

Report on the Radio Testing

For

Vicon Motion Systems Ltd

on

BlueTrident V2

Report no. TRA-042784-10-47-01B

4 February 2019

RF915 6.0





Report Number: TRA-042784-10-47-01B

Issue: A

REPORT ON THE RADIO TESTING OF A
Vicon Motion Systems Ltd
BlueTrident V2
WITH RESPECT TO SPECIFICATION
FCC 47CFR 15.247

TEST DATE: 4th-6th December 2018

Written by: S Hodgkinson, David Garvey
Radio Test Engineer

J Charters

Department Manager -

Radio

Date: 4 February 2019

Disclaimers:

Approved by:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

## 1 Revision Record

| Issue Number | Issue Date       | Revision History       |
|--------------|------------------|------------------------|
| Α            | 20 December 2019 | Original               |
| Α            | 4 February 2019  | Updates to TCB request |

RF915 6.0 Page 3 of 63

### 2 Summary

**TESTED BY:** 

**TEST REPORT NUMBER:** TRA-042784-10-47-01B WORKS ORDER NUMBER: TRA-042784-00 PURPOSE OF TEST: USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J. 47CFR15.247 TEST SPECIFICATION(S): **EQUIPMENT UNDER TEST (EUT):** BlueTrident V2 FCC IDENTIFIER: DMR-IMUAP2 **EUT SERIAL NUMBER:** 1007 MANUFACTURER/AGENT: Vicon Motion Systems Ltd ADDRESS: Unit 6 Oxford Industrial Park Mead Road Yarnton **OXFORD OX5 1QU** United Kingdom CLIENT CONTACT: Tom Shannon ☎ TPS01865 781398 ⊠ thomas.shannon@omg3d.com ORDER NUMBER: Por012352 TEST DATE: 4th-6th December 2018

RF915 6.0 Page 4 of 63

Element

S Hodgkinson, David Garvey

### 2.1 Test Summary

|                                                                          |         | Requirement Clause | Applicable        |               |  |
|--------------------------------------------------------------------------|---------|--------------------|-------------------|---------------|--|
| Test Method and Descr                                                    | ription | 47CFR15            | to this equipment | Result / Note |  |
| Radiated spurious emissio (restricted bands of operat cabinet radiation) |         | 15.205             | $\boxtimes$       | Pass          |  |
| AC power line conducted emissions                                        |         | 15.207             |                   | Pass          |  |
| Occupied bandwidth                                                       |         | 15.247(a)(2)       |                   | Pass          |  |
| Conducted carrier power                                                  | Peak    | 15.247(b)(3)       |                   | Pass          |  |
| Conducted carrier power                                                  | Max.    | 13.247(D)(3)       |                   |               |  |
| Conducted / radiated RF power out-of-band                                |         | 15.247(d)          |                   | Pass          |  |
| Power spectral density, conducted                                        |         | 15.247(e)          |                   | Pass          |  |
| Calculation of duty correcti                                             | on      | 15.35(c)           |                   | Pass          |  |

### Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF915 6.0 Page 5 of 63

## 3 Contents

| 1  | Revision Record                    |    |
|----|------------------------------------|----|
| 2  | Summary                            | 4  |
|    | 2.1 Test Summary                   | 5  |
| 3  | Contents                           |    |
| 4  | Introduction                       | 8  |
| 5  | Test Specifications                |    |
| -  | 5.1 Normative References           |    |
|    | 5.2 Deviations from Test Standards |    |
| 6  |                                    |    |
|    | Glossary of Terms                  |    |
| 7  | Equipment Under Test               |    |
|    | 7.1 EUT Identification             |    |
|    | 7.2 System Equipment               |    |
|    | 7.3 EUT Mode of Operation          |    |
|    | 7.3.1 Transmission                 |    |
|    | 7.4 EUT Radio Parameters           | 12 |
|    | 7.4.1 General                      | 12 |
|    | 7.4.2 Antennas                     |    |
|    | 7.5 EUT Description                |    |
| 8  | Modifications                      |    |
| 9  | EUT Test Setup.                    |    |
| 9  |                                    |    |
|    | 9.1 Block Diagram                  | 15 |
|    | 9.2 General Set-up Photograph      |    |
| 10 |                                    |    |
|    | 10.1 Normal Conditions             |    |
|    | 10.2 Varying Test Conditions       | 18 |
| 11 |                                    |    |
|    | 11.1 Definitions                   |    |
|    | 11.2 Test Parameters               | 19 |
|    | 11.3 Test Limit                    | 19 |
|    | 11.4 Test Method                   | 20 |
|    | 11.5 Test Set-up Photograph        |    |
|    | 11.6 Test Equipment                | 22 |
|    | 11.7 Test Results                  | 23 |
| 12 |                                    | 33 |
| 12 | 12.1 Definition                    |    |
|    | 12.2 Test Parameters               |    |
|    |                                    |    |
|    |                                    |    |
|    | 12.4 Test Method                   |    |
|    | 12.5 Test Set-up Photograph        |    |
|    | 12.6 Test Equipment                |    |
|    | 12.7 Test Results                  |    |
| 13 | B Occupied Bandwidth               | 39 |
|    | 13.1 Definition                    | 39 |
|    | 13.2 Test Parameters               | 39 |
|    | 13.3 Test Limit                    | 39 |
|    | 13.4 Test Method                   | 40 |
|    | 13.5 Test Equipment                | 40 |
| 14 | · ·                                |    |
|    | 14.1 Definition                    |    |
|    | 14.2 Test Parameters               |    |
|    | 14.3 Test Limit                    |    |
|    | 14.4 Test Method                   |    |
|    |                                    |    |
|    |                                    |    |
| 4- | 14.6 Test Results                  |    |
| 15 |                                    |    |
|    | 15.1 Definition                    |    |
|    | 15.2 Test Parameters               |    |
|    | 15.3 Test Limit                    |    |
|    | 15.4 Test Method                   |    |
|    | 15.5 Test Equipment                | 47 |
|    | 15.6 Test Results                  | 48 |
| 16 | Power spectral density             | 55 |
|    | 16.1 Definition                    | 55 |
|    |                                    |    |

| 16.2 | Test Parameters         | 55 |
|------|-------------------------|----|
| 16.3 | Test Limit              | 55 |
| 16.4 | Test Method             | 56 |
| 16.5 | Test Equipment          | 56 |
| 16.6 | Test Results            | 56 |
| 17   | Duty Cycle              | 58 |
| 17.1 | Definition              | 58 |
| 17.2 |                         |    |
| 17.3 |                         | 58 |
| 17.4 | Test Method             | 59 |
| 17.5 | Test Equipment          | 59 |
| 17.6 |                         |    |
| 18   | Measurement Uncertainty | 61 |
|      | RF Exposure             |    |

#### Introduction 4

This report TRA-042784-10-47-01B presents the results of the Radio testing on a Vicon Motion Systems Ltd, BlueTrident V2 to specification 47CFR15 Radio Frequency Devices

The testing was carried out for Vicon Motion Systems Ltd by Element, at the address(es) detailed below.

 $\boxtimes$ Element Hull  $\boxtimes$ Element Skelmersdale

Unit E I Init 1 South Orbital Trading Park Pendle Place **Hedon Road** Skemersdale West Lancashire Hull

HU9 1NJ WN8 9PN UK

UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull 3483A **Element North West** 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF915 6.0 Page 8 of 63

## 5 Test Specifications

### 5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

### 5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF915 6.0 Page 9 of 63

## 6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

**CW** Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

**DC** Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

**Hz** hertz

IC Industry Canada

ITU International Telecommunication Union

**LBT** Listen Before Talk

m metre max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mptPoint-to-multipointPt-ptPoint-to-pointRFRadio FrequencyRHRelative HumidityRMSRoot Mean Square

Rx receiver s second

**SVSWR** Site Voltage Standing Wave Ratio

Tx transmitter

**UKAS** United Kingdom Accreditation Service

 $\begin{array}{ccc} \textbf{V} & & \text{volt} \\ \textbf{W} & & \text{watt} \\ \textbf{\Omega} & & \text{ohm} \end{array}$ 

RF915 6.0 Page 10 of 63

Report Number: TRA-042784-10-47-01B

### 7 Equipment Under Test

### 7.1 EUT Identification

Name: BlueTrident V2
Serial Number: 1007
Model Number: V2
Software Revision: V1.0

• Build Level / Revision Number: Pre-Production

### 7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Dell Precision Test Laptop, Samsung SM-T710

### 7.3 EUT Mode of Operation

The EUT In the first instance was connected via Bluetooth to the Samsung Tablet. Using the BLE check App, the EUT was placed into DTM mode, which then allowed connection to the test laptop via USB.

#### 7.3.1 Transmission

The mode of operation for Transmitter tests was as follows...

The channels and modulation where selected via the Client software, and operating at the client advised output power of +8 dBm.

RF915 6.0 Page 11 of 63

### 7.4 EUT Radio Parameters

## 7.4.1 General

| Frequency of operation:   | 2400 MHz- 2483.5 MHz                      |
|---------------------------|-------------------------------------------|
| Modulation type(s):       | GFSK                                      |
| Declared output power(s): | +8 dBm                                    |
| Nominal Supply Voltage:   | +5 Vdc Via USB port whilst under test     |
| Nominal Supply Voltage:   | Normal Mode: Battery operated 3.0-4.2 Vdc |
| Duty cycle:               | 15.6                                      |

## 7.4.2 Antennas

| Туре:            | Antenova Antenna A10192 627-1016-ND |
|------------------|-------------------------------------|
| Frequency range: | 2.4 GHz-2.5 GHz                     |
| Impedance:       | 50 Ω                                |
| Gain:            | 0.8 dBi                             |
| Polarisation:    | Linear                              |
| Mounting:        | РСВ                                 |

RF915 6.0 Page 12 of 63

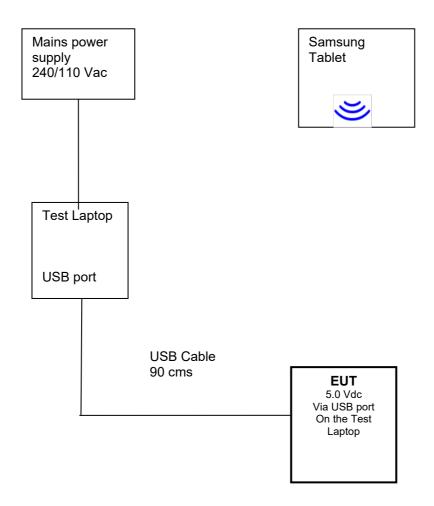
## 7.5 EUT Description

The EUT is a small body-worn sensor designed to monitor athletic activities and report this information to a phone or computer etc via Bluetooth.

RF915 6.0 Page 13 of 63

## 8 Modifications

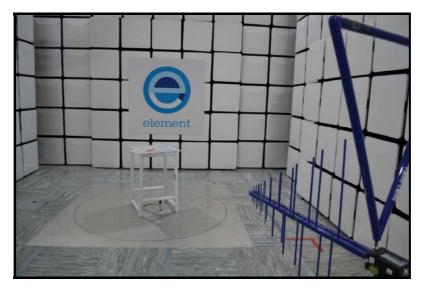
No modifications were performed during this assessment.


RF915 6.0 Page 14 of 63

# 9 EUT Test Setup

### 9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:


RF915 6.0 Page 15 of 63



RF915 6.0 Page 16 of 63

## 9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:







RF915 6.0 Page 17 of 63

### 10 General Technical Parameters

### 10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was approx. 5.0 Vdc from the USB Port on the test Laptop.

### 10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

|             | Category | Nominal         | Variation      |
|-------------|----------|-----------------|----------------|
|             | Mains    | 110 V ac +/-2 % | 85 % and 115 % |
| $\boxtimes$ | Battery  | New battery     | N/A            |

RF915 6.0 Page 18 of 63

### 11 Radiated emissions

### 11.1 Definitions

#### Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

#### Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

#### 11.2 Test Parameters

Test Location: Element Element Hull

Test Chamber: Wireless Lab 3

Test Standard and Clause: RSS-Gen 8.8 ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Frequencies Measured: 2402 MHz / 2442 MHz / 2480 MHz

EUT Channel Bandwidths: 1 MHz

Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz

Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

#### **Environmental Conditions (Normal Environment)**

Temperature: 20 °C +15 °C to +35 °C (as declared)

Humidity: 52 % RH 20 % RH to 75 % RH (as declared)

Supply: 5 Vdc

### 11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

### General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

| Frequency<br>(MHz) | Field Strength<br>(μV/m at 3 m) |
|--------------------|---------------------------------|
| 30 to 88           | 100                             |
| 88 to 216          | 150                             |
| 216 to 960         | 200                             |
| Above 960          | 500                             |

RF915 6.0 Page 19 of 63

### 11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

$$FS = PR + CL + AF - PA + DC - CF$$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

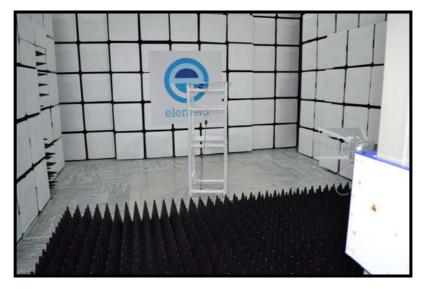
CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance different to limit distance);


This field strength value is then compared with the regulatory limit.

#### Figure i Test Setup



RF915 6.0 Page 20 of 63

## 11.5 Test Set-up Photograph

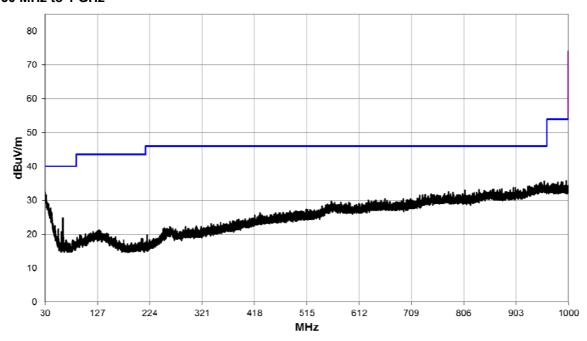




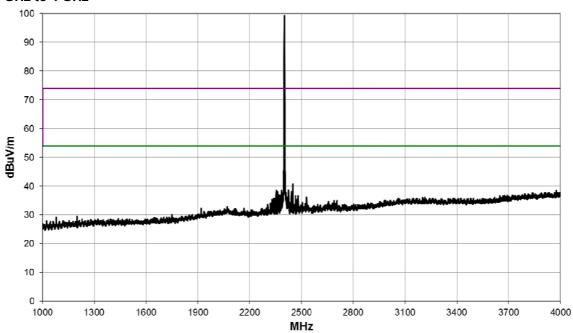


RF915 6.0 Page 21 of 63

## 11.6 Test Equipment

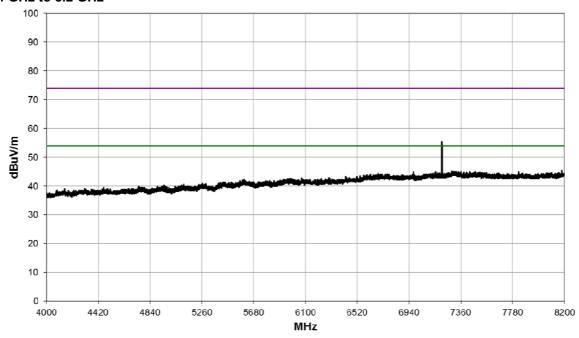

| Equipment             |              | Equipment         | Element | Due For     |
|-----------------------|--------------|-------------------|---------|-------------|
| Туре                  | Manufacturer | Description       | No      | Calibration |
| Ferrite Lined Chamber | Rainford     | Chamber           | REF2259 | 2020-08-03  |
| ESW26                 | R&S          | EMI Test Receiver | REF2235 | 2019-07-23  |
| CBL6111B              | Chase        | Bilog Antenna     | REF2218 | 2019-11-06  |
| LB-10180-NF           | A Info Inc   | Horn Antenna      | REF2241 | 2020-07-13  |
| LB-90-25-C2-SF        | A Info Inc   | Horn Antenna      | REF2243 | 2020-07-16  |
| LB-62-25-C-SF         | A Info Inc   | Horn Antenna      | REF2244 | 2020-07-16  |
| LB-180400-25-C-KF     | A Info Inc   | Horn Antenna      | REF2246 | 2020-07-25  |

RF915 6.0 Page 22 of 63

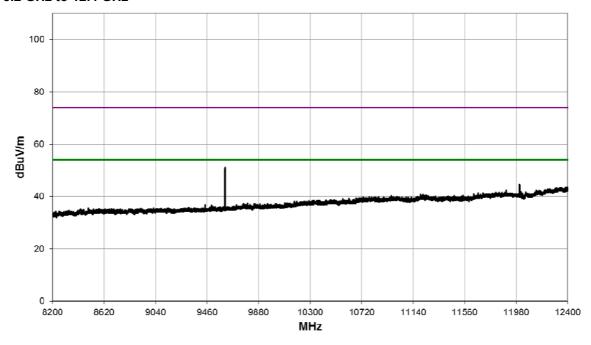

### 11.7 Test Results

|          | Power: +8 dBm; Channel: low 2402 MHz              |                                                   |                       |                             |                         |                                 |                                        |                               |                             |                 |  |
|----------|---------------------------------------------------|---------------------------------------------------|-----------------------|-----------------------------|-------------------------|---------------------------------|----------------------------------------|-------------------------------|-----------------------------|-----------------|--|
| Detector | Freq.<br>(MHz)                                    | Meas'd<br>Emission<br>(dBμV)                      | Cable<br>Loss<br>(dB) | Antenna<br>Factor<br>(dB/m) | Pre-amp<br>Gain<br>(dB) | Duty<br>Cycle<br>Corr'n<br>(dB) | Distance<br>Extrap'n<br>Factor<br>(dB) | Field<br>Strength<br>(dBµV/m) | Field<br>Strength<br>(μV/m) | Limit<br>(μV/m) |  |
| PK       | No Significant emissions within 20dB of the limit |                                                   |                       |                             |                         |                                 |                                        |                               |                             |                 |  |
| Av       |                                                   | No Significant emissions within 20dB of the limit |                       |                             |                         |                                 |                                        |                               |                             |                 |  |

### 30 MHz to 1 GHz

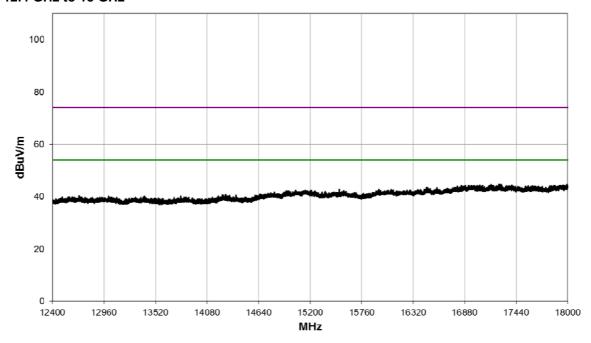



### 1 GHz to 4 GHz

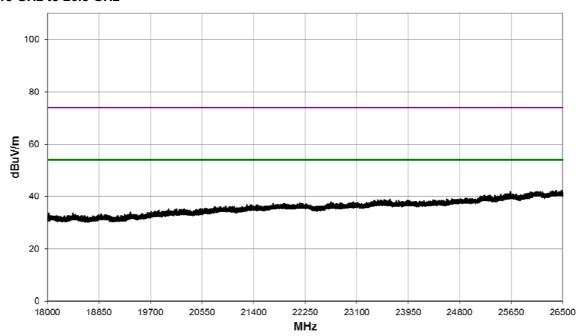



RF915 6.0 Page 23 of 63

### 4 GHz to 8.2 GHz



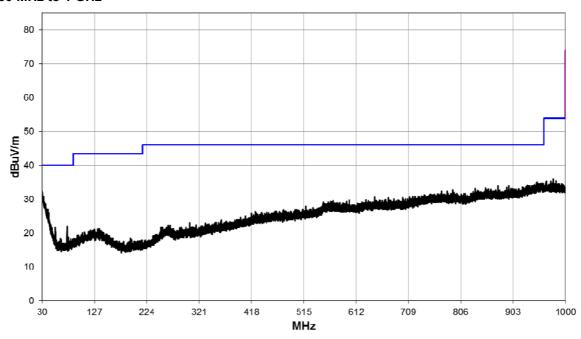

### 8.2 GHz to 12.4 GHz



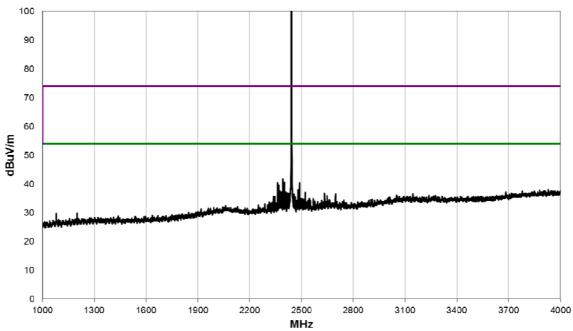

RF915 6.0 Page 24 of 63

## 12.4 GHz to 18 GHz



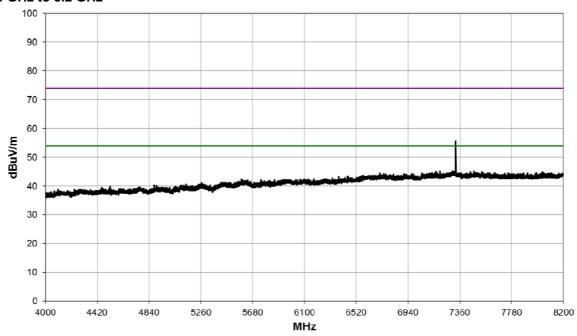

## 18 GHz to 26.5 GHz



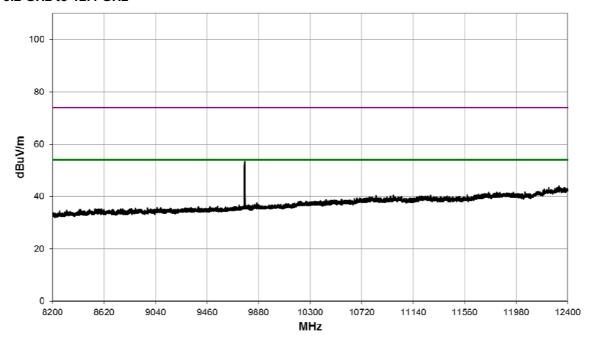

RF915 6.0 Page 25 of 63

|          | Power: +8 dBm; Channel: mid 2442 MHz |                              |                                  |                             |                         |                                 |                                        |                               |                             |                 |  |  |
|----------|--------------------------------------|------------------------------|----------------------------------|-----------------------------|-------------------------|---------------------------------|----------------------------------------|-------------------------------|-----------------------------|-----------------|--|--|
| Detector | Freq.<br>(MHz)                       | Meas'd<br>Emission<br>(dBµV) | Cable<br>Loss<br>(dB)&<br>Filter | Antenna<br>Factor<br>(dB/m) | Pre-amp<br>Gain<br>(dB) | Duty<br>Cycle<br>Corr'n<br>(dB) | Distance<br>Extrap'n<br>Factor<br>(dB) | Field<br>Strength<br>(dBµV/m) | Field<br>Strength<br>(μV/m) | Limit<br>(μV/m) |  |  |
| AV       | 7325.5                               | 38.66                        | 7.2                              | 36.5                        | 36.6                    | 15.6                            | -9.54                                  | 51.82                         | 389.9                       | 500             |  |  |
| PK       | 7325.7                               | 56.80                        | 7.2                              | 36.5                        | 36.6                    | -                               | -9.54                                  | 54.36                         | 522.4                       | 5000            |  |  |

### 30 MHz to 1 GHz

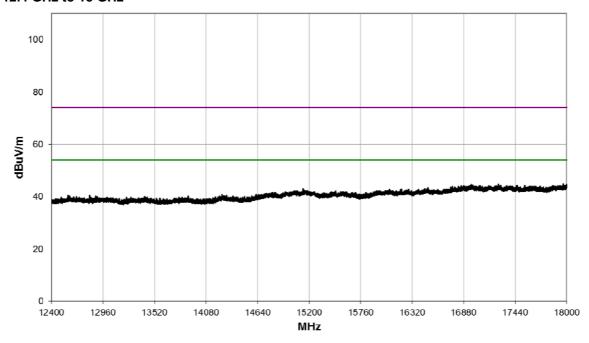



## 1 GHz to 4 GHz

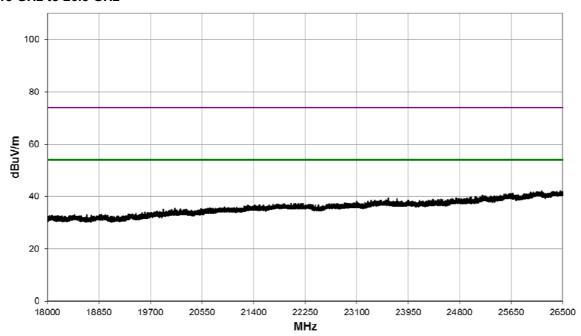



RF915 6.0 Page 26 of 63

### 4 GHz to 8.2 GHz



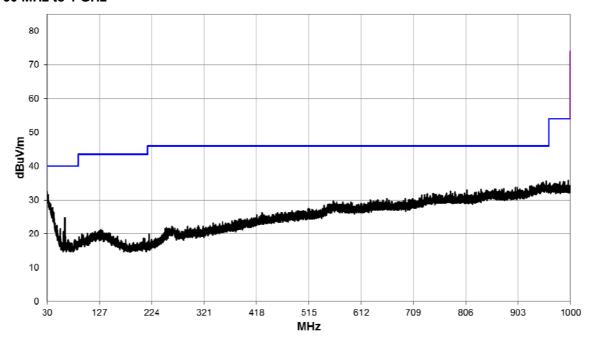

### 8.2 GHz to 12.4 GHz



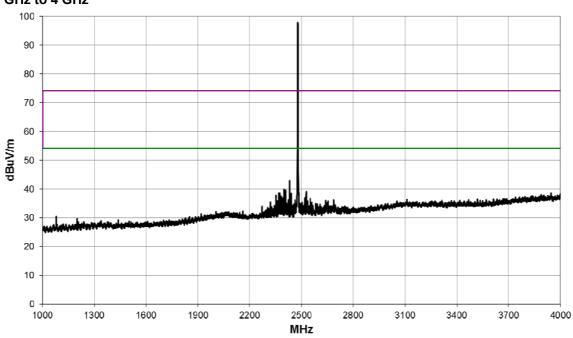

RF915 6.0 Page 27 of 63

## 12.4 GHz to 18 GHz



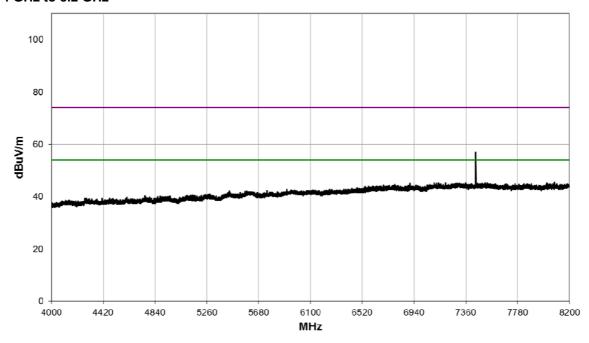

## 18 GHz to 26.5 GHz



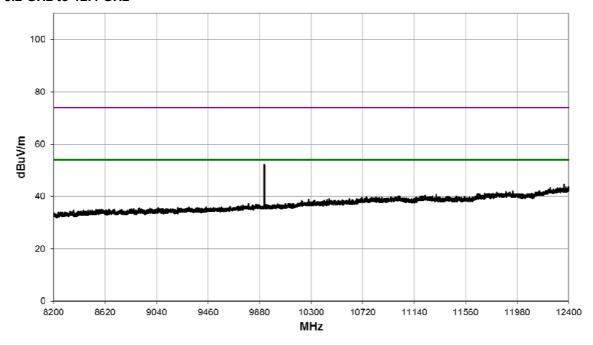

RF915 6.0 Page 28 of 63

|          | Power: +8 dBm; Channel: high 2480 MHz |                              |                                  |                             |                         |                                 |                                        |                               |                             |                 |  |  |
|----------|---------------------------------------|------------------------------|----------------------------------|-----------------------------|-------------------------|---------------------------------|----------------------------------------|-------------------------------|-----------------------------|-----------------|--|--|
| Detector | Freq.<br>(MHz)                        | Meas'd<br>Emission<br>(dBµV) | Cable<br>Loss<br>(dB)&<br>Filter | Antenna<br>Factor<br>(dB/m) | Pre-amp<br>Gain<br>(dB) | Duty<br>Cycle<br>Corr'n<br>(dB) | Distance<br>Extrap'n<br>Factor<br>(dB) | Field<br>Strength<br>(dBµV/m) | Field<br>Strength<br>(µV/m) | Limit<br>(μV/m) |  |  |
| AV       | 7439.5                                | 39.38                        | 7.2                              | 36.6                        | 36.7                    | 15.6                            | -9.54                                  | 52.54                         | 423.6                       | 500             |  |  |
| PK       | 7439.2                                | 59.53                        | 7.2                              | 36.6                        | 36.7                    | -                               | -9.54                                  | 57.09                         | 715.3                       | 5000            |  |  |

### 30 MHz to 1 GHz

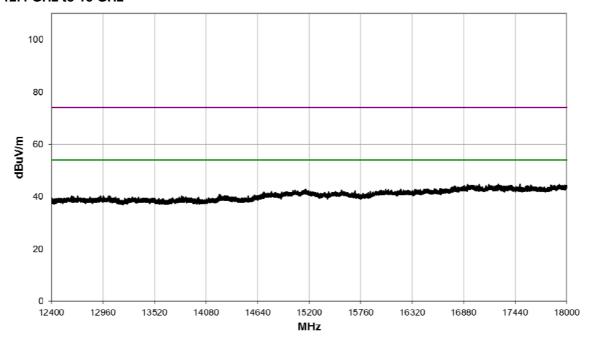



## 1 GHz to 4 GHz

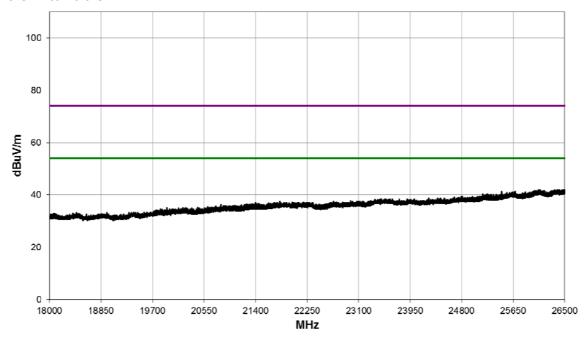



RF915 6.0 Page 29 of 63

## 4 GHz to 8.2 GHz

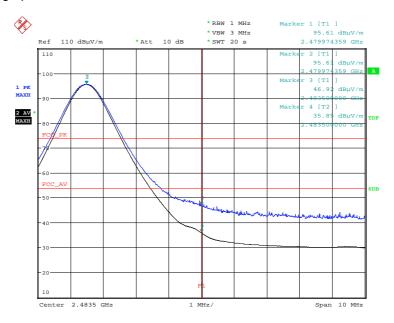



## 8.2 GHz to 12.4 GHz




RF915 6.0 Page 30 of 63

## 12.4 GHz to 18 GHz




## 18 GHz to 26.5 GHz



RF915 6.0 Page 31 of 63

## Upper band edge plots



Date: 6.DEC.2018 16:45:46

RF915 6.0 Page 32 of 63

### 12 AC power-line conducted emissions

### 12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

#### 12.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 6.2

EUT Channel: Mid

EUT Channel Bandwidths: 1 MHz

EUT Modulation: GFSK

Deviations From Standard: None

Measurement BW: 10kHz

Measurement Detectors: Quasi-Peak and

Average,

### **Environmental Conditions (Normal Environment)**

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 42 % RH 20 % RH to 75 % RH (as declared)

Supply: 110 Vac

### 12.3 Test Limit

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

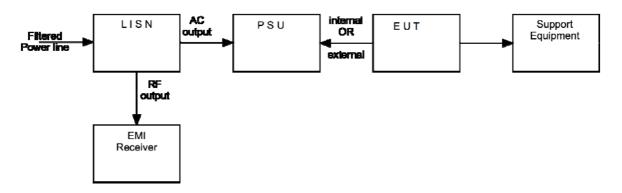
Table 3 - AC Power Line Conducted Emission Limits

| Frequency<br>(MHz) | Conducted limit<br>(dΒμV) |           |  |
|--------------------|---------------------------|-----------|--|
|                    | Quasi-Peak                | Average** |  |
| 0.15 to 0.5        | 66 to 56*                 | 56 to 46* |  |
| 0.5 to 5           | 56                        | 46        |  |
| 5 to 30            | 60                        | 50        |  |

<sup>\*</sup>The level decreases linearly with the logarithm of the frequency.

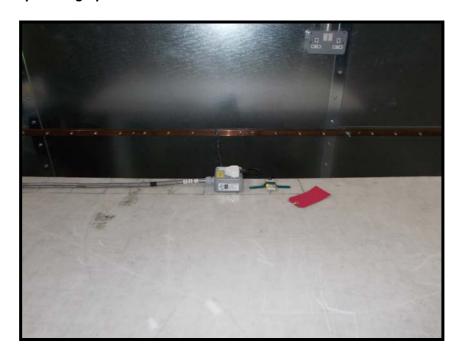
RF915 6.0 Page 33 of 63

<sup>\*\*</sup>A linear average detector is required.


### 12.4 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.


Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

### Figure ii Test Setup



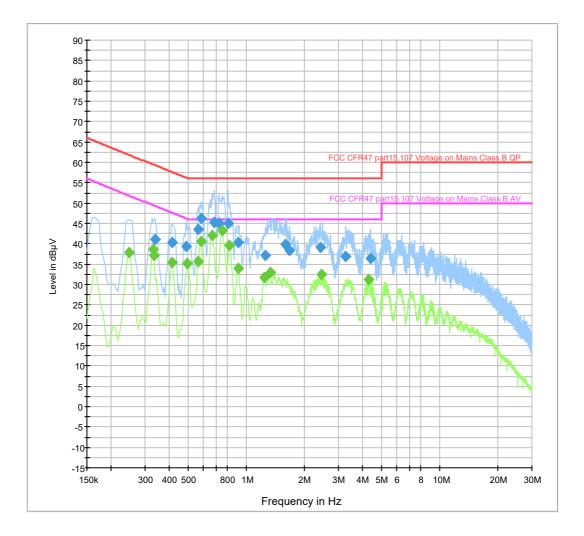
RF915 6.0 Page 34 of 63

## 12.5 Test Set-up Photograph





RF915 6.0 Page 35 of 63


## 12.6 Test Equipment

| Equipment     |              | Equipment   | Element | Due For     |
|---------------|--------------|-------------|---------|-------------|
| Туре          | Manufacturer | Description | No      | Calibration |
| ESHS10        | R&S          | Receiver    | U003    | 2019-09-21  |
| ESH3-Z5.831.5 | R&S          | Lisn        | U195    | 2019-09-12  |

RF915 6.0 Page 36 of 63

### 12.7 Test Results

Conducted emissions on Mains 9kHz-30MHz ESHS10 + UH195+UH443PL



RF915 6.0 Page 37 of 63

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | PE | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) | Comment |
|--------------------|---------------------|-----------------------|--------------------|----|------|---------------|----------------|-----------------|---------|
| 0.339000           | 41.2                | 2000.0                | 10.000             | GN | N    | 10.1          | 18.0           | 59.2            | Pass    |
| 0.415500           | 40.3                | 2000.0                | 10.000             | GN | L1   | 10.1          | 17.2           | 57.5            | Pass    |
| 0.487500           | 39.4                | 2000.0                | 10.000             | GN | L1   | 10.1          | 16.8           | 56.2            | Pass    |
| 0.564000           | 43.5                | 2000.0                | 10.000             | GN | L1   | 10.1          | 12.5           | 56.0            | Pass    |
| 0.582000           | 46.3                | 2000.0                | 10.000             | GN | L1   | 10.1          | 9.7            | 56.0            | Pass    |
| 0.685500           | 45.2                | 2000.0                | 10.000             | GN | N    | 10.1          | 10.8           | 56.0            | Pass    |
| 0.721500           | 44.9                | 2000.0                | 10.000             | GN | N    | 10.1          | 11.1           | 56.0            | Pass    |
| 0.802500           | 45.0                | 2000.0                | 10.000             | GN | N    | 10.1          | 11.0           | 56.0            | Pass    |
| 0.906000           | 40.3                | 2000.0                | 10.000             | GN | L1   | 10.1          | 15.7           | 56.0            | Pass    |
| 1.248000           | 37.2                | 2000.0                | 10.000             | GN | N    | 10.1          | 18.8           | 56.0            | Pass    |
| 1.599000           | 39.9                | 2000.0                | 10.000             | GN | L1   | 10.1          | 16.1           | 56.0            | Pass    |
| 1.680000           | 38.3                | 2000.0                | 10.000             | GN | L1   | 10.1          | 17.7           | 56.0            | Pass    |
| 2.404500           | 39.0                | 2000.0                | 10.000             | GN | L1   | 10.2          | 17.0           | 56.0            | Pass    |
| 3.277500           | 37.0                | 2000.0                | 10.000             | GN | L1   | 10.2          | 19.0           | 56.0            | Pass    |
| 4.402500           | 36.5                | 2000.0                | 10.000             | GN | L1   | 10.3          | 19.5           | 56.0            | Pass    |

| Frequency<br>(MHz) | Average<br>(dBµV) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | PE | Line | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV) | Comment |
|--------------------|-------------------|-----------------------|--------------------|----|------|---------------|----------------|-----------------|---------|
| 0.249000           | 37.8              | 2000.0                | 10.000             | GN | L1   | 10.1          | 14.0           | 51.8            | Pass    |
| 0.330000           | 38.6              | 2000.0                | 10.000             | GN | L1   | 10.1          | 10.9           | 49.5            | Pass    |
| 0.334500           | 37.2              | 2000.0                | 10.000             | GN | L1   | 10.1          | 12.1           | 49.3            | Pass    |
| 0.415500           | 35.3              | 2000.0                | 10.000             | GN | L1   | 10.1          | 12.2           | 47.5            | Pass    |
| 0.496500           | 35.1              | 2000.0                | 10.000             | GN | L1   | 10.1          | 11.0           | 46.1            | Pass    |
| 0.564000           | 35.7              | 2000.0                | 10.000             | GN | L1   | 10.1          | 10.3           | 46.0            | Pass    |
| 0.582000           | 40.6              | 2000.0                | 10.000             | GN | L1   | 10.1          | 5.4            | 46.0            | Pass    |
| 0.667500           | 42.0              | 2000.0                | 10.000             | GN | L1   | 10.1          | 4.0            | 46.0            | Pass    |
| 0.748500           | 43.4              | 2000.0                | 10.000             | GN | L1   | 10.1          | 2.6            | 46.0            | Pass    |
| 0.820500           | 39.7              | 2000.0                | 10.000             | GN | L1   | 10.1          | 6.3            | 46.0            | Pass    |
| 0.906000           | 33.8              | 2000.0                | 10.000             | GN | L1   | 10.1          | 12.2           | 46.0            | Pass    |
| 1.239000           | 31.6              | 2000.0                | 10.000             | GN | L1   | 10.1          | 14.4           | 46.0            | Pass    |
| 1.324500           | 32.9              | 2000.0                | 10.000             | GN | L1   | 10.1          | 13.1           | 46.0            | Pass    |
| 2.436000           | 32.4              | 2000.0                | 10.000             | GN | L1   | 10.2          | 13.6           | 46.0            | Pass    |
| 4.312500           | 31.2              | 2000.0                | 10.000             | GN | L1   | 10.3          | 14.8           | 46.0            | Pass    |

RF915 6.0 Page 38 of 63

### 13 Occupied Bandwidth

### 13.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

### 13.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: FCC: ANSI C63.10-2013, Clause 11.8

EUT frequencies: 2402 / 2440 / 2480

EUT Channel Bandwidths: 701.923 kHz,692.308 kHz,697.116 kHz

EUT Test Modulations: LE 1M PHY 1Mb/s

Deviations From Standard: None
Measurement BW: 100kHz

FCC requirement: 100 kHz)

Spectrum Analyzer Video BW: 300kHz

(requirement at least 3x RBW)

Measurement Span: 3MHz

(requirement 2 to 5 times OBW)

Measurement Detector: Peak

### **Environmental Conditions (Normal Environment)**

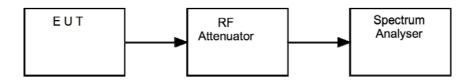
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 35 % RH 20 % RH to 75 % RH (as declared)

Supply: 5.0 Vdc

### 13.3 Test Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

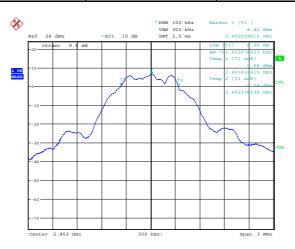

RF915 6.0 Page 39 of 63

### 13.4 Test Method

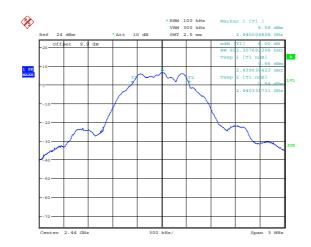
With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

### Figure iii Test Setup

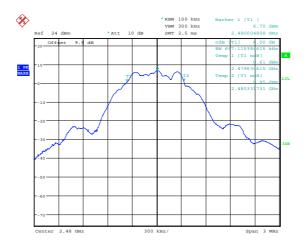



### 13.5 Test Equipment


| Equipment  |                      | Equipment            | Element | Due For     |
|------------|----------------------|----------------------|---------|-------------|
| Туре       | Manufacturer         | Description          | No      | Calibration |
| FSU50      | R&S                  | Spectrum<br>Analyser | U544    | 2019-05-22  |
| Attenuator | AtlanTecRF Microwave | 10dB SMA             | U633    | Cal In use  |

RF915 6.0 Page 40 of 63

| FCC 15.247. Data rate: 1Mb/s Power setting: +8dBm       |             |             |         |      |  |  |  |
|---------------------------------------------------------|-------------|-------------|---------|------|--|--|--|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |             |             |         |      |  |  |  |
| 2402                                                    | 2401.634615 | 2402.336538 | 701.923 | PASS |  |  |  |
| 2440                                                    | 2439.639423 | 2440.331731 | 692.307 | PASS |  |  |  |
| 2480                                                    | 2479.634615 | 2480.331731 | 697.115 | PASS |  |  |  |




Date: 4.DEC.2018 09:14:09



Date: 4.DEC.2018 09:17:50

RF915 6.0 Page 41 of 63



Date: 4.DEC.2018 09:28:03

RF915 6.0 Page 42 of 63

### 14 Maximum peak conducted output power

### 14.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

### 14.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.9.1

EUT frequencies: 2402 / 2440 / 2480

EUT Channel Bandwidths: 701.923 kHz, 692.308 kHz,697.116 kHz

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

None

1MHz

3MHz

(requirement at least 3x RBW)

Measurement Detector: Peak

Voltage Extreme Environment Test Range: Mains Power = 85 % and 115 % of Nominal (FCC only

requirement);

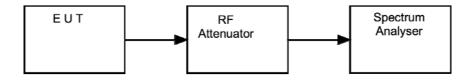
Battery Power = new battery.

### **Environmental Conditions (Normal Environment)**

Temperature: 23 °C +15 °C to +35 °C (as declared)
Humidity: 35 % RH 20 % RH to 75 % RH (as declared)

### 14.3 Test Limit

For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.


RF915 6.0 Page 43 of 63

### 14.4 Test Method

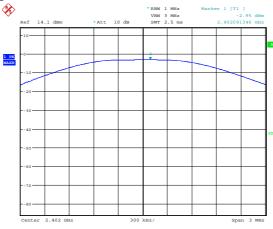
With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

### **Figure iv Test Setup**

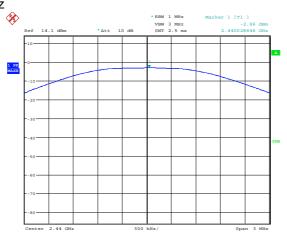


### 14.5 Test Equipment


| Equipment  |                      | Equipment            | Element | Due For     |
|------------|----------------------|----------------------|---------|-------------|
| Туре       | Manufacturer         | Description          | No      | Calibration |
| FSU50      | R&S                  | Spectrum<br>Analyser | U544    | 2019-05-22  |
| Attenuator | AtlanTecRF Microwave | 10dB SMA             | U633    | Cal In use  |

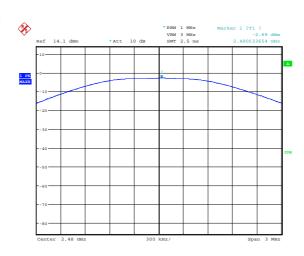
### 14.6 Test Results

| Modulation: GFSK; Data rate: 1Mb/s; Power setting: +8dBm |       |      |      |      |      |  |  |
|----------------------------------------------------------|-------|------|------|------|------|--|--|
| Channel Analyzer Cable loss Power (mW) (MHz) (dBm) (mW)  |       |      |      |      |      |  |  |
| 2402.00                                                  | -2.95 | 10.2 | 7.25 | 5.30 | PASS |  |  |
| 2440.00                                                  | -2.86 | 10.2 | 7.34 | 5.42 | PASS |  |  |
| 2480.00                                                  | -2.69 | 10.2 | 7.51 | 5.63 | PASS |  |  |


RF915 6.0 Page 44 of 63

## Bottom channel 2402MHz




Date: 5.DEC.2018 07:57:03

### Middle channel 2440MHz



Date: 5.DEC.2018 07:58:24

### Top channel 2480MHz



Date: 5.DEC.2018 08:00:03

RF915 6.0 Page 45 of 63

### 15 Out-of-band and conducted spurious emissions

### 15.1 Definition

### Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

### Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

### 15.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboritory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.11

EUT frequencies : 2402 / 2440 / 2480

EUT Channel Bandwidths: 701.923 kHz, 692.308 kHz, 697.116 kHz

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:

None

100 kHz

300

(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 30 MHz to 25GHz

### **Environmental Conditions (Normal Environment)**

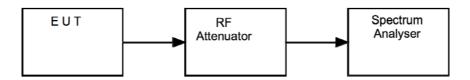
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 35 % RH 20 % RH to 75 % RH (as declared)

Supply: 5.0 Vdc

### 15.3 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in FCC 47CFR15.209(a) / RSS-Gen is not required.


RF915 6.0 Page 46 of 63

### 15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

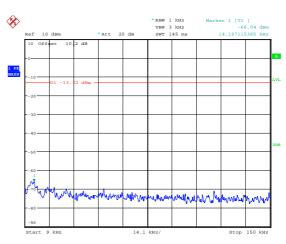
### Figure v Test Setup



### 15.5 Test Equipment

| Equipment  |                      | Equipment            | Element | Due For     |
|------------|----------------------|----------------------|---------|-------------|
| Туре       | Manufacturer         | Description          | No      | Calibration |
| FSU50      | R&S                  | Spectrum<br>Analyser | U544    | 2019-05-22  |
| Attenuator | AtlanTecRF Microwave | 10dB SMA             | U633    | Cal In use  |

RF915 6.0 Page 47 of 63

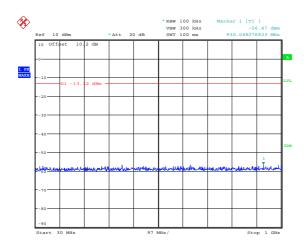

### 15.6 Test Results

|                               | 2402 MHz Modulation: GFSK; Data rate: 1Mb/s; Power setting: +8dBm |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| Channel<br>Frequency<br>(MHz) | Frequency Frequency Level Level Limit Margin Result               |  |  |  |  |  |  |
| 2402                          | 2402 No Significant emissions within 20dB of the limit PASS       |  |  |  |  |  |  |

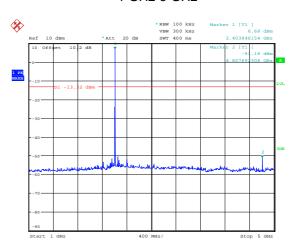
### 9 kHz-150 kHz

## 

### 150 kHz-30 MHz



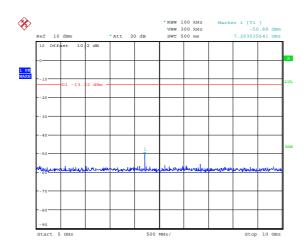

Date: 5.DEC.2018 09:28:49


Date: 5.DEC.2018 09:29:08

Date: 5.DEC.2018 09:28:

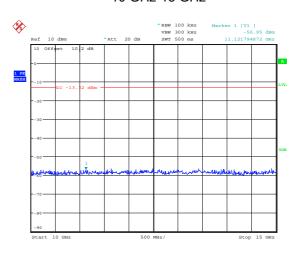
### 30 MHz-1 GHz




### 1 GHz-5 GHz

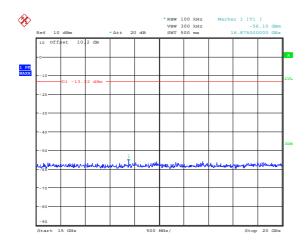


Date: 5.DEC.2018 09:28:06


RF915 6.0 Page 48 of 63

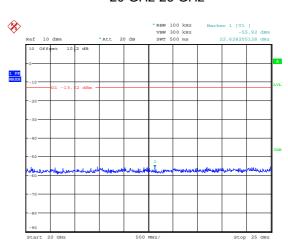
### 5 GHz-10 GHz




Date: 5.DEC.2018 09:29:36

### 10 GHz-15 GHz




Date: 5.DEC.2018 09:30:01

### 15 GHz-20 GHz

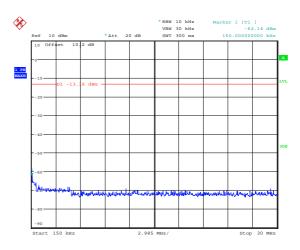


Date: 5.DEC.2018 09:30:25

### 20 GHz-25 GHz



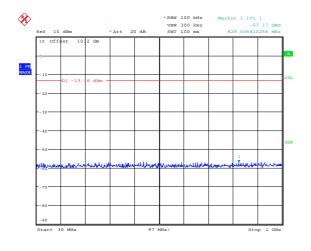
Date: 5.DEC.2018 09:30:51


RF915 6.0 Page 49 of 63

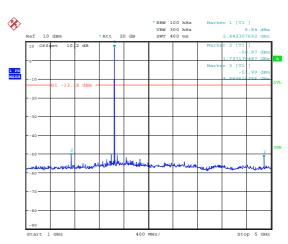
|                               | 2440 MHz Modulation: GFSK; Data rate: 1Mb/s; Power setting: +8dBm |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| Channel<br>Frequency<br>(MHz) | Frequency Frequency Level Level Limit Margin Result               |  |  |  |  |  |  |
| 2440                          |                                                                   |  |  |  |  |  |  |

### 9 kHz-150 kHz

# \*RBW 1 kHz Marker 1 [T] | VBW 3 kHz -65.90 dHm | FALT 20 dB SWT 145 ms 14.19715385 kHz | LVL | L


### 150 kHz-30 MHz



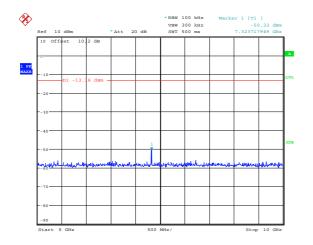

Date: 5.DEC.2018 09:36:54

Date: 5.DEC.2018 09:37:43

### 30 MHz- 1 GHz

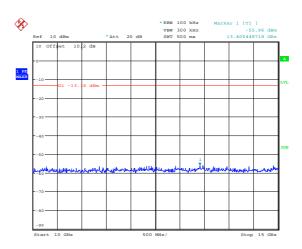


### 1 GHz-5 GHz



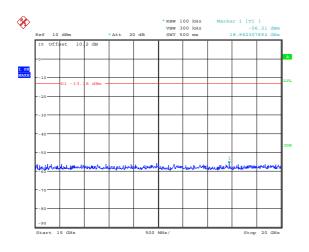

Date: 5.DEC.2018 09:38:06

Date: 5.DEC.2018 09:34:54


RF915 6.0 Page 50 of 63

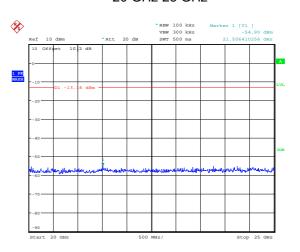
### 5 GHz-10 GHz




Date: 5.DEC.2018 09:38:44 Date: 5.E

### 10 GHz-15 GHz



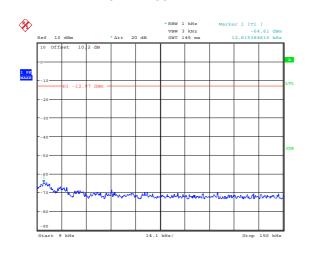

Date: 5.DEC.2018 09:39:13

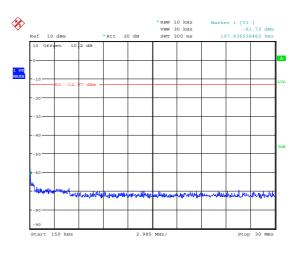
### 15 GHz-20 GHz



Date: 5.DEC.2018 09:39:35 Date: 5.DEC.2018 0

### 20 GHz-25 GHz



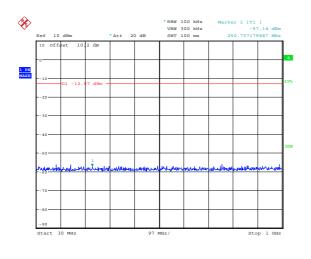


RF915 6.0 Page 51 of 63

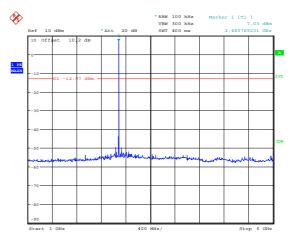
|                               | 2480 MHz Modulation: GFSK; Data rate: 1Mb/s; Power setting: +8dBm |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| Channel<br>Frequency<br>(MHz) | Frequency Frequency Level Level Limit Margin Result               |  |  |  |  |  |  |
| 2480                          | 2480 No Significant emissions within 20dB of the limit PASS       |  |  |  |  |  |  |

### 9 kHz-150 kHz

### 150 kHz-30 MHz



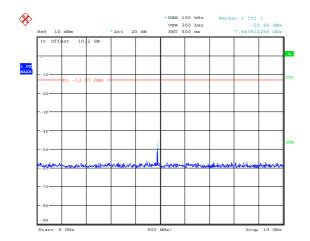




Date: 5.DEC.2018 10:27:29

Date: 5.DEC.2018 10:28:14

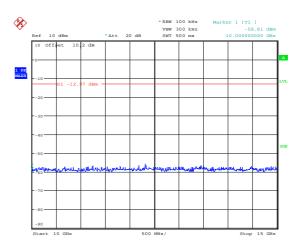
### 30 MHz-1 GHz

### 1 GHz-5 GHz

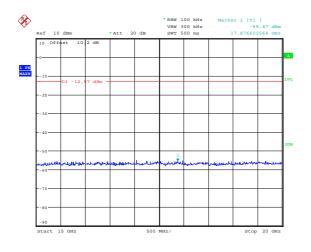





Date: 5.DEC.2018 10:28:44 Date: 5.DEC.2018 10:09:19

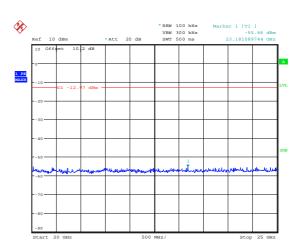

RF915 6.0 Page 52 of 63

### 5 GHz-10 GHz




Date: 5.DEC.2018 10:09:40 Date: 5.DEC.2018 10:10:01

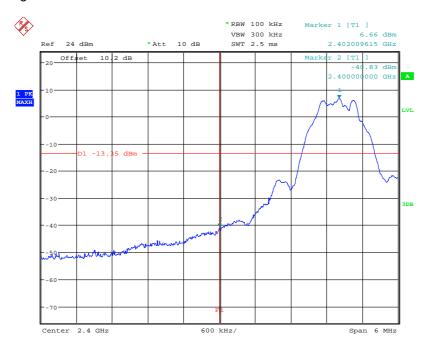
### 10 GHz-15 GHz




### 15 GHz-20 GHz

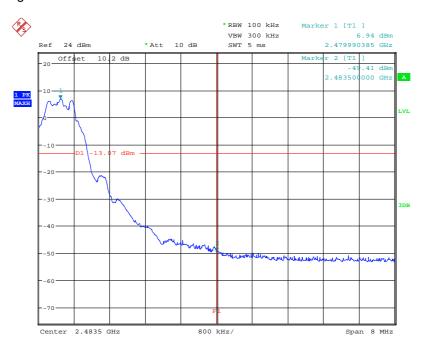


Date: 5.DEC.2018 10:19:35


### 20 GHz-25 GHz



Date: 5.DEC.2018 10:20:13


RF915 6.0 Page 53 of 63

### Lower Bandedge



Date: 5.DEC.2018 09:04:39

### Upper Bandedge



Date: 5.DEC.2018 09:14:39

RF915 6.0 Page 54 of 63

### 16 Power spectral density

### 16.1 Definition

The power per unit bandwidth.

### 16.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 11.10

EUT Frequencies Measured: 2402 / 2440 / 2480

EUT Channel Bandwidths: 701.923 kHz,692.308 kHz,697.116 kHz

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:
(requirement at least 3x RBW)

None

100 kHz
300

Measurement Span: 1MHz

(requirement 1.5 times Channel BW)

Measurement Detector: Peak

### **Environmental Conditions (Normal Environment)**

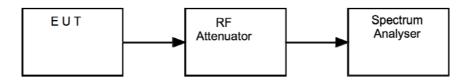
Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 35 % RH 20 % RH to 75 % RH (as declared)

Supply: 5.0 Vdc

### 16.3 Test Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


RF915 6.0 Page 55 of 63

### 16.4 Test Method

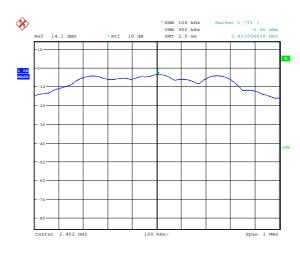
With the EUT setup as per section 9 of this report and connected as per Figure vi, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

### Figure vi Test Setup

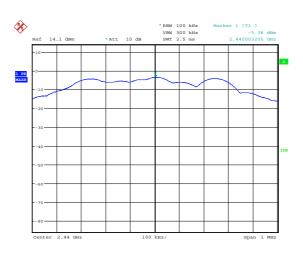


### 16.5 Test Equipment


| Equipment  |                      | Equipment            | Element | Due For     |
|------------|----------------------|----------------------|---------|-------------|
| Туре       | Manufacturer         | Description          | No      | Calibration |
| FSU50      | R&S                  | Spectrum<br>Analyser | U544    | 2019-05-22  |
| Attenuator | AtlanTecRF Microwave | 10dB SMA             | U633    | Cal In use  |

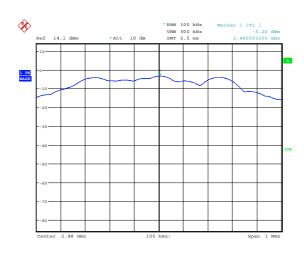
### 16.6 Test Results

| Modulation: GFSK; Data rate: 1Mb/s; Power setting: +8dBm |                            |                               |      |      |  |  |  |  |
|----------------------------------------------------------|----------------------------|-------------------------------|------|------|--|--|--|--|
| Channel<br>Frequency<br>(MHz)                            | Analyzer<br>Level<br>(dBm) | Level Cable loss Power Result |      |      |  |  |  |  |
| 2402                                                     | -3.46                      | 10.2                          | 6.74 | PASS |  |  |  |  |
| 2440                                                     | -3.36                      | 10.2                          | 6.84 | PASS |  |  |  |  |
| 2480 -3.20 10.2 7.00 PASS                                |                            |                               |      |      |  |  |  |  |


RF915 6.0 Page 56 of 63

### **PSD Bottom Channel**




Date: 5.DEC.2018 08:02:35

### **PSD Middle Channel**



Date: 5.DEC.2018 08:05:51

### **PSD Top Channel**



Date: 5.DEC.2018 08:09:14

RF915 6.0 Page 57 of 63

### 17 Duty Cycle

### 17.1 Definition

The ratio of the sum of all pulse durations to the total period, during a specified period of operation. The duty cycle is determined on the basis of one complete pulse train for pulse trains not exceeding 100 milliseconds. Where the pulse train exceeds 100 milliseconds, the duty cycle is determined on the basis of the 100 millisecond interval with the highest average value of emission.

### 17.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 7.5

EUT Frequencies Measured: 2402 / 2440 / 2480

Deviations From Standard: None
Temperature Extreme Environment Test Range: N/A
Voltage Extreme Environment Test Range: N/A

### **Environmental Conditions (Normal Environment)**

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 35 % RH 20 % RH to 75 % RH (as declared)

Supply: 5.0 Vdc

### 17.3 Test Limit

N/A.

Note, the maximum duty cycle correction factor which may be used is 20 dB.

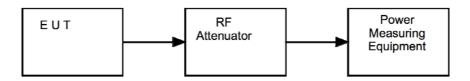
RF915 6.0 Page 58 of 63

### 17.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii, the duty of the EUT was calculated from the sum of total on and off times over the observation period.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, bandwidths, data rates and power settings were used to observe the worst-case configuration.

[1] Single antenna output devices


Duty was measured at the antenna port

[2] Multiple antenna output devices

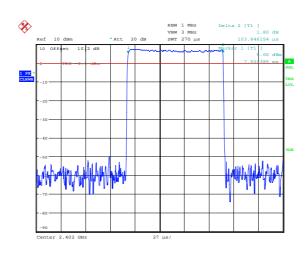
Duty was measured as the combination of all ports simultaneously

The duty cycle correction factor, DC, is used to adjust peak emissions (voltage) to give an average value and is calculated by:

### Figure vii Test Setup

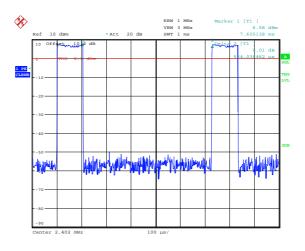


### 17.5 Test Equipment


| Equipment  |                      | Equipment            | Element | Due For     |
|------------|----------------------|----------------------|---------|-------------|
| Туре       | Manufacturer         | Description          | No      | Calibration |
| FSU50      | R&S                  | Spectrum<br>Analyser | U544    | 2019-05-22  |
| Attenuator | AtlanTecRF Microwave | 10dB SMA             | U633    | Cal In use  |

RF915 6.0 Page 59 of 63

### 17.6 Test Results


| 2402 MHz; Modulation: GFSK; Data rate: 1Mb/s |                      |                            |                          |                           |                                   |      |                      |
|----------------------------------------------|----------------------|----------------------------|--------------------------|---------------------------|-----------------------------------|------|----------------------|
| Test Env                                     | ironment             | Total TxOn<br>time<br>(μs) | Tx off<br>Period<br>(µs) | Tx On +<br>Tx off<br>(μs) | D= Tx On/<br>( Tx On +<br>Tx off) | 1/D  | Calculated<br>Factor |
| V <sub>nominal</sub>                         | T <sub>nominal</sub> | 103.84                     | 524.03                   | 627.87                    | 0.1654                            | 6.04 | 15.62                |

### Tx on



Date: 5.DEC.2018 12:46:43

### Tx off



Date: 5.DEC.2018 13:19:57

RF915 6.0 Page 60 of 63

### 18 Measurement Uncertainty

### **Calculated Measurement Uncertainties**

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

### [1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.75 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.46 dB** 

### [2] AC power line conducted emissions

Uncertainty in test result = 3.2 dB

### [3] Occupied bandwidth

Uncertainty in test result = 15.58 %

### [4] Conducted carrier power

Uncertainty in test result (Power Meter) = 0.93 dB

### [5] Conducted RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = **3.31 dB**Uncertainty in test result – 8.1 GHz to 15.3 GHz = **4.43 dB** 

### [6] Radiated RF power out-of-band

Uncertainty in test result (30 MHz to 1 GHz) = **4.75 dB** Uncertainty in test result (1 GHz to 18 GHz) = **4.46 dB** 

### [7] Power spectral density

Uncertainty in test result (Spectrum Analyser) = 3.11 dB

### [8] ERP / EIRP

Uncertainty in test result (Laboratory) = **4.71 dB**Uncertainty in test result (Pershore OATS) = **4.26 dB** 

RF915 6.0 Page 61 of 63

### 19 RF Exposure

### RADIO FREQUENCY RADIATION EXPOSURE

### **KDB 447498**

47 CFR §§1.1307 and 2.1091

Radio frequency radiation exposure evaluation.

Mobile devices that operate under CFR47 Part 90 are subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if they operate at frequencies of 1.5 GHz or below and their effective radiated power (ERP) is 1.5 watts or more for FCC requirements.

### Prediction of MPE limit at a given distance

$$S = \frac{EIRP}{4 \pi R^2}$$
 re - arranged  $R = \sqrt{\frac{EIRP}{S 4 \pi}}$ 

where:

S = power density

R = distance to the centre of radiation of the antenna

ERP = EUT Maximum power

| Prediction Frequency<br>(MHz) | Maximum<br>EIRP<br>(mW) | Power density limit (S)<br>(mW/cm²) | Distance (R) cm<br>required to be less than<br>(S) mW/cm² |
|-------------------------------|-------------------------|-------------------------------------|-----------------------------------------------------------|
| 2402                          | 6.4                     | 1                                   | 0.72                                                      |
| 2440                          | 6.5                     | 1                                   | 0.72                                                      |
| 2480                          | 6.8                     | 1                                   | 0.74                                                      |

**Result: Pass** 

RF915 6.0 Page 62 of 63

### **LIMITS**

### FCC LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

### (B) Limits for General Population/Uncontrolled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>(V/m rms) | Magnetic<br>Field (A/m<br>rms) | Power<br>Density<br>(W/m <sub>2</sub> ) | Averaging<br>Time<br> E  <sup>2</sup> ,  H  <sup>2</sup> or S<br>(minutes) |
|--------------------------|-----------------------------|--------------------------------|-----------------------------------------|----------------------------------------------------------------------------|
| 0.3-1.34                 | 614                         | 1.63                           | (100)*                                  | 30                                                                         |
| 1.34-30                  | 824/f                       | 2.19/f                         | (180/f <sub>2</sub> )*                  | 30                                                                         |
| 30-300                   | 27.5                        | 0.073                          | 0.2                                     | 30                                                                         |
| 300-1500                 |                             | 1                              | f/1500                                  | 30                                                                         |
| 1500-100,000             |                             |                                | 1.0                                     | 30                                                                         |

f = frequency in MHz \*Plane-wave equivalent power density

### RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

| Frequency<br>Range<br>(MHz) | Electric Field<br>(V/m rms) | Magnetic Field<br>(A/m rms) | Power<br>Density<br>(W/m²)      | Averaging<br>Time<br>(minutes) |
|-----------------------------|-----------------------------|-----------------------------|---------------------------------|--------------------------------|
| 0.003-1                     | 280                         | 2.19                        | -                               | 6                              |
| 1-10                        | 280/f                       | 2.19/ <i>f</i>              | -                               | 6                              |
| 10-30                       | 28                          | 2.19/ <i>f</i>              | -                               | 6                              |
| 30-300                      | 28                          | 0.073                       | <b>2</b> *                      | 6                              |
| 300-1500                    | 1.585 f 0.5                 | 0.0042 f 0.5                | f/150                           | 6                              |
| 1500-15000                  | 61.4                        | 0.163                       | 10                              | 6                              |
| 15000-150000                | 61.4                        | 0.163                       | 10                              | 616000/f <sup>1.2</sup>        |
| 150000-300000               | 0.158 f 0.5                 | 4.21 x 10-4 f 0.5           | 6.67 x 10 <sup>-</sup> <i>f</i> | 616000/f <sup>1.2</sup>        |

RF915 6.0 Page 63 of 63