

Technical Description

Component	Model	Description
Sensor	SO1763A	Image sensor
DSP	SN9C120	PC camera controller with sensor interface, image signal processing, image compression and USB transfer function

PC Camera Controller

SN9C120 Preliminary Specification

Released Version 1.0

May 24, 2004

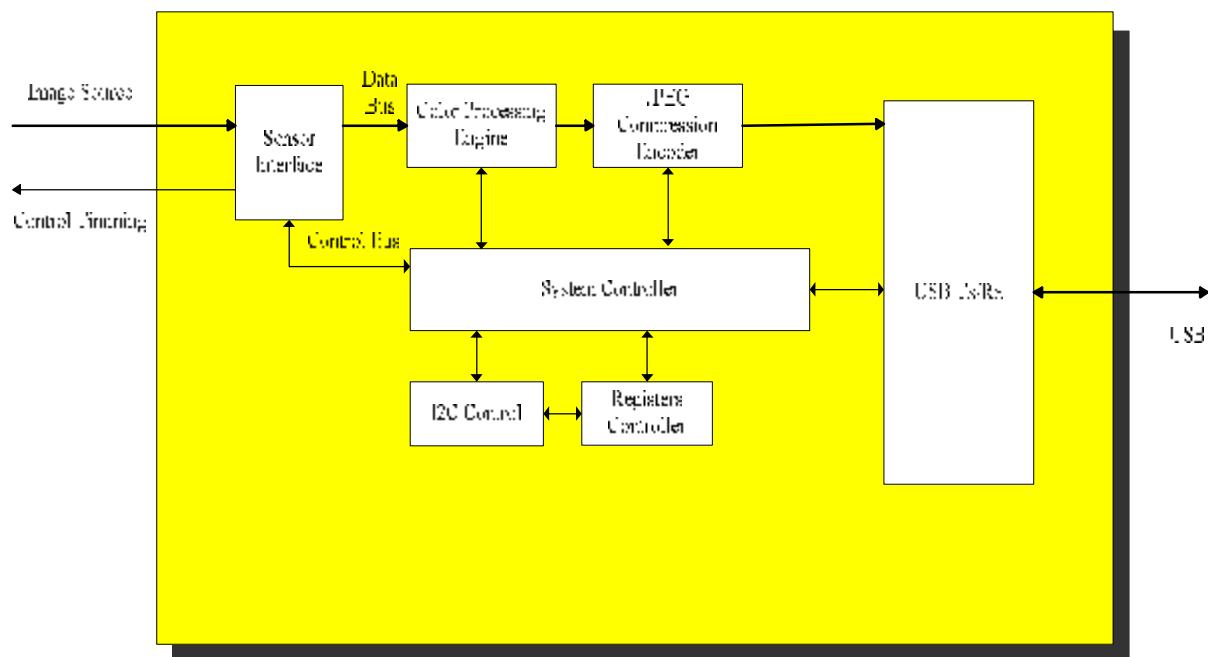
Revision Number	Date	Description
0.1	May 18, 2004	A brief specification and release to Marketing
0.2	May 24, 2004	Detail descriptions
1.0	June 17, 2004	Released

Table of Content

1	GENERAL DESCRIPTION.....	- 3 -
2	FEATURES.....	- 3 -
3	SYSTEM APPLICATION.....	- 4 -
4	FUNCTIONAL BLOCK DIAGRAM.....	- 4 -
5	PIN ASSIGNMENT.....	- 5 -
6	ELECTRICAL CHARACTERISTICS.....	- 7 -
6.1	DC OPERATING CONDITION	- 7 -
6.1.1	<i>Absolute maximum ratings:</i>	- 7 -
6.1.2	<i>Recommended operating conditions:</i>	- 7 -
6.1.3	<i>DC electrical characteristics:</i>	- 7 -
6.2	AC OPERATING CONDITION	- 7 -
7	SERIAL CONTROL INTERFACE	- 8 -
7.1	SERIAL BUS OVERVIEW	- 8 -
7.2	DATA TRANSFER FORMAT	- 8 -
7.2.1	<i>Master device transmits data to slave device (write cycle)</i>	- 8 -
7.2.2	<i>Slave device transmits data to master device (read cycle)</i>	- 9 -
8	APPLICATION CIRCUIT	- 10 -
9	PACKAGE INFORMATION.....	- 11 -

1 General Description

SN9C120 provides a low power-consumption, cost effective and superior image quality solution for PC camera controller with VGA image sensor. It integrates sensor interface, image signal processing, image compression and USB transfer function into one single chip. SN9C120 supports various image sensors with RGB Bayer pattern and comes with image signal processing blocks such as gamma and color correction, edge enhancement, auto exposure and auto white balance controls. The built-in JPEG compression engine makes the VGA frame rate up to 30fps on USB1.1 to come true. With the auxiliary hardware windowing and scaling, we can provide a variety of image format and also digital-zoom function to satisfy any special application demands. The driver of SN9C120 has passed Microsoft's WHQL certification and it is 48-pin LQFP package without external memory needed.


2 Features

- § Up to 30fps@VGA video streaming
- § Support Image sensor with 9-bit RGB Bayer pattern raw data input
- § Support CIF/VGA CMOS sensors, such as Hynix 7131D/E/R, Micron 0343/0360, OmniVision 7630/7648/7649, Pixart 106/202/302, IC-media, CI, NS, ...etc
- § Provide pixel offset compensation and individual R/G/B digital color gain controls
- § Provide defect pixel cancellation by EEPROM
- § Provide hardware windowing, 1/2, 1/4 scaling function with smooth filter
- § Provide programmable gamma and color correction
- § Provide noise clearing and edge enhancement
- § Embedded hardware color DSP and JPEG baseline capability of compression encoder
- § Auto exposure control
- § Auto white balance control
- § Provide snapshot function
- § Support operation mode in image quality/frame rate selection
- § Support video data transfer either in USB isochronous or bulk modes
- § Up to 9 alternated setting for USB isochronous transfer of video data
- § Built-in external EEPROM controller for customer V_ID, P_ID
- § Provide internal up to 26 various P_ID in default setting
- § USB 1.1 compliance and support suspend mode
- § USB 4 endpoints: control, isochronous read, bulk read, interrupt read
- § 12MHz crystal, 3.3V I/O, 1.8V core
- § 48 pins LQFP package
- § No external memory needed

3 System Application

4 Functional Block Diagram

5 Pin Assignment

LQFP 48	PIN NAME	DIR	Description
1	GPIO2	B	General purpose I/O
2	GPIO0	B	General purpose I/O
4	PID_SEL2	I	Product ID selection (H,L,Z) ^{*3}
5	PID_SEL1	I	Product ID selection (H,L,Z) ^{*3}
6	PID_SEL0	I	Product ID selection (H,L,Z) ^{*3}
8	KEY	I	KEY input (wake-up)
9	RST	I	Chip reset
14	GND18	P	CORE Ground
	TAVSS	P	GND for USB driver and regulator
15	DN	B	D- for USB
16	DP	B	D+ for USB
x	LDO_EN_	I	Regulator enable
17	TAVDD	P	VDD for USB driver and regulator (3.3V)
18	VDDAL	P	Regulator output (1.8V)
	VDD18	P	CORE Power (1.8V)
19	GPIO1	B	General purpose I/O
20	TEST	I	Test mode
21	S_PWR_DN	O	Power down for sensor
22	LED	O	LED output
23	VDD3	P	IO Power (3.3V)
24	GND3	P	IO Ground (also connect to substrate)
25	SDA	B	SDA for I2C interface (data)
26	SCL	O	SCL for I2C interface (clock)
27	S_PCK	B	Sensor pixel clock
28	VDD3	P	IO Power (3.3V)
29	GND3	P	IO Ground
	GND18	P	CORE Ground
30	SEN_CLK	O	Sensor clock
31	S_VSYNC	B	Sensor vsync
32	S_HSYNC	B	Sensor hsync
33	S_IMG0	B	Sensor image data
34	S_IMG1	B	Sensor image data
35	S_IMG2	B	Sensor image data
36	S_IMG3	B	Sensor image data
37	GND3	P	IO Ground
38	VDD3	P	IO Power (3.3V)
39	S_IMG4	B	Sensor image data
40	S_IMG5	B	Sensor image data
41	S_IMG6	B	Sensor image data

42	S_IMG7	B	Sensor image data
43	S_IMG8	B	Sensor image data
44	VDD3	P	IO Power (3.3V)
45	XIN	I	OSC input (Rf=1M) (12MHz)
46	XOUT	B	OSC output (Rf=1M)
47	GND3	P	IO Ground
	GND18	P	CORE Ground
48	VDD18	P	CORE Power (1.8V)

6 Electrical Characteristics

6.1 DC Operating Condition

6.1.1 Absolute maximum ratings:

Symbol	Parameter	Rating	Units
Vcc	Power Supply	-0.3 to 3.6	V
Vin	Input Voltage	-0.3 to Vcc+0.3	V
Vout	Output Voltage	-0.3 to Vcc+0.3	V
Tstg	Storage Temperature	-55 to 150	°C

6.1.2 Recommended operating conditions:

Symbol	Parameter	Min	Typ	Max	Units
Vcc	Power Supply	3.0	3.3	3.6	V
Vin	Input voltage	0		Vcc	V
Topr	Operating Temperature	0		70	°C

6.1.3 DC electrical characteristics:

(Under Recommended Operating Conditions and Vcc=3.0 ~ 3.6V , Tj=0 to +115 °C)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Vil	Input low voltage	CMOS	-0.3		0.3Vcc	V
Vih	Input high voltage	CMOS	0.7Vcc		Vcc+0.3	V
Vil	Input low voltage	TTL	-0.3		0.8	V
Vih	Input high voltage	TTL	2.0		5.3	V
Iil	Input low current	no pull-up or pull-down	-1		1	uA
Iih	Input high current	no pull-up or pull-down	-1		1	uA
Ioz	Tri-state leakage current		-1		1	uA
Vil	Schmitt input low voltage	CMOS		1.20		V
Vih	Schmitt input high voltage	CMOS		2.10		V
Vol	Output Low voltage	Iol=4mA			0.4	V
Voh	Output high voltage	Ioh=4mA	2.4			V
Cin	Input capacitance			2.8		pF
Cout	Output capacitance		2.7		4.9	pF
Cbid	Bi-directional buffer Capacitance		2.7		4.9	pF

6.2 AC Operating Condition

Symbol	Description	Max operation Frequency	Notes
SEN_CLK	Sensor clock	48MHz	
XIN	Crystal input clock	12 MHz	
SCK	I2C clock frequency	400KHz	

7 Serial Control Interface

The SN9C120 supports I²CTM-bus transfer protocol and is acting as a master device. It supports receiving and transmitting speed of 100 kHz and 400 kHz (Note: Downloading from EEPROM when power on requires speed of 400 kHz.)

7.1 Serial Bus Overview

- § Only two wires SDA (serial data) and SCL (serial clock) are needed to carry information between the devices connected to the serial bus. Normally both SDA and SCL lines are open-collector structures and pulled high by external pull-up resistors.
- § Only the master can initiate a transfer (start), generates clock signals, and terminates a transfer (stop).
- § Start and stop condition: A high to low transition of the SDA line while SCL is high defines a start condition. A low to high transition of the SDA line while SCL is high defines a stop condition.
- § Valid data: The data on the SDA line must be stable during the high period of the SCL clock. Within each byte, MSB is always transferred first. Read/write control bit is the LSB of the first byte.
- § Both the master and slave can transmit and receive data through the serial bus.
- § Acknowledge: The receiving device should pull down the SDA line during high period of the SCL clock line when a complete byte was transferred by transmitter. In the case of a master received data from a slave, the master does not generate an acknowledgment on the last byte to indicate the end of a master read cycle.

7.2 Data Transfer Format

7.2.1 Master device transmits data to slave device (write cycle)

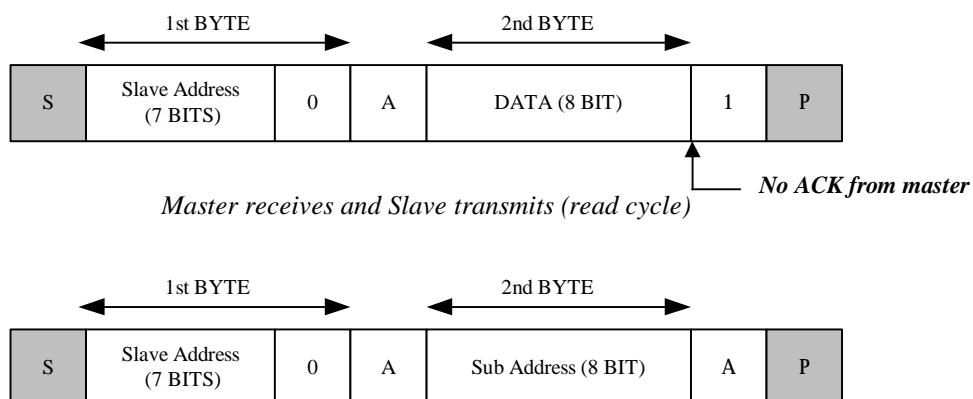
- § S : Start
- § A: Acknowledgement from slave device.
- § P : Stop
- § R/W: The LSB of 1st byte decides the current cycle is read or write. R/W=1 read; R/W=0 write.
- § Slave Address: serial slave device address.
- § Sub Address: The slave device control register address.

Master transmits and Slave receives(write)

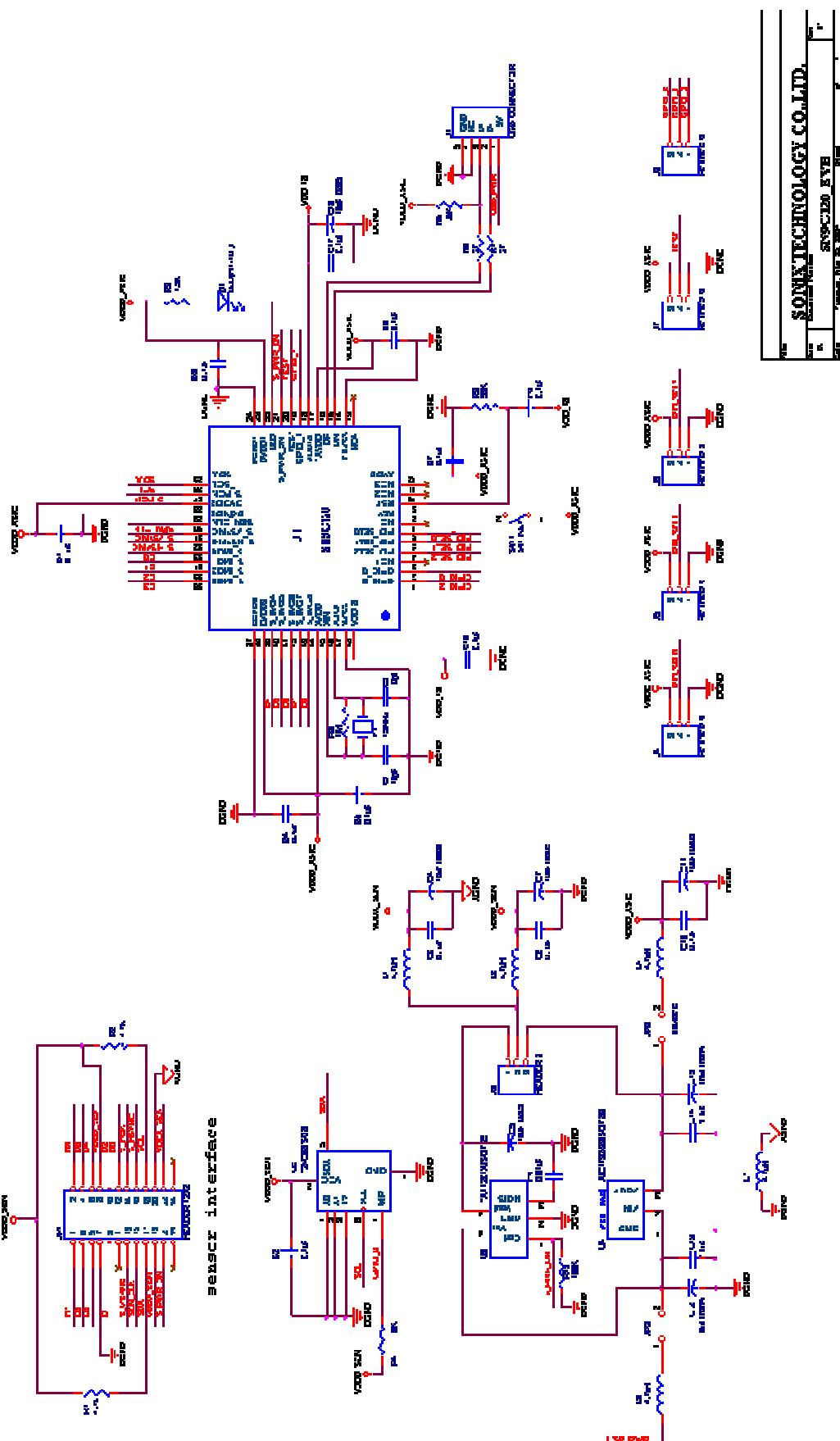
During write cycle, the master device (SONIX'S PC CAMERA CONTROLLER) generates start condition and then places the 1st byte data which contains slave address (7 bits) and the Read/Write control bit onto SDA line. After slave device issues an acknowledgment, the master places the 2nd byte (sub-address data) onto SDA line. And then followed the slave acknowledgment, the

master places the 8 bits data on SDA line and transmits to slave device control register (address was assigned by 2nd byte). After slave issues an acknowledgment, the SUI110 can generate a stop condition to end this write cycle. This chip only supports 8 bytes multiple write function. *That is, master can write only 8 continuous address data into slave device.*

7.2.2 Slave device transmits data to master device (read cycle)

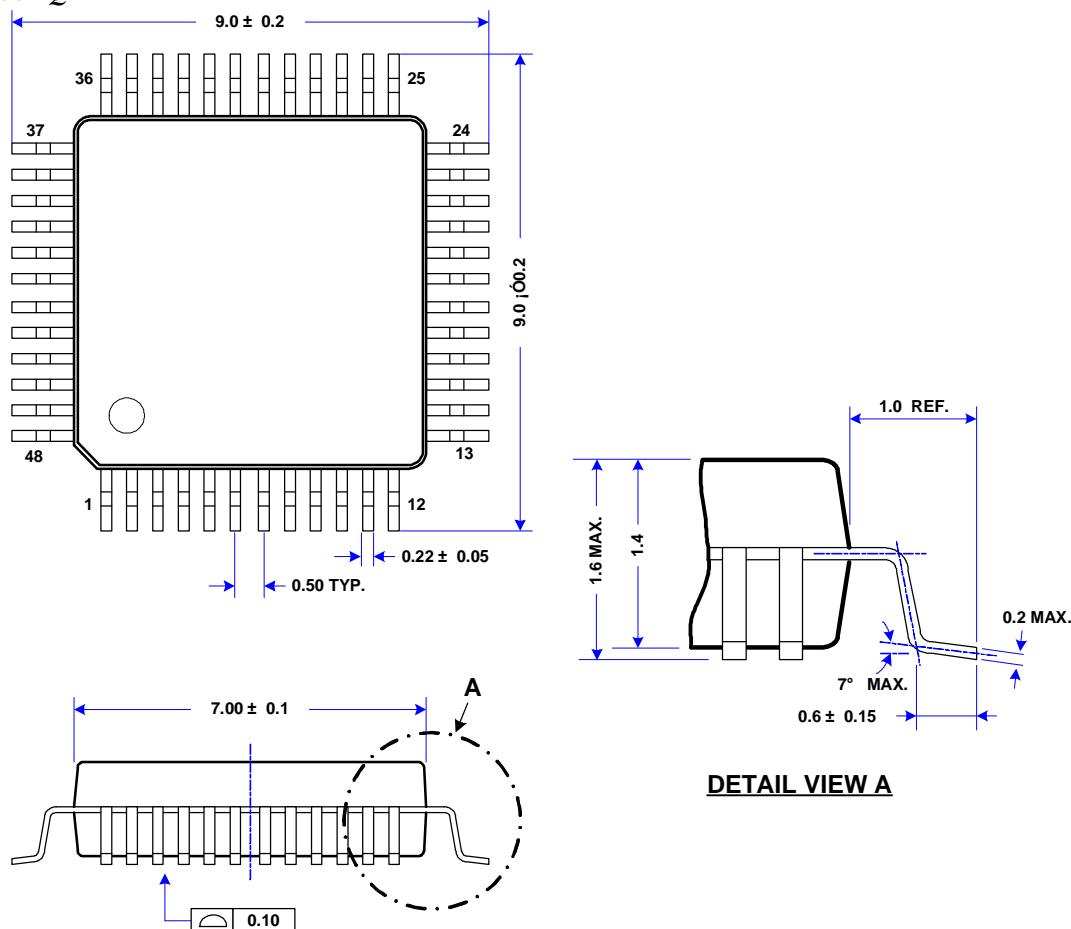

The read cycle of the SUI110 has 2 phases, dummy write phase and read phase. *Note, this SUI110 supports single read only.* That is, one dummy write phase plus one read phase can get only one byte data from slave device internal register.

§ The 1st phase (dummy write phase)


The dummy write phase is the same as the general serial write. The only difference is the write data is the address of the register. The Sub-Address is the register address inside the slave device

§ The 2nd phase (read phase)

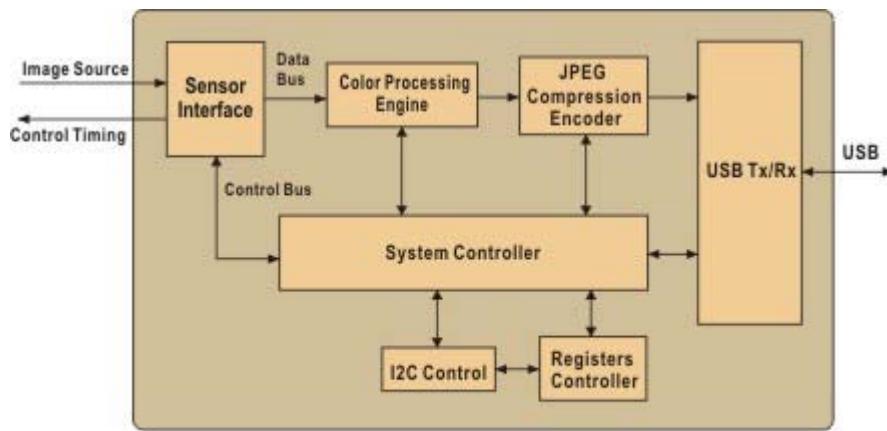
he SUI110 generates start condition and then place the 1st byte data, which contains slave address (7 bits) and a Read/Write control bit onto SDA line. After slave device issues an acknowledgment, the 8 bits data coming from slave device internal register will be placed onto the SDA line serially. The address of the 8 bit data was assigned by previous dummy write cycle. *Note, there is no acknowledgement issued by master device.*


8 Application Circuit

本資料為松翰科技股份有限公司專有之財產，未經書面同意不准透露、使用，亦不准複印或轉變成任何其他形式使用。The information contained herein is the exclusive property of SONIX and shall not be distributed, reproduced or disclosed in whole or in part without prior written permission of SONIX.

9 Package Information

§ 48pin LQFP



(All dimensions are in Millimeters)

Product Information

SN9C120

single-chip PC camera controller

[\[Enlarge Diagram\]](#)

Description:

SN9C120 provides a low power-consumption, cost effective and superior image quality solution for PC camera controller with VGA image sensor. It integrates sensor interface, image signal processing, image compression and USB transfer function into one single chip. SN9C120 supports various image sensors with RGB Bayer pattern and comes with image signal processing blocks such as gamma and color correction, edge enhancement, auto exposure and auto white balance controls. The built-in JPEG compression engine makes the VGA frame rate up to 30fps on USB1.1 to come true. With the auxiliary hardware windowing and scaling, we can provide a variety of image format and also digital-zoom function to satisfy any special application demands. The driver of SN9C120 has passed Microsoft's WHQL certification and it is 48-pin LQFP package without external memory needed.

Downloads

Drivers

[SN9C102P/105/110/121 \(5213KB\)](#)
[SN9C102P/105/110/121 \(1452KB\)](#)

Data Sheet

[SN9C120_Spec_v1.0](#)

Login Below

To access documentatic and development tools product please [Login](#) or [Register](#)

Email Address

[Forgot your Password?](#)

Features:

- Up to 30fps@VGA video streaming
- Support Image sensor with 9-bit RGB Bayer pattern raw data input
- Support CIF/VGA CMOS sensors, such as Hynix 7131D/E/R, Micron 0343/0360, OmniVision 7630/7648/7649, Pixart 106/202/302, IC-media, CI, NS, ...etc
- Provide pixel offset compensation and individual R/G/B digital color gain controls
- Provide defect pixel cancellation by EEPROM
- Provide hardware windowing, 1/2, 1/4 scaling function with smooth filter
- Provide programmable gamma and color correction
- Provide noise clearing and edge enhancement
- Embedded hardware color DSP and JPEG baseline capability of compression encoder
- Auto exposure control
- Auto white balance control
- Provide snapshot function
- Support operation mode in image quality/frame rate selection
- Support video data transfer either in USB isochronous or bulk modes
- Up to 9 alternated setting for USB isochronous transfer of video data
- Built-in external EEPROM controller for customer V_ID, P_ID
- Provide internal up to 26 various P_ID in default setting
- USB 1.1 compliance and support suspend mode
- USB 4 endpoints: control, isochronous read, bulk read, interrupt read
- 12MHz crystal, 3.3V I/O, 1.8V core
- No external memory needed
- 48 pins LQFP package

• [to the top](#) •

[\[FAE Support\]](#) [\[About Sonix\]](#) [\[Current News\]](#) [\[Jobs @ Sonix\]](#) [\[Financials\]](#) [\[Client Login\]](#) [\[Site Map\]](#) [\[Legal\]](#)

©2004 Copyright Sonix Technology Co., Ltd., All Rights Reserved
9F, No.8, Lane 32, Hsien Cheng 5th Street, Chupei City, Hsinchu, Taiwan
TEL: (886)3-551-0520 FAX: (886)3-551-0523