

Report on the Radio Testing

For

SmarDTV (UK) Limited

on

Project N63

Report no. TRA-029575-02-45-06B

2nd December 2016

Report Number: TRA-029575-02-45-06B

Issue: B

REPORT ON THE RADIO TESTING OF A SmarDTV (UK) Limited
Project N63
WITH RESPECT TO SPECIFICATION
DFS requirements of FCC 47CFR15E

TEST DATE: 04/10/2016

Written by: A Longley Radio Test Engineer

J Charters

Approved by: Department Manager - Radio

Date: 2nd December 2016

Disclaimers:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

RF929

1 Revision Record

Issue Number	Issue Date	Revision History
А	20 th October 2016	Original
B 2 nd December 2016		EUT name change

RF929 Page 3 of 27

2 Summary

TESTED BY:

TEST REPORT NUMBER: TRA-029575-02-45-06B WORKS ORDER NUMBER TRA-029575-02 PURPOSE OF TEST: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J. TEST SPECIFICATION: 47CFR15.407(h) EQUIPMENT UNDER TEST (EUT): Project N63 FCC IDENTIFIER: **DKN-AVBX1** ISED CERTIFICATION NUMBER: 1707A-AVBX1 **EUT SERIAL NUMBER:** E411006C00066D (Master), E411006C00012D (Client) MANUFACTURE R/AGENT: SmarDTV (UK) Limited ADDRESS: Beckside Design Centre Millennium Business Park Station Rd Steeton Keighley West Yorkshire **BD20 6QW** United Kingdom CLIENT CONTACT: Chris Wordley **2** 01535 659000 □ chris.wordley@smardtv.com ORDER NUMBER: POR01251 TEST DATE: 04/10/2016

RF929 Page 4 of 27

A Longley Element

2.1 Test Summary

	Requirement Clause	Applicable	Result /	
Test Method and Description	47CFR15	to this equipment	Note	
TPC and DFS	15.407(h)	\boxtimes	Pass	
U-NII detection bandwidth	15.407(h)(2)		Pass	
CAC	15.407(h)(2)(ii)	×	Pass	
In-service monitoring	15.407(h)(2)(iii) & 15.407(h)(2)(iv)		Pass	
Statistical performance check	-		Pass	

Note s:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set-up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF929 Page 5 of 27

3 Contents

1	Revision Record	3
2	Summary	4
2.	1 Test Summary	5
3	Contents	6
4	Introduction	
5	Test Specifications	8
5.		
5.	2 Deviations from Test Standards	8
6	Glossary of Terms	
7	Equipment Under Test	10
7.	1 EUT Identification	10
7.	2 System Equipment	10
7.	3 EUT Mode of Operation	10
	7.3.1 Where channel loading is required	10
	7.3.2 Where channel loading is not required	
7.	4 EUT Radio Frequency Parameters	11
	7.4.1 General	11
	7.4.2 Antennas	
	7.4.3 Product specific declarations	11
7.		
8	Modifications	13
9	EUT Test Setup	14
9.	1 Block Diagram	14
9.	2 General Set-up Photograph	15
10	General Technical Parameters	16
10	0.1 Normal Conditions	16
10	0.2 Varying Test Conditions	
11	Dynamic Frequency Selection (DFS)	
11	.1 General	17
11	.2 Test Parameters	
11	.3 Test Method	20
11	.4 Calibration	
12	In-Service Monitoring	22
12	2.1 Definition	
	12.1.1 Channel Closing	
	12.1.2 Non-Occupancy Period	
12	2.2 Additional Test Parameters	22
12	2.3 Test Method	
	2.4 Test Equipment	
12	2.5 Test Results	
13	Measurement Uncertainty	27

4 Introduction

This report TRA-029575-02-45-06B presents the results of the Radio testing on a SmarDTV (UK) Limited, Project N63 to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for SmarDTV (UK) Limited by Element, at the address(es) detailed below.

X Element Hull Element Skelmersdale Unit E Unit 1 South Orbital Trading Park Pendle Place Hedon Road Skelmersdale West Lancashire Hull HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

FCC Site Listing:

The test laboratory is accredited for the above sites under the US-EU MRA, Designation number UK0009.

ISED Registration Number(s):

Element Skelmersdale 3930B Element Hull 3483A

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF929 Page 7 of 27

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- FCC KDB Publication 905462 D02 v01r02 Compliance measurement procedures for unlicensednational information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF929 Page 8 of 27

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CAC Channel Availability Check
CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DFS Dynamic Frequency Selection
DSSS Direct Sequence Spread Spectrum
EIRP Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada (now ISED)

ISED Innovation, Science and Economic Development Canada

ITU International Telecommunication Union

LBT Listen Before Talk

LE-LAN Licence-Exempt Local Area Network

m metre maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mpt Point-to-multipoint Pt-pt Point-to-point

PSD Power Spectral Density
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

TPC Transmitter Power Control

Tx transmitter

UKAS United Kingdom Accreditation Service

U-NII Unlicensed-National Information Infrastructure

 $\begin{array}{ccc} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF929 Page 9 of 27

7 Equipment Under Test

7.1 EUT Identification

Name: Project N63

Serial Number: E411006C00066D (Master), E411006C00012D (Client)

Model Number: S60

Software Revision: Not Applicable

Build Level / Revision Number: Not Applicable

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

A second N63 unit was connected as a Master device during testing, both units were controlled by a Laptop.

7.3 EUT Mode of Operation

7.3.1 Where channel loading is required

The mode of operation for tests was as follows...

Script files load_stbap.sh and START_TRAFFIC.sh contained parameters for data block sizes and distribution to give a channel loading of >17% (channel loading measurements indicated between 19% and 20% for all bandwidths, each bandwidth tested had a different set of parameters set by the script files). The EUT was associated with the Master device during testing.

The files and settings were supplied by the client by email on 27/09/2016, all tests reported here that required channel loading were performed after this date.

7.3.2 Where channel loading is not required

The mode of operation for tests was as follows...

The EUT was associated with the Master device during testing, the Master was set to vacate the channel when a radar pulse had been successfully detected.

RF929 Page 10 of 27

7.4 EUT Radio Frequency Parameters

7.4.1 General

Frequency of operation:	5180 to 5825 MHz		
Modulation type(s):	802.11a/n/ac		
Occupied channel bandwidth(s):	20MHz, 40MHz and 80MHz		
Channel spacing:	By bandwidth		
Warning against use of alternative antennas in user manual (yes/no):	Yes		
Nominal Supply Voltage:	12V dc from power supply		
Location of notice for license exempt use:	Label / user manual / both.		
Method of prevention of use on non-US frequencies:	Frequency list programmed into EUT, see also Software Security.		

7.4.2 Antennas

Type:	PCB		
Frequency range:	5150 to 5850 MHz		
Impedance:	50 Ω		
Gain:	U-NII-2A: 4.2 dBi at channel tested U-NII-2C: 3.5 dBi at channel tested		
Polari sation:	Linear		
Connector type:	UFL		
Length:	18mm		
Mounting:	Fixed within EUT enclosure		

7.4.3 Product specific declarations

Multiple antenna configuration(s), e.g. MIMO:	4 antennas mounted orthogonally within EUT enclosure			
Fixed pt-pt operations (yes/no):	No			
Software security description:	Detailed in file "Software Security Description S60.pdf" stored in Element job folder			
TDWR interference information in users manual (yes/no):	Yes			

RF929 Page 11 of 27

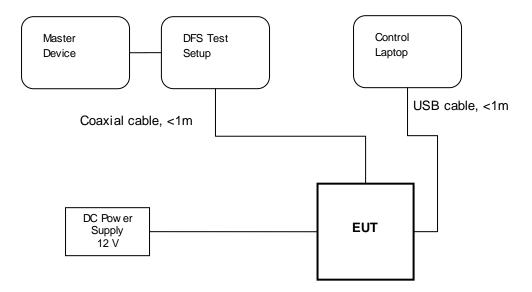
DFS Parameters:			
Highest and lowest EIRP:	U-NII-2A 91.15 mW U-NII-2C 95.29 mW		
Antenna used for testing:	All 4 antennas were connected to the DFS test set using a suitable combiner		
Antenna port impedance:	50 ohms		
Channel loading / test file:	START_TRAFFIC.sh		
TPC description:	None		
System architectures, data rates, U-NII channel bandwidths:	20MHz: 1.1M L:65000 40MHZ: 2.3M L:60000 80MHz: 5M L:60000		
Power up cycle time:	To start of CAC: 20.8s To command prompt: 25.5s		
Clients: Radar detection Master U-NII Device FCC ID	The EUT was a Client device without radar detection. The Master module is reported separately		

7.5 EUT Description

The EUT is a Multimedia Transcoder containing a dual band Wi-Fi router with Bluetooth. The radios are contained in two separate modules. The module covered by this report is a DFS Client device.

RF929 Page 12 of 27

8 Modifications


No modifications were performed during this assessment.

RF929 Page 13 of 27

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

RF929 Page 14 of 27

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

Photographs are withheld in accordance with client's FCC confidentiality request.

RF929 Page 15 of 27

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was approx. 12 V dc from the adaptor.

10.2 Varying Test Conditions

No varying test conditions were used during these tests.

RF929 Page 16 of 27

11 Dynamic Frequency Selection (DFS)

11.1 General

An U-NII network will employ a Dynamic Frequency Selection (DFS) function to detect interference from radar systems (radar detection) and to avoid co-channel operation with these systems. Within the context of the operation of the DFS function, a U-NII device will operate in either Master Mode or Client Mode. U-NII devices operating in Client Mode can only operate in a network controlled by a U-NII device operating in Master Mode.

11.2 Test Parameters

Test Location: Element Hull

Test Chamber: Lab 4

Test Standard and Clause: KDB 905462 D02, Clause 7.8 EUT Tested Channel Bandwidths: 20 MHz, 40 MHz & 80 MHz

EUT Test Channel Loading: Duty cycle >17%

EUT Output Power Setting: Max.

EUT Tested Modes: Client

Deviations From Standard: None

Environmental Conditions (Normal Environment)

Temperature: 23 °C Usually: +15 °C to +35 °C Humidity: 45 %RH Usually: 20%RH to 75%RH

RF929 Page 17 of 27

Test Limits

Refer to individual tests for applicable tables, as defined below.

Table 3: Interference threshold values

Ma	aximum Transmit Power	Value		
		(see notes 1, 2 and 3)		
	EIRP≥200 mW	-64 dBm		
EIRP < 20	00 mW and PSD < 10 dBm/MHz	-62 dBm		
EIRP < 20	00 mW that do not meet the PSD	-64 dBm		
	requirement			
NOTE 1:	This is the level at the input of the	e receiver assuming a 0 dBi receive antenna.		
NOTE 2:		s an additional 1 dB has been added to the amplitude ns to account for variations in measurement equipment.		
		al is at or above the detection threshold level to trigger		
	a DFS response.			
NOTE 2:	•	tenna gain. For MIMO devices refer to KDB Publication		
	662911 D01.			

Table 4: DFS requirement values

Parameter	Value		
	Value		
Non-Occupancy Period	Min. 30 minutes		
Channel Availability Check Time	60 s		
Channel Move Time	10 s (see note 1).		
Channel Closing Transmission Time 200 m	ns + an aggregate of 60 ms over remaining 10 s period (see notes 1 & 2).		
U-NII Detection Bandwidth Min	1. 100 % of the U-NII 99% transmission power		
	bandwidth (see note 3).		
Maximum Off-Channel CAC Time	4 hours (see note 2)		
NOTE 1: Channel Move Time and the Channel C	losing Transmission Time should be performed		
with Radar Type 0. The measurement tir	ming begins at the end of the Radar Type 0		
burst.			
NOTE 2: The Channel Closing Transmission Time	e is comprised of 200 ms starting at the		
beginning of the Channel Move Time plu	us any additional intermittent control signals		
	aggregate of 60 ms) during the remainder of		
	of control signals will not count quiet periods in-		
between transmissions.			
	etection test, radar type 0 should be used. For		
	entage of detection is 90 %. Measurements are		
performed with no data traffic.			

RF929 Page 18 of 27

Table 5: Short pulse radar test signals

rable of orient parse radar test signars								
Radar type	Pulse width (μs)	PRI (μs)	Number of pulses	Min. % of successful detection	Min. number of trials			
0	1	1428	18	See Note 1	See Note 1			
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µs, with a minimum increment of 1 µs, excluding PRI values selected in Test A	Roundup: 1/360 x 19.10 ⁶ /PRI	60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4 11-20		200-500 12-16		60%	30			
Aggregate (Radar Types 1-4) 80% 120								
NOTE 1:	NOTE 1: Short pulse radar type 0 should be used for detection bandwidth test, channel move time and							

NOTE 1: Short pulse radar type 0 should be used for detection bandwidth test, channel move time and channel closing time tests.

Table 5a: Pulse repetition intervals for test A

Pulse repetition	Pulse repetition	Pulse repetition interval
frequency number	frequency	(μs)
	(pulses / s)	
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 6: Long pulse radar test signal

rable of Long palse radar less signar							
Radar type	Pulse width (µs)	Chirp width (MHz)	PRI (µs)	Number of pulses per burst	Number of bursts	Min. % of successful detection	Min. number of trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

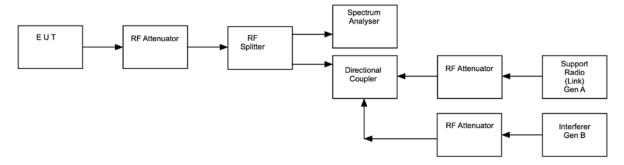
Table 7: Frequency hopping radar test signal

Radar type	Pulse width (μs)	PRI (µs)	Pulses per hop	Hopping rate (kHz)	Hopping sequence length (ms)	Min. % of successful detection	Min. number of trials
6	1	333	9	0.333	300	70%	30

RF929 Page 19 of 27

11.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the wanted signal (Gen A) was set to establish a reliable link (approx. 10 dB above receiver threshold). The interfering signal (Gen B) was then introduced at the specified Radar Detection Threshold level, plus 1dB.


[1] Conducted method

Received power was measured at the antenna port. For multiple port devices, equal splitting was employed to ensure the same level was received at each antenna port.

[2] Radiated method

Received power was measured at the centre of the EUT.

Figure i Test Setup

EUT and setup photos are withheld due to confidentiality request.

RF929 Page 20 of 27

11.4 Calibration

The test generator level setting was made at the Master to which the EUT was associated during the test. The EUT itself does not have radar detection

Antenna Gain

The test generator level setting was adjusted to take account of the worst case antenna gain for the frequencies tested in each band.

For U-NII-2A the antenna gain as specified by the client was: 4.2 dBi

For U-NII-2C the antenna gain as specified by the client was: 3.5 dBi

DFS Radar Waveforms

The RF attenuator nearest the EUT was set to provide sufficient attenuation not to overload the analyser whilst the EUT was at maximum power. The RF attenuator nearest the support radio was then set by increasing to the point where the EUT could no longer receive the signal (receiver threshold), then backing off 10dB. The RF attenuator nearest the signal generator was then set to provide sufficient isolation between the generator and the support radio.

The interferer (Gen B) was set to the centre of the test channel, Ch_r, in CW mode. The EUT was replaced with the spectrum analyser, whilst the analyser was replaced with a 50 ohm load. The level of the generator was adjusted to find the appropriate DFS threshold +1dB, adjusted for min. antenna gain (see above), measured on the spectrum analyser. The analyser and EUT were then returned to position and an offset added to the analyser to read the same level as measured at the EUT.

Each radar signal required was then observed on the spectrum analyser in a 3MHz RBW with peak detector.

RF929 Page 21 of 27

12 In-Service Monitoring

12.1 Definition

12.1.1 Channel Closing

The *Channel Closing* is defined as the process initiated by the U-NII device on an *Operating Channel* after a radar signal has been detected during the *In-Service Monitoring* on that channel.

The master device shall instruct all associated slave devices to stop transmitting on this channel, which they shall do within the *Channel Move Time*.

Slave devices with a Radar Interference Detection function, shall stop their own transmissions on an *Operating Channel* within the *Channel Move Time* upon detecting a radar signal within this channel.

The aggregate duration of all transmissions of the U-NII device on this channel during the *Channel Move Time* shall be limited to the *Channel Closing Transmission Time*. The aggregate duration of all transmissions shall not include quiet periods in-between transmissions.

For equipment having simultaneous transmissions on multiple (adjacent or non-adjacent) operating channels, only the channel(s) containing the frequency on which radar was detected is subject to the *Channel Closing* requirement. The equipment is allowed to continue transmissions on other *Operating Channels*.

12.1.2 Non-Occupancy Period

The *Non-Occupancy Period* is defined as the time during which the U-NII device shall not make any transmissions on a channel after a radar signal was detected on that channel.

For equipment having simultaneous transmissions on multiple (adjacent or non-adjacent) operating channels, only the channel(s) containing the frequency on which radar was detected is subject to the *Non-Occupancy Period* requirement. The equipment is allowed to continue transmissions on other *Operating Channels*.

After the *Non-Occupancy Period*, the channel needs to be identified again as an *Available Channel* before the U-NII device may start transmitting again on this channel.

12.2 Additional Test Parameters

EUT Test Channels, Ch_r. Mid low band / Mid high band
EUT Operating Channels / Bandwidths: Ch58/80MHz & Ch106/80MHz

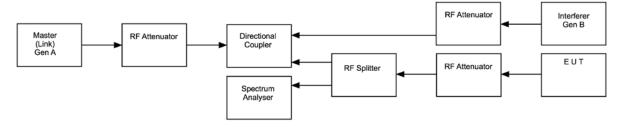
Master Uniform Spreading: Disabled

Test Limits

The Channel Move Time shall not exceed the limit defined in table 4.

The Channel Closing Transmission Time shall not exceed the limit defined in table 4.

The Non-Occupancy Period shall not be less than the value defined in table 4.


RF929 Page 22 of 27

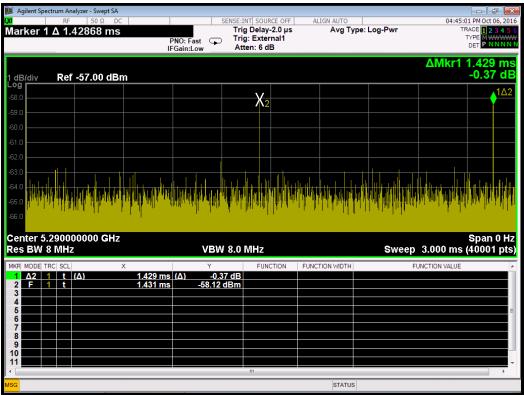
12.3 Test Method

The EUT channel for both data and control signals, Ch_r, was selected, then transmissions to the paired device commenced. The interferer (Gen B) was set to the same frequency, Ch_r, and a radar test signal of table 5 (to appear at the Master at the threshold level + 1dB) then muted. The spectrum analyser was set to time domain (zero span) with sufficient bandwidth to capture all intentional emissions from the EUT. The analyser was then synchronised to the switching of the interferer – the interferer (Gen B) level was unmuted for a single burst. Transmissions from the EUT were observed for 12 seconds, it is not required to perform a 30 minute observation on a Client device without radar detection.

Note, the set-up of figure ii was required to test slave mode, where the master is not the EUT.

Figure ii Test Setup




12.4 Test Equipment

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
DFS Test System	Aeroflex	PXI-1042	REF2152	05/07/2016	12	05/07/2017
Spectrum Analyser	Agilent	N9030A	REF2167	13/10/2015	12	13/10/2016

RF929 Page 23 of 27


12.5 Test Results

RF929 Page 24 of 27

Bandwidth: 80 MHz						
Channel (MHz)	Interference level (dBm)	Channel move time (s)	Channel Closing Transmission Time (ms)	Transmissions during non- occupancy period	Result	
5290	-58.8	0.05742	18.028	None	PASS	

RF929 Page 25 of 27

Bandwidth: 80 MHz						
Channel (MHz)	Interference level (dBm)	Channel move time (s)	Channel Closing Transmission Time (ms)	Transmissions during non- occupancy period	Result	
5530	-59.5	0.091466	8.799	None	PASS	

RF929 Page 26 of 27

13 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence:

[1] DFS Parameters

Test type	Quantity	Quantity frequency range	Uncertainty
	Amplitude	9kHz to 26.5GHz	±0.9 dB
DFS Parameters	Time	9kHz to 26.5GHz	0.1%
	Frequency	9kHz to 26.5GHz	3.611kHz

RF929 Page 27 of 27