.8	111.1	-177				
WWAN Aux MAX	Dettern of Leater	1.171	0mm	-79.16	-132.02	-177	470.7	4.40	0.04	Net as audies d
WLAN2.4GHz Aux	Bottom of Laptop	0.29	0mm	90.2	-98.2	-177	172.7	1.46	0.01	Not required
WWAN Aux MAX	Dettem of Lenten	1.171	0mm	-79.16	-132.02	-177	294.4	1.95	0.04	Not required
WLAN5/6GHz Main	Bottom of Laptop	0.78	0mm	86.8	111.1	-177	234.4	1.95	0.01	Not required
WWAN Aux MAX	Bottom of Laptop	1.171	0mm	-79.16	-132.02	-177	172.7	1.00	0.00	Not required
WLAN5/6GHz Aux		0.73	0mm	90.2	-98.2	-177		1.90	0.02	Not required
WWAN Aux MAX	Dettem of Lenten	1.171	0mm	-79.16	-132.02	-177	172.7	1.34	0.01	Not required
Bluetooth Aux	Bottom of Laptop	0.17	0mm	90.2	-98.2	-177				Not required
WLAN2.4GHz Main	Dettem of Lenten	0.3	0mm	86.8	111.1	-177	200.2	0.50	0.00	Not required
WLAN2.4GHz Aux	Bottom of Laptop	0.29	0mm	90.2	-98.2	-177	209.3	0.59	0.00	Not required
WLAN2.4GHz Main	Dettem of Lenten	0.3	0mm	86.8	111.1	-177	200.2	0.47	0.00	Not required
Bluetooth Aux	Bottom of Laptop	0.17	0mm	90.2	-98.2	-177	209.3	0.47	0.00	Not required
WLAN5/6GHz Main	Dettem of Lenten	0.78	0mm	86.8	111.1	-177	209.3	1.60	0.01	Not required
WLAN5/6GHz Aux+BT	Bottom of Laptop	0.9	0mm	90.2	-98.2	-177		1.68	0.01	Not required

Report No.: FA2O2008-01

Test Engineer: Jay Chien

 TEL: 886-3-327-3456
 Page 37 of 38

 FAX: 886-3-328-4978
 Issued Date : Jun. 20, 2023

15. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No.: FA2O2008-01

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

16. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [6] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [7] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [8] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015
- [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.

TEL: 886-3-327-3456 Page 38 of 38 FAX: 886-3-328-4978 Issued Date: Jun. 20, 2023