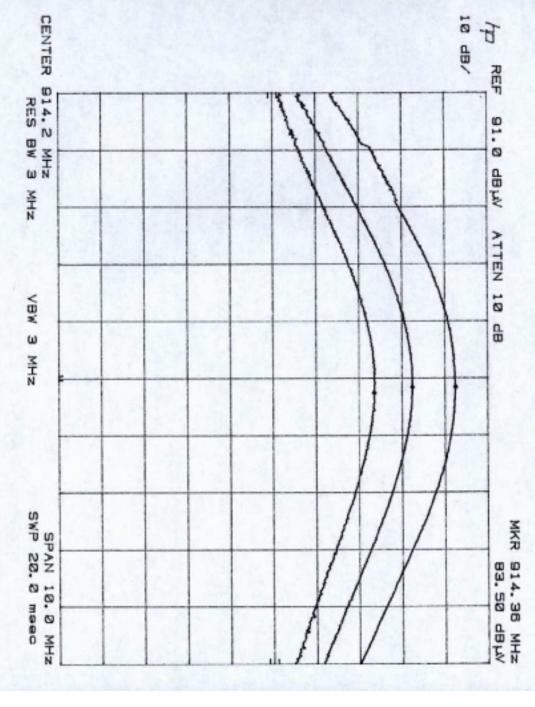
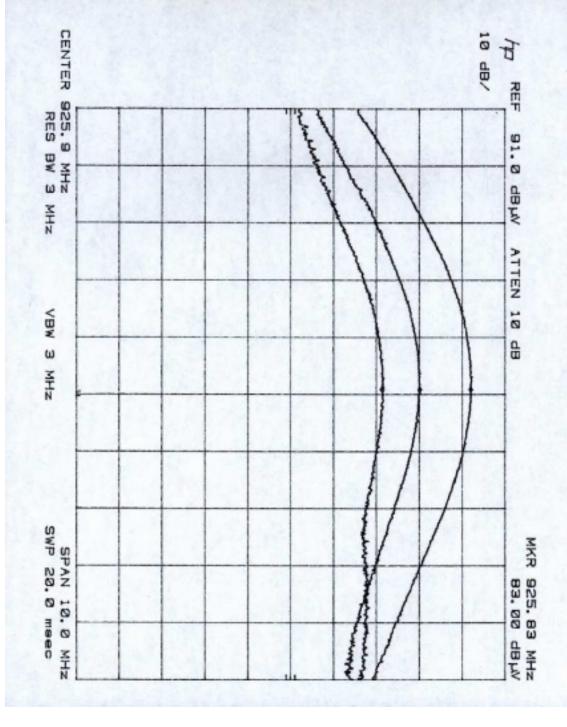
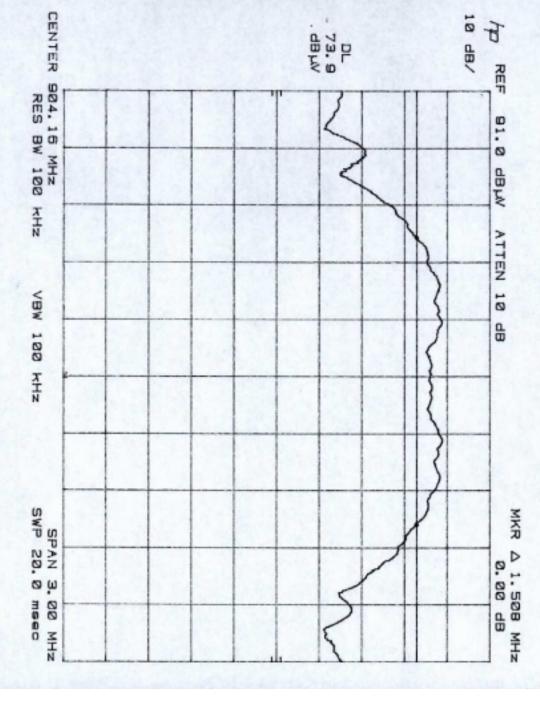
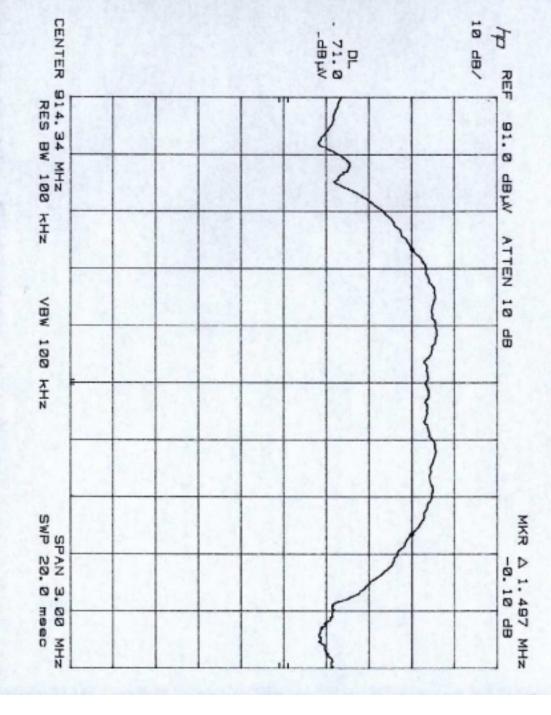
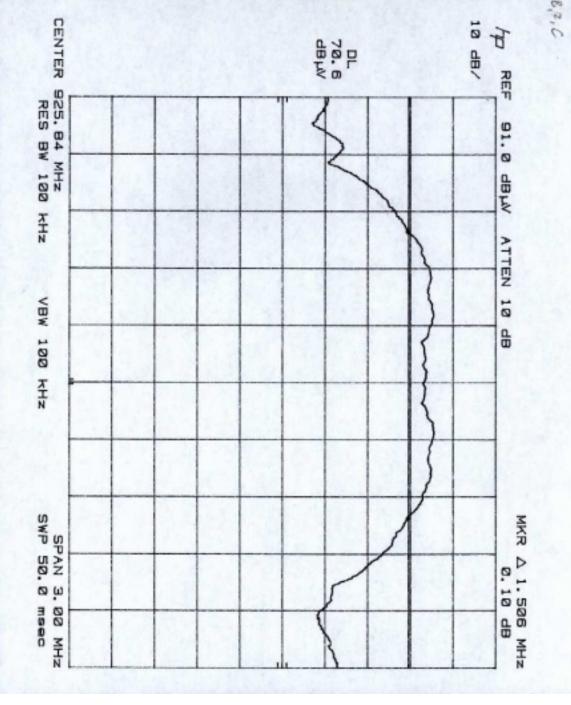

Appendices:

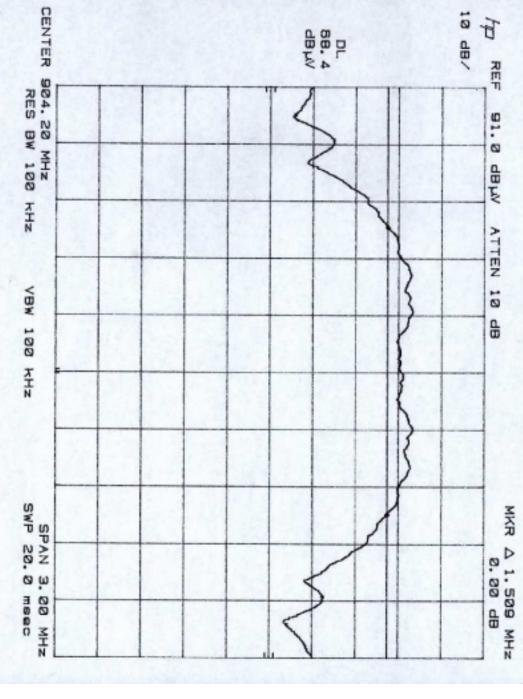

Appendix A Maximum Output Power Plots

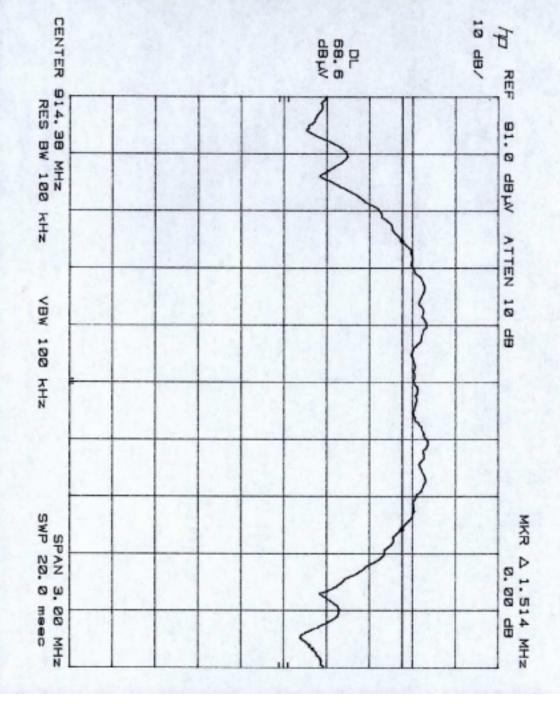


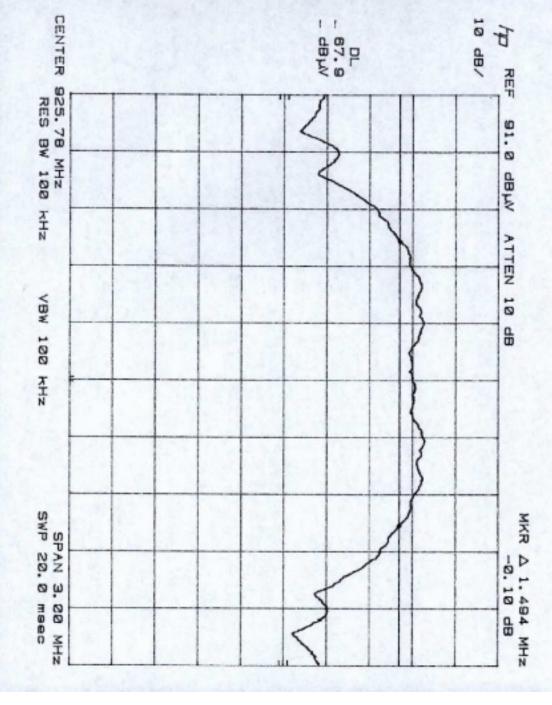


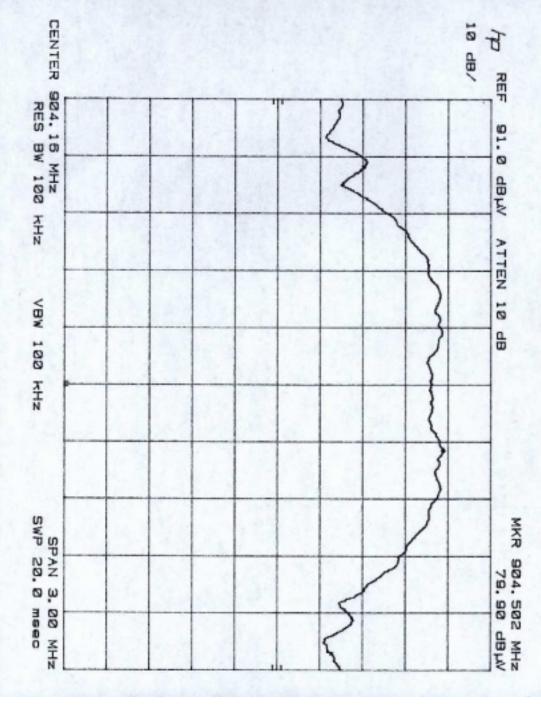


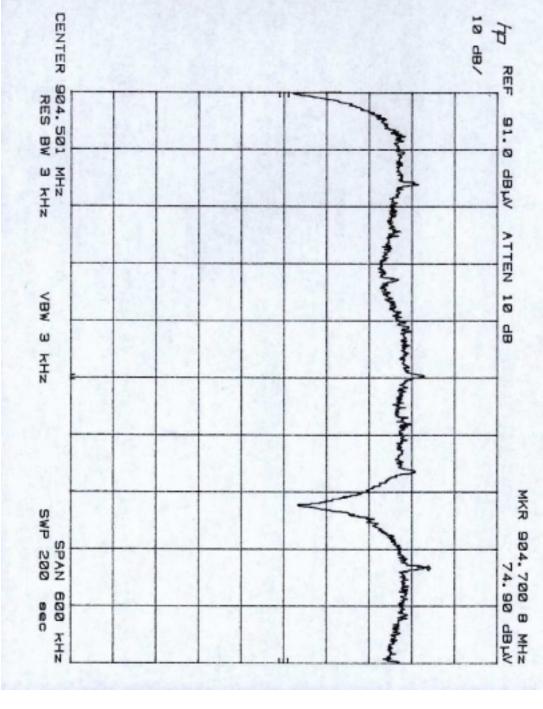


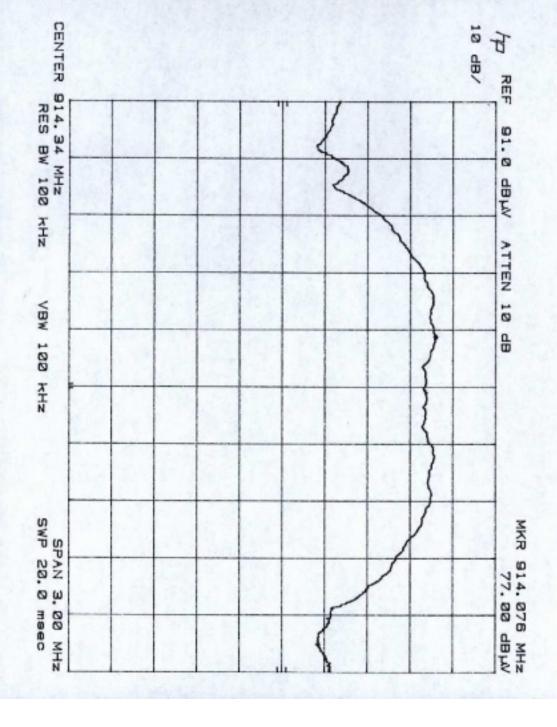


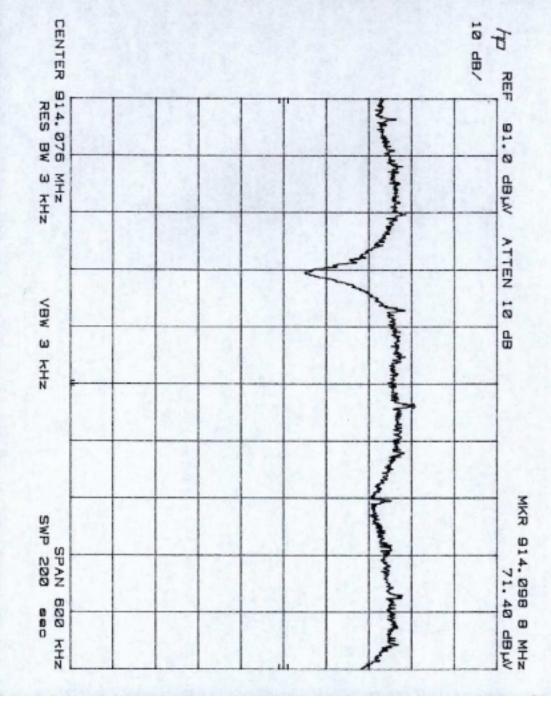

Appendix B 6 dB BANDWIDTH

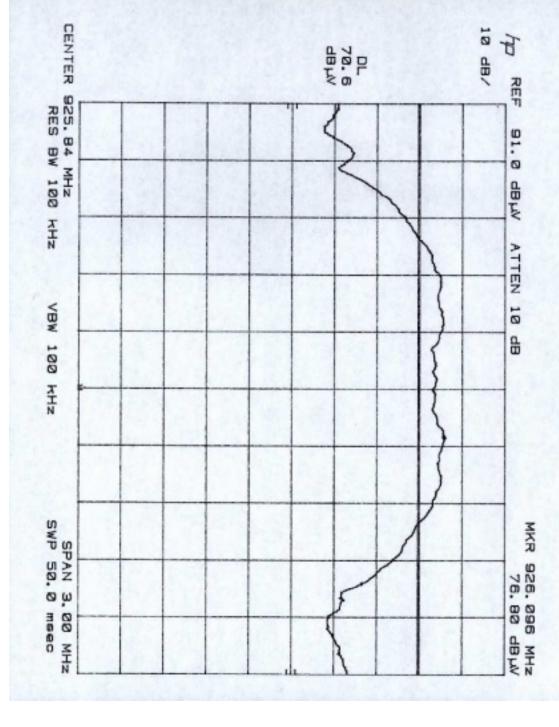


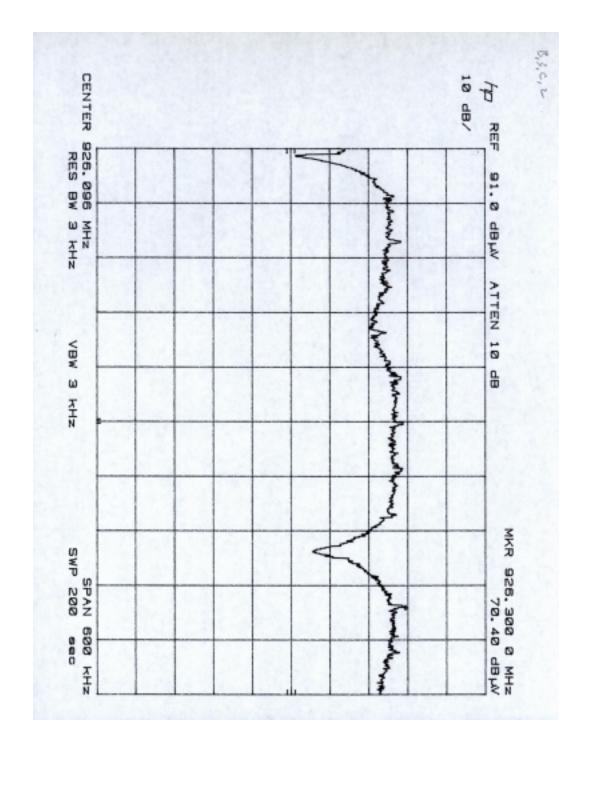


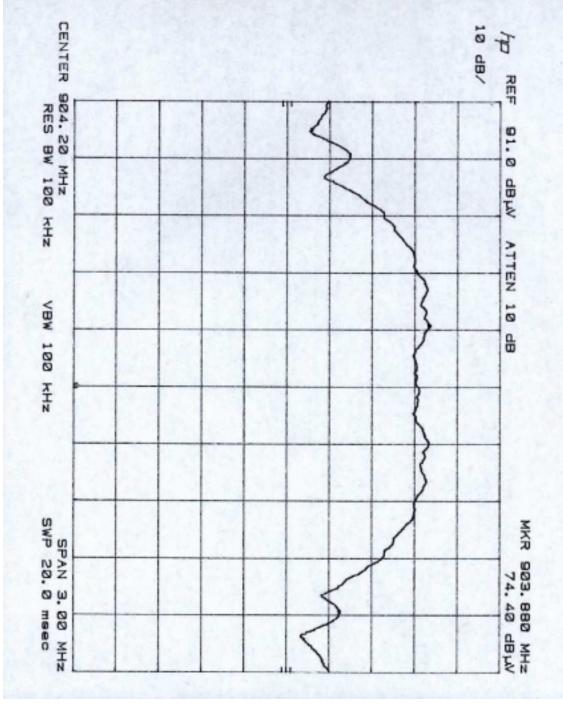


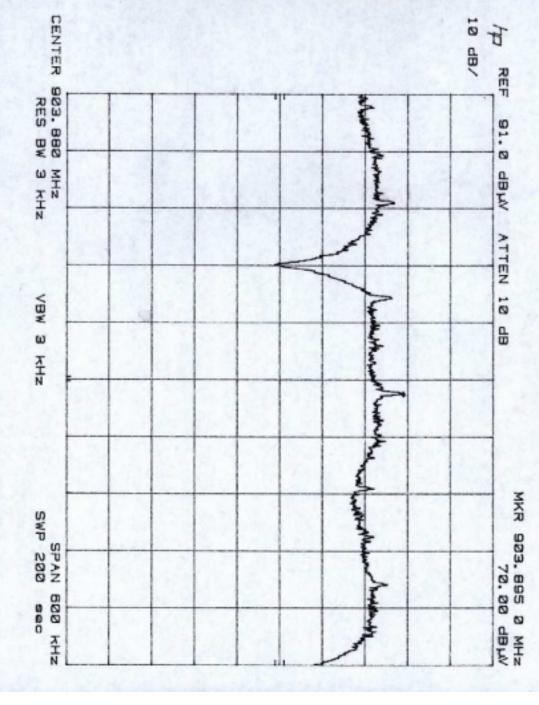


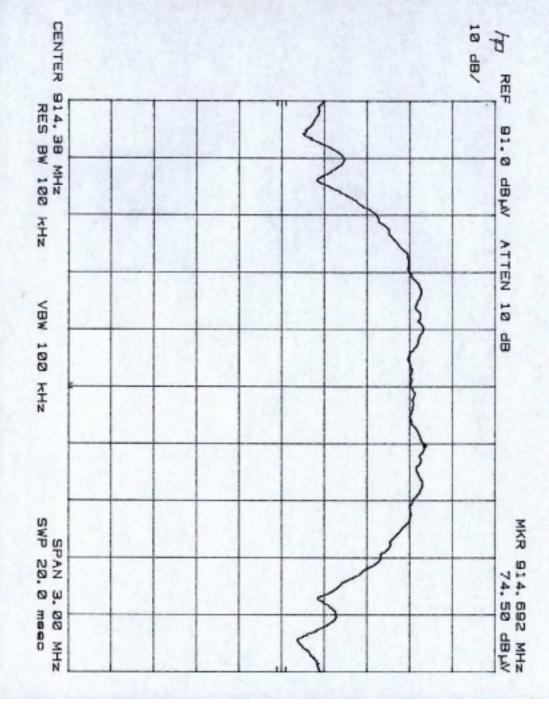


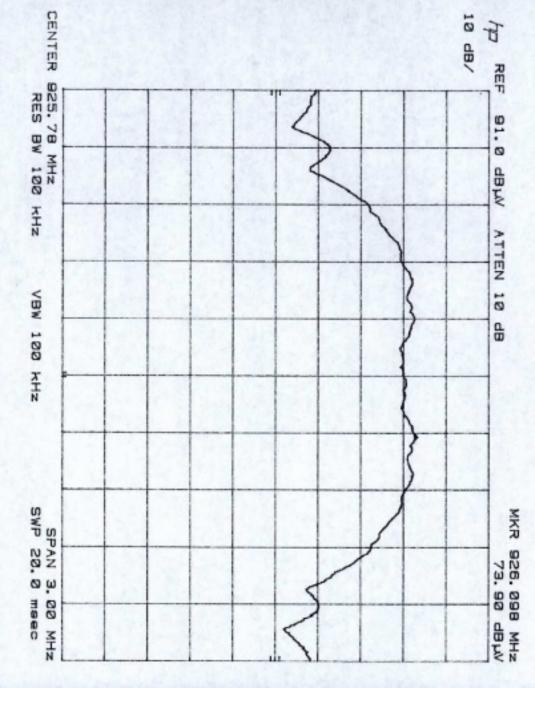

Appendix C MAXIMUM POWER DENSITY

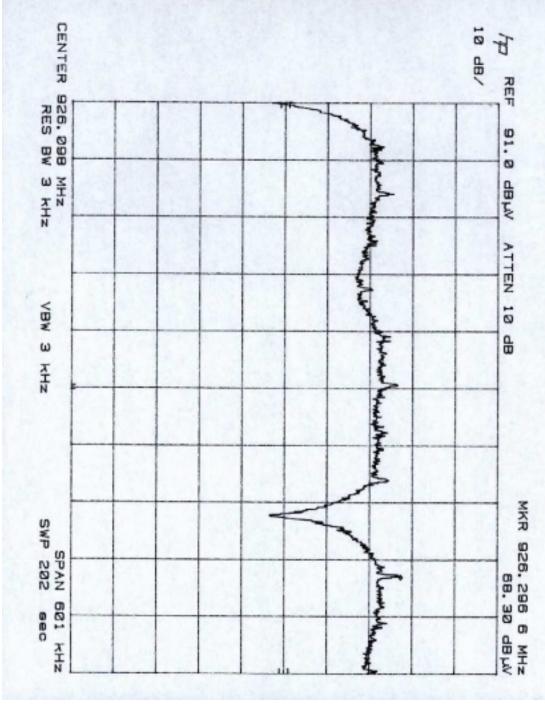




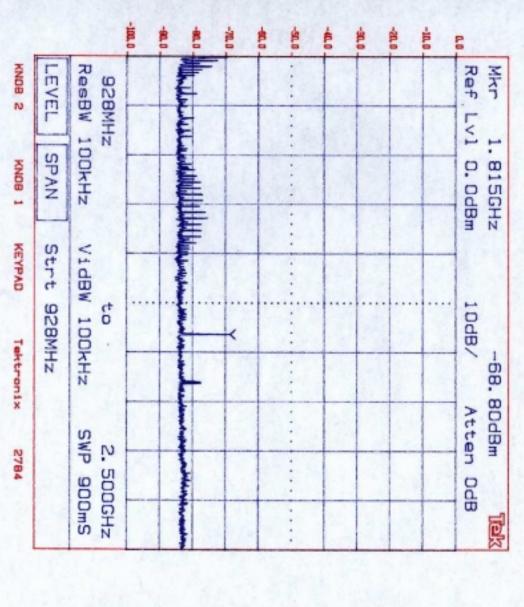


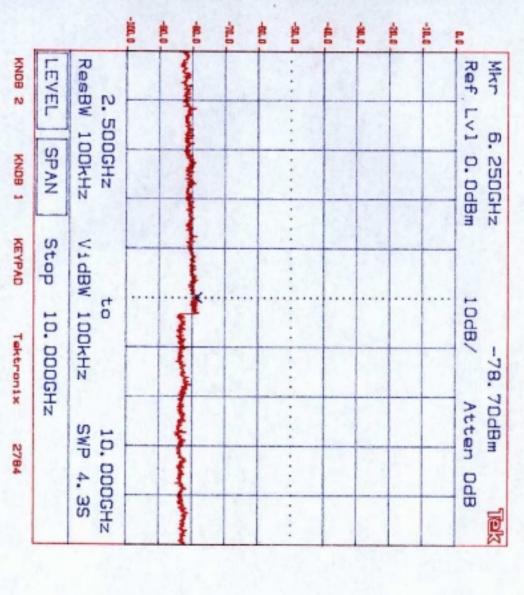


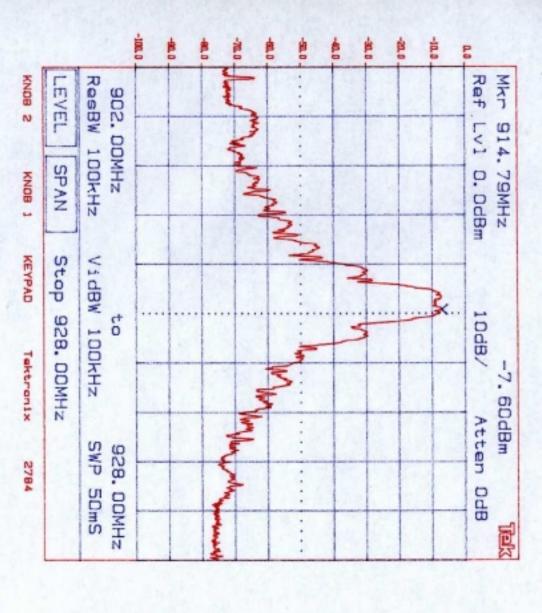


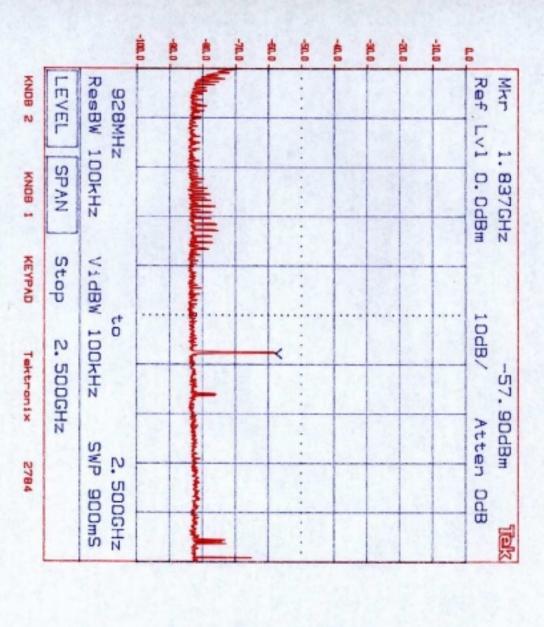


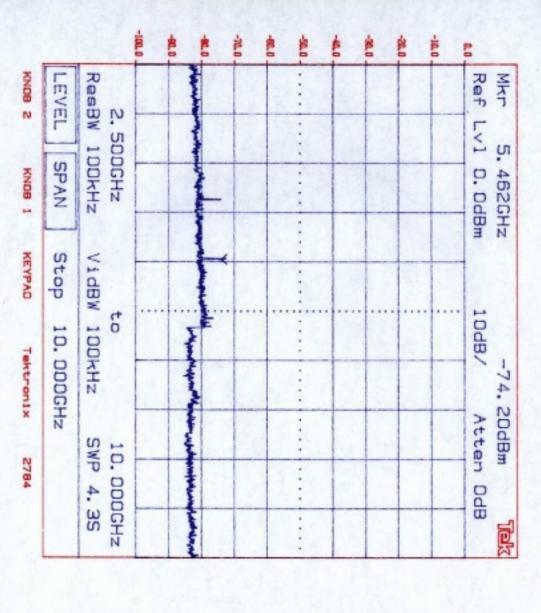


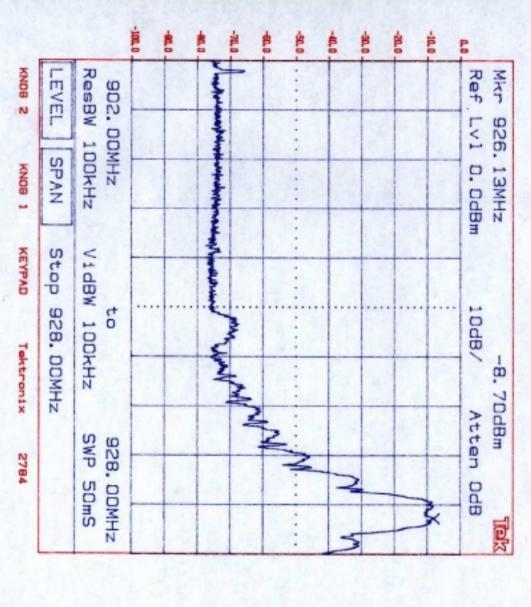


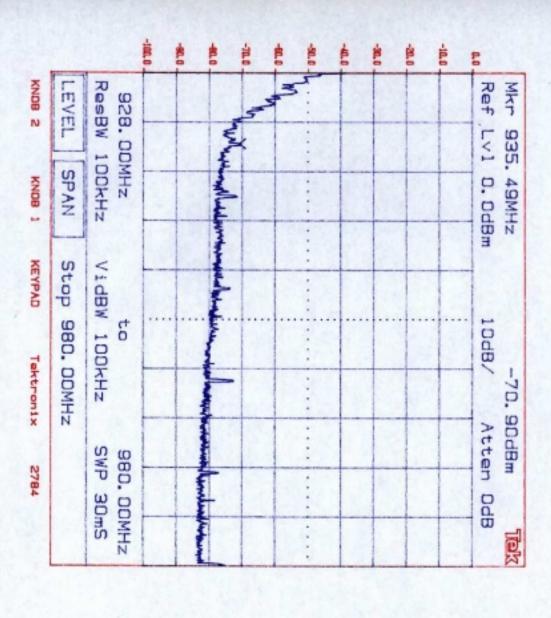


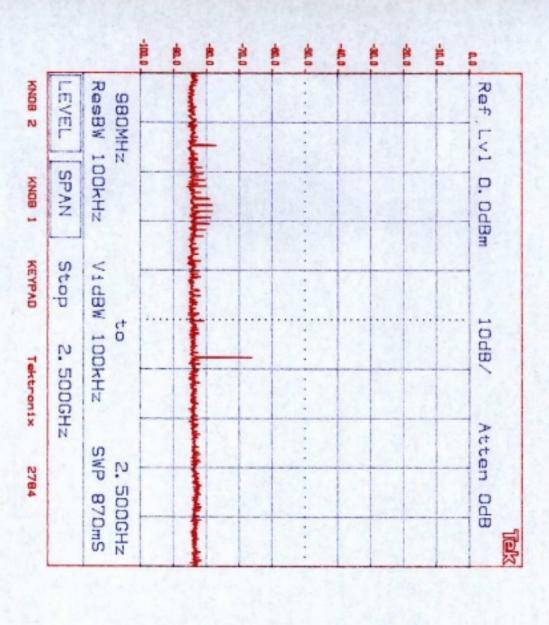


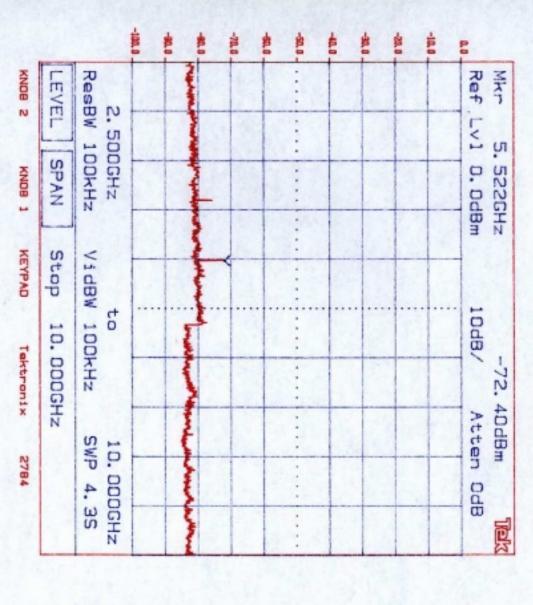

Appendix D OUT OF BAND ANTENNA CONDUCTED EMISSION

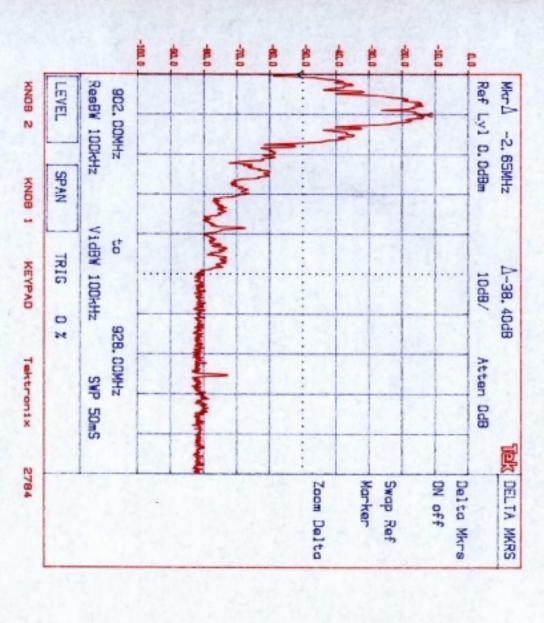


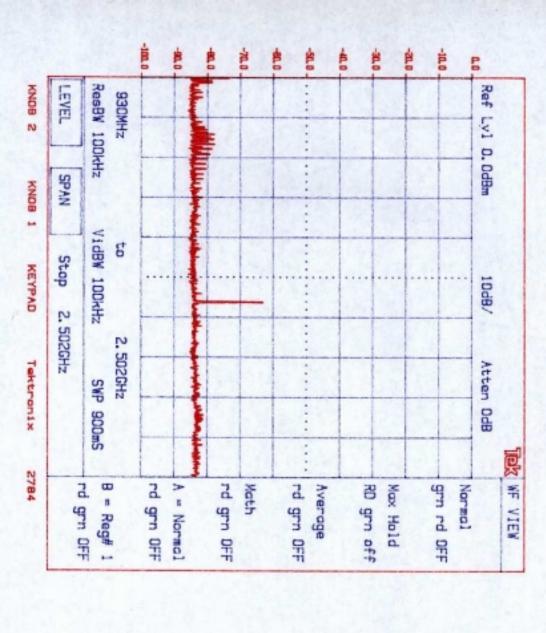


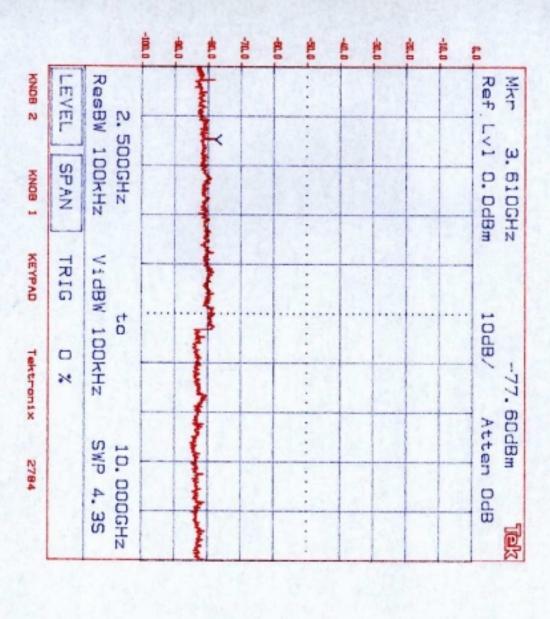


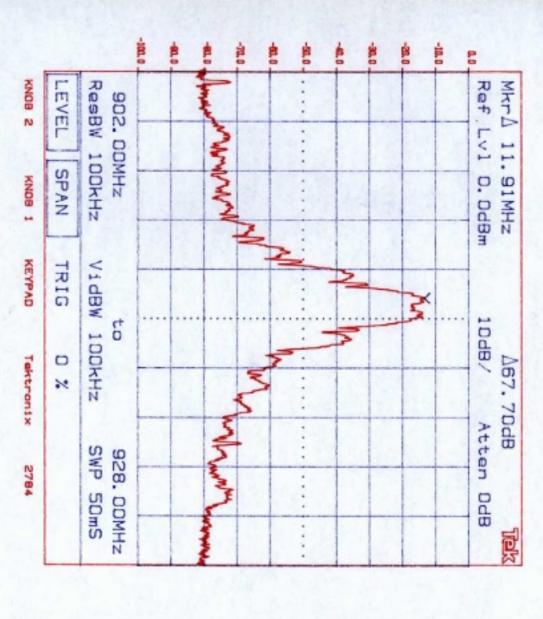












Appendix E RADIATED EMISSION IN RESTRICTED BANDS

Company: GVC Corporation Project #: J99007969

Model:

MH9026 (Bate Tx)

Engineer: Xi-Ming Yang

Date of test: April 25, 1999

ı	CC 1	15 747	Radiated	Emissions	Output	Power)
	Section 1	12.44	PLE DISTURD	P. III I INCHES	I APRIL MAIL	FOWEFF

			Section 1	marea	E. HARSAGO BIS	Conthe	n romer)	
Frequency	Antenne	Reading	Artenna	Cable	Corrected	EUT	ERP	ERP
	Polarity		Feator	Loss	Reading	Ant Gan		
MHZ	WV	d8(x/V)	dB/m	dil	dSovero	dB.	dBra	niWate
904.2	V	57.0	22.7	0.9	110.6	-1.5	13.8	24.0
914.4	V	85.5	22.7	0.9	109.1	-1.6	12.3	17.0
925.7	V	86.2	22.7	0.9	109.8	-1.6	13.0	20.0

Note: 1. All measurement were made at 3 meters

1. All measurement were made at 3 meters
2. Output power (ERP)
P(w) = (E*d)sbquared/30
10log P = 10log((E*d)squared/30)
P(dBw) = 10log ((d) squared/30) + 10log ((E) squarde)
P(dBm) = 30dB = 10log (9/30) + 20log (E) d = 3m
P(dBm) = 30dB = -5 23dB + E(dBnV/m) = 120dB
P(dBm) = E (dBuV/m) = 95.2 dB
3. Output Power (ERP) = Output Power (EIRP) = 1.6 (EUT Ant Gan)

Company: GVC Corporation

Project #: Model:

J99007969

MH9026 (Base Tx)

Engineer: Xi-Ming Yang

Date of test: April 25, 1999

FCC 15.247 Radiated Emissions (Output Power Density)

		Charles Street	PARTITION OF	CO E MID	sions (O	erchar va	mes vier		
Frequency	Artenne	Reading	Antenna	Cable	Corrected	EUT	ERP	Lievet	Mergin
	Polarity .		Factor	Loss	Reeding	Art Gan			
Mitte	HW	dB(u/V)	dB/m	dB	dB(x/Wm)	48	dBm	dBm	dB
904.7	V	74.9	22.7	0.9	96.5	-1.6	1.7	8.0	45.3
914.1	v	71.4	22.7	0.9	95.0	-1.0	-1.0	8.0	2.5
926.3	v	70.4	22.7	0.0	94.D	-1.6	-2.8	8.0	-10.8

Note: 1. All measurement were made at 3 meters

1. All measurement were made at 3 meters
2. Output power (EIRP)
P(w) = (E*d)sbquared/30
10log P = 10log((B*d)squared/R0)
P(dBw) = 10log ((d) squared/30) + 10log ((E) squarde)
P(dBm) = 30dB = 10log (9/30) + 20log (E) d = 3m
P(dBm) = 30dE = -5 23dB + E(dBuV/m) - 120dB
P(dBm) = E (dBuV/m) - 95.2 dB
6. Output Power (ERP) = Output Power (EIRP) = 1.6 (EUT Ant Gan)

Company: GVC Corporation Project #: J99007969

Model: MH9026 (Base Low Ch. Tx)

Engineer: Xi-Ming Yang Date of test: April 26, 1999

			FCC 15	5,247 R	adiated E	mission	5		
Frequency:	Actions	Reading	Artenna	Cebie	Ринатир	Distance	Contected	Limit	Margin
	Polarity		Factor	Loss		Pactor	Reeding		
VHZ	HV	dB(uV)	dhim	dp	45	dĦ	dB(uWhn)	dBpsV/m)	48
2712.7	V	46.5	28.1	2.3	26.4	0.0	48.5"	74.0	-25.5
2712.7	V	40.5	28.1	23	28.4	0.0	42.5	54.0	-11.5
3616.8	V	42.0	31.3	2.7	27.4	0.0	48.2"	74.0	-25.8
3016.9	V	36.0	31.3	2.7	27.8	0.0	44.2	54.0	-9.8
4521.1	V	47.0	32.1	3.2	26.0	0,0	54.3"	74.0	-19.7
452" 1	V	43.0	32 1	32	26.0	0.0	50.3	54.0	-3.7
6426.2	V	45.0	35.1	3.6	25.3	0.0	55.4"	74.0	-16.8
5425.2	V	41.0	35.1	3.6	28.3	0.0	81.4	54.0	2.6
7233.6	V	40.0	36.3	4.3	28.4	0.0	62.2"	74.0	-21.8
7230.6	V	35.0	36.3	4.3	28.4	0.0	47.2	54.0	-6.6
0229.3	V	41.0	36.8	4.8	27.8	0.0	54.9"	74.0	-18.1
8229.3	V	33.0	36.9	4.0	27.0	0.0	46.9	54.0	-7,1
91 43.9	V	41.0	38.8	6.1	26.0	0.0	58.1"	74.0	-15.9
91.43.9	v	32.0	30.8	5.1	26.8	0.0	469.1	54.0	4,5

Note: 1. All measurement were made at 3 meters
2. Negative signs (-) in Margin column signify levels below the limits
3. Reading with * is peak-reading

Company: GVC Corporation

Project #:

199007969

Model:

MH9026 (Bass Mid Ch. Tx)

Engineer: Xi-Ming Yang Date of test: April 26, 1999

			FCC 15	5,247 R	adiated E	mission	8		
Frequency	Antenna	Reading	Antenna	Cable	Рге-аттр	Distance	Corrected	Limit	Margin
	Polarity:		Factor	Loss		Factor	Reading		
Mile	HVV	dB(uV)	dif/m	dS	dit	¢D	aB(uV/in)	aB(uWint)	d\$
2743.3	V	44.4	28.1	2.3	20.4	0.0	45.4"	74.0	-27.6
7743.3	v	38.8	28.1	23	29.4	0.0	40.8	540	-132
3657.8	v	42.7	31.3	27	27.8	0.0	48.0*	74.0	-25.1
3657.0	V.	39.1	31.3	2.7	27.0	0.0	45,3	54.0	-8.7
4572.0	v	47.0	32 1	3.2	28.0	0.0	54.3"	74.0	-19.7
4572.0	v	420	32 t	3.2	20.0	0.0	49.3	54.0	-4.7
7314.8	v	42.0	36.3	4.3	28.4	0.0	54.2"	74.0	-19.6
7514.8	v	35.0	36.3	4.3	28.4	0.0	47.2	54.0	-6.8
8220.3	v	41.0	36.9	48	27.8	0.0	54.9*	74.0	10.1
8229.3	W	32.0	36.9	4.8	27.8	0.0	45.9	540	-8.1
9143.9	V	41.0	38.8	5.1	26.8	0.0	58.1*	74.0	-15.9

- Note: 1. All measurement were made at 3 meters
 3. Negative signs (-) in Magin column signify levels below the limits
 3. Reading with * is peak-reading

Company: GVC Corporation Project #: J99007969

Model:

MH9026 (Base High Ch. Tx)

Engineer: Xi-Ming Yang Date of test: April 26, 1999

FCC 15,247 Radiated Emissions

			PCC I	3.24 / BU	aquated r	THE RESIDENCE	8		
Frequency	Antenna	Reading	Antenna	Cable	Pre-amp	Distance	Corrected	Limit	Margin
	Polarity		Factor	1.066		Factor	Reading		
MHz	HIV	dB(uV)	dB/m	αB	dB	dB	dB(L/V/m)	disposing	dB
2777.3	V	45.0	28.1	23	26.4	0.0	47.0"	74.0	-27.0
2777.3	V	39.0	26. t	23	20.4	0.0	41.0	54.0	-13.0
3703.0	V	41.0	31.3	2.7	27.8	0.0	47.2"	74.0	-26.8
3703.0	V	38 0	31.3	23	27.8	0.0	44.2	540	-9.8
4629.8	V	46.0	82.1	3.2	28.0	0.0	53.3*	74.0	420.7
4028.6	v	43.0	22.1	3.2	28.0	0.0	50.3	54.0	3.7
7406.0	v	41.0	36.3	4.3	28.4	0.0	\$3.2*	74.0	-00.8
7406.0	V	35.0	35.3	4.3	28.4	0.0	47.2	54,0	-8.5
6331,7	V	40.0	36.9	4.8	21.8	0.0	53.97	/4.0	<20.1
6301.7	V	33.0	36.9	4.5	27.8	0.0	45.9	54.0	3.1

- Note: 1. All measurement were made at 3 meters
 4. Negative signs (-) in Margin column signify levels below the limits
 3. Reading with * is peak-reading

Test Data

Company:	GVC	 Model #:	MH-9026	0.0000000000000000000000000000000000000
EUT;	D6S cordless phone (#1)	 SINE	not labeled	Stabound 1 FCC part 15.247
Project #:	J99007969	 Test Date:	April 20, 1999	Limits 11
Test Mode:	TX; low ch.(handset)	Engineer:	Cleveland K	Test Distance 3 meters

Astem	COMMON	DESCRIPTION OF THE PARTY OF THE	Pir Rto A	пр Оме	and the same	Cabel	Useq.	OCF	1235
Mumbers 0	8	0	0	4	D	0	12	0 0	
Mumber: 0 Wodet : Flore:	EWCO	None	NCE4	CD- P1006	None	1 North	Green b	One None	

requency	Resiling	Detector	And	Armp.	Ank Pol		Pre-Aces	broad	DAK	feet	Limit, 653m	Margin
Mount	SHUVI -	Prima	100	1000	HALL	er applies :	OF MERCE		-40	digular:		46
2712.00	53.6	Peak	8	8	V	27.9	28.4	2.3	0.0	55.4	74.0	-18.6
2712.00	45.4	Ave.	- 8	8	V	27.0	28.4	2.3	0.0	47.2	54.0	-8.8
3516.00	47.5	Peak	8	8	V	31,3	27.8	2.7	0.0	53.7	74.0	-20.4
3616.00	41.3	Ave.	8	8	V	31.3	27.6	2.7	0.0	47.5	54.0	-0.6
4521.00	44.3	Peak	- 8	8	V	32.1	27.9	3.2	0.0	51.7	74.0	-22.3
4521.00	37.7	Aye.	8	8	V	32,1	27.9	3.2	0.0	45.1	54.0	-8.9
5425.00	48.6	Peak	. 8	8	V	33.1	28.3	3.5	0.0	56.9	74.0	-17.1
5425,00	38.9	Ave.	8	8	V	33.1	28.3	3.5	0.0	47.2	54.0	-6.8
6325.00	44.4	Peak	8	8	V	34.4	28.0	3.9	0.0	54.7	74.0	-19.3
6328.00	32.6	Ave.	8	8	V	34,4	28.0	3.9	0.0	42.9	54.0	-11.1
7233.00	43.1	Pnak	8	-8	V	36.3	28.0	4.3	0.0	55.7	74.0	-18.3
7233.00	33.7	Ave.	8	8	V	35.3	28.0	4.3	0.0	46.3	54.0	-7,7
8137.00	37.1	Peak	8	8	V	38.9	27.2	4.8	0.0	51.6	74.0	-22.4
8137.00	28.3	Ave.	8	8	V	36.9	27.2	4.8	0.0	42.8	54.0	-11.2
9040.00	36.6	Peak.	8	8	V	38.2	26.8	4.7	0.0	52.7	74.0	-21.3
9040.00	28.3	Ave.	8	8	V	38.2	26.8	4.7	0.0	44.4	54.0	-9.6
			-	200	2.55		6.2	0.00			- 1	1777
	6.5	-			-			rc. nc				
	-				11 -							***
						- C	-		14.00			-
	200					7000						***
		-										
	100		5.									
3		- 100.00	-				200 000					
2000		9			97.							

Molecc | a] O.C.F. Other Correction Factor, D.C.F. Distance Correction Factor | b) Insert. Loss = Cable A + Cable B + Cable C + OCF.

C) Negative signs (-) in Margin column signify levels below the limits.

d) All other emissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

Intertek Testing Services NA Inc.

1965 Adams Court Morie Park CA (#025) Ni Aurenia 650-463-2000 | Fue 660-463-2010 | Inome Page www.orolidab.com

Radiated Emissions Test Data

Company:	GVC	Model #:	MH-9026	
EUT:	DSS cordless phone #1	Sec. 1.4 m.:	not abeled	Standard PCC Part 13:247
Project #:	J99007959	Test Date:	April 20, 1999	Cirolto Consulta 11
Test Mode:	TX; handset (high ch)	Engineer:	Cleveland K. (CK)	Test Distance 3 maters

Atems	Desc	SOLVEN SHE	Phan	MD LBAS	MUSSION OF	Caba	set :	0000000	OCF
Napoder 0 Venter Poune	. 8	0	0	å	0	0	12	0	0
Modern L None	EMCO	North .	Nara	CD: 91000	None:	Note	Green.	None	Boons

Frequency.	Hending	Detector	Apt	Aros.	4m. 20	Ant, Factor	Pre-Jeno	Loga	D.C.F	Field	Char.	Margie
Me	dhuvi	PUNC	1000	00000	9996	- dB()4m3	æ	- CO	- 65	CONTRACTOR OF THE	(Mileson)	100
2777.00	57.3	Peak	8	8	V	27.9	28.4	2.3	0.0	59.1	74.0	-14.9
2777.00	47.3	Ave.	8	8	V	27.9	28.4	. 23	0.0	49.1	54.0	-4.9
3703.00	55.4	Peak	8	8	V	31.3	27.8	2.7	0.0	61.6	74.0	-12.5
3703.00	45.1	Ave.	8	8	V	31.3	27.8	2.7	0.0	51.3	54.0	-2.7
4628.00	47.4	Peak	8	8	V	. 32.1	28.0	3.2	0.0	54.7	74.0	-19.3
4828.00	32.8	Ave.	8	8	V	32.1	28.0	3.2	0.0	40.1	54.0	-13.9
5554.00	44.8	Peak	8	8	V	34.4	28.3	3.7	0.0	54.6	74.0	-19.4
5554.00	33.7	Ave.	8	8	V	34.4	28.3	3.7	0.0	43.5	54.0	-10.5
6450.00	43.4	Peak	8	8	V	34.4	28.0	3.9	0.0	53.7	74.0	-20,3
8480.00	33.1	Ave.	8	8	V	34.4	28.0	3.9	0.0	43.4	54.0	-10.6
7405.00	42.5	Peak	- 8	8	V	36.3	28.0	4.3	0.0	55.1	74.0	-18.9
7405.00	31.6	Ave.	8	8	V	36.3	28.0	4.3	0.0	44.2	54.0	-9.8
8332.00	42.5	Peak	: 8	8	V	36.9	27.2	4.8	0.0	57.0	74.0	-17.0
8332.00	30.3	Ave.	- 8	8	V	36.9	27.2	4,8	0.0	44.8	54.0	-9.2
9257.00	39.9	Peak	. 8	8	V	38.2	27.0	4.7	0.0	55.8	74.0	-18.2
9257.00	28.3	Ave.	8	8	V	38.2	27.0	4.7	0.0	44.2	54.0	-9.8
		1	i					1,000				
Torreson						00000 00	U.					***
		200									-	100
			1		1							
			1									
			1		:	1	4	- 3. 0				-
										10.7		-
			Ī				1	1000				-
							-	4.40				-
					1		1	150 10	100			-
								7				

	Correction Factor, D.C.F.:Distance Correction Factor	The same of the sa
tell sales (Sb) Insert. Loss =	Cable A + Cable B + Cable C + OCF.	
promote special Negative signs	(-) in Margin column signify levels below the limits.	
	sions not reported are below the equipment noise foor which is a	t least 20 dB below the limits.
55456698103	and the reposition of a new to the adopt the a contract of the animal to the	100717-
		1000
ECH D PROCESSED R		
CHERT VIOLENCY DE		

Company: GVC Corporation

Project #:

J99007969

Model:

MH-9026 (Handset Mid Ch. Tx) #1

Engineer: Xi-Ming Vang Date of test: April 16, 1999

FCC 15,347	Radiated	Emissions	ŝ
------------	----------	-----------	---

Frequency	Antenna	Reading	Antenna	Cable	Pre-amp	Distance	Corrected	Umt	Mergin
	Pelaity		Factor	Loss		Factor	Reading		
MHZ	HV	(B(LV)	dB/m	dB	68	ale:	dBovvinj	deluving	40
2741.3	v	50.5	26.1	2.3	26.4	0.0	52.5	74.0	-21.5
2741.3	v	44.6	26.1	2.3	28.4	0.0	46.6	54.0	-7.4
3667.4	v	47.0	31.3	2.7	27.8	0.0	\$3.2	74.0	-2D,5
3657.8	v	42.5	31.3	2.7	27.8	0.0	48.5	54.0	-5.2
4572.0	v	46.D	32.1	3.2	28.0	0.0	53.3	74.0	420.7
4572.0	V	34.7	32.1	3.2	28.0	0.0	42.0	54.0	42.0
7314.8	v	36.0	36.3	4.3	28.4	0.0	48.2	74.0	-25.8
7314.8	v	26.0	36.3	4.3	28.4	0.0	38.2	54.0	-15.6
40238.3	v	34.0	30.9	4.6	27.8	0.0	47.9	74.0	-26.1
8079 3	v	24.0	36.9	4.5	27.8	0.0	37.9	54.0	-151
9143.9	V	36.0	38.6	5.1	26.8	0.0	53.1	74,0	-20.9
9143.9	v	25.0	36.5	5.1	26.8	0.0	43.1	54.0	-10.9

- Note: 1. All measurement were made at 3 mesers
 4. Negative signs (-) in Margin column signify levels below the limits
 3. Reading with * is peak-reading

Company: GVC Corporation

Project #: J99007969

Model:

MH-9026 (Handset Tx)

Engineer: Xi-Ming Yang Date of test: April 16, 1999

FCC 15.347 Radiated Emissions (Output Power)

		PLU L	3.34 / RA	District	E-missions	Outpu	t LOMEL)	
Frequency	Anterna	Reading	Antenna	Cable	Conscied	EUT	ERP	ERP
	Polarity		Factor	Loss	Reading	Ant Gan		
MHz	HW	<b(uv)< td=""><td>dilitim</td><td>dil</td><td>all (ut/day)</td><td>dB</td><td>cBm</td><td>mWate.</td></b(uv)<>	dilitim	dil	all (ut/day)	dB	cBm	mWate.
504.2	V	83.3	22.7	0.9	106.9	-1.6	10.1	10.2
9144	V	83.5	22.7	0.9	107.1	-1.6	10.3	10,7
626.7	v	83.0	22.7	0.9	106.6	-1.6	9.6	9.5

Note: 1. All measurement were made at 3 meters

1. All incasurement were made at 3 meters
2. Output power (ERP)
P(w) = (E*d)sbquared/30
10tog P = 10tog((E*d)squared/30)
P(dBw) = 10tog ((d) squared/30) + 10tog ((E) squared)
P(dBm) - 30dB = 10tog (9/30) + 20tog (E) d = 3m
P(dBm) - 30dB = -5.23dB + E(dBuV/m) = 120dB
P(dBm) = E (dBuV/m) - 55.2 dB
3. Output Power (ERP) = Output Power (ERP) - 1.6 (EUT Ant Gan)

Company: GVC Corporation

Project #:

J99007969

Model:

MH-9026 (Handset Tx)

Engineer:

Xi-Ming Yang

Date of test: April 16, 1999

FCC 15.347 Radiated Emissions (C	Output Power Density	ì
-----------------------------------	----------------------	---

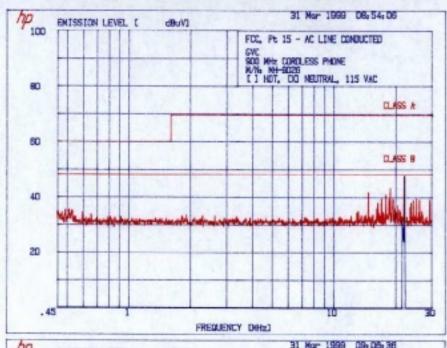
Frequency		Reading		Cable	Corrected	EUT	ERP	Limit	Margin
MHz	Polarity H/V	dBANA	Factor ditter	Loss	Reading dB(u\l/m)	Ant Gan	dim	dBm	σB
903.9	V	70.0	22.7	0.9	83.6	-1.6	-3.2	8.0	41.2
914.8	V	69.6	22.7	0.9	93.2	-1.6	-3.6	6.0	11.6
024.3	V	68.3	22.7	0.9	91.9	-1.6	4.9	8.0	129

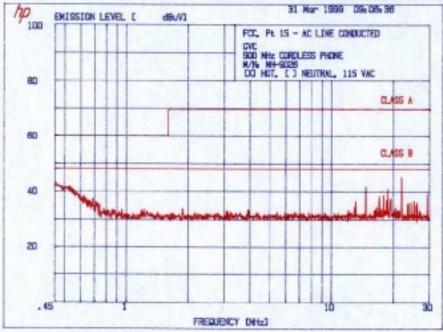
1. All measurement were made at 3 meters
2. Output power (EIRP)

P(w) = (E*d)sequared/30

Hiog P = 10log/(E*d)squared/30)

P(dBw) = 10log (id) squared/30) + 10log ((E) separed)


P(dBm) = 30dB = 10log (9/30) + 20log (E) d = 3m


P(dBm) = 30dB = -5,23dB + E(dBuV/m) = 120dB

P(dBm) = E (dBuV/m) = 95.2 dB

5. Output Power (EIRP) = Output Power (EIRP) = 1.6 (EUT Ant Gue)

Appendix F AC CONDUCTED EMISSION TEST DATA

31 Har 1999 88:54:86

3. FCC CFR 47, Pt 15 3.1 FCC, Pt 16 - AC LINE CONDUCTED

SUC 980 MH= CORDLESS PHONE M/N: MH-9825 [] HOT, EX] NEUTRAL, 115 VAC

PEAKS FOUND ABOVE 37 dBWV

PERKE	FRED (MHz)	AMPL (dBu//)
1	14.78	41.7
. 2	16.47	37.9
	17.17	
4	18.86	40.8
	18.67	
15	10.91	43.2
7	19.47	39.5
	20.57	37.0
49	22.89	47.5
	23.62	37.9
11	24.53	38.8
12	25.77	39.6
13	26.23	39.0
14	29.50	39.8

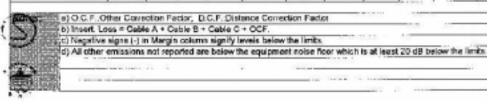
3. FCC CFR 47, Pt 15 3.1 FCC, Pt 15 - AC LINE CONDUCTED

GUC

908 MHz COROLESS PHONE M/N: MH-9026 (X3 HOT, () NEUTRAL, 115 VAC

A. 16 %

PEAKS FOUND ABOVE 37 dBuV


PEAK#	FREQ (MHz)	AMPLI dBuV
1	.6962	37.2
2	14.76	41.7
3	17.17	30.3
4	18.05	39.7
5	18.67	37.0
6	18.91	48.9
7	19.56	37.4
. 8	22.09	45.1
9	29.50	39.0

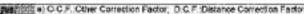
Appendix G RADIATED EMISSION FROM DIGITAL PART TEST DATA

Radiated Emissions Test Data

Company:	GVC			:Model #	MH-9028	W100 100 200 200	10000	Acres de la companya
EUT:	cordless phi- (spread spe			S/N #	not labeled	Standard	FCC	Part 158
Project #:	J99037969			Test Date:	April 1, 1999	Linsia	2	
Test Mode:	standby; bu	se station		Enginee	r: Cleveland K.	Test Distance	3	matters
OTHER DESIGNATION	WITH THE REAL PROPERTY.	ne ne objectiv	Marin Marin Marin	and the state of t	UNIVERSITY IN		DICK	MANUFACTOR TO
HINDUNGSTON	America	NAME OF STREET	Sciences serves	Fre June Cond	THE REAL PROPERTY.	enumentario estrata	Service Co.	CONTRACTOR
Wure ber-	0 9	7						

requescy,	Resting	Deta-chica	Ant	Amp.	Act	Ann	Arca	Loss	D G.F.	Net	Umit .	Margi
UHZ	asuv)	MAZZ.	DEPARTMENT	1	F. BY	OBJ.YW	THE STREET	1081	78	approprie	energy (1 60
38.40	23.0	Peak	9	2	· v	9.9	22.3	0.6	0.0	11.3	40.0	-28.7
48.00	25.0	Peak	9	- 2	V	10.0	22.3	0.7	0.0	13.5	40.0	-26.5
57.60	27.0	Peak	9	2	· v	13.6	22.3	0.6	0.0	19.2	40.0	-20.8
76.80	23.0	Peak	9	2	V	5.8	22.3	1.0	0.0	7.5	40.0	-32.5
86.40	29.0	Peak	9	2	V	8.2	22.3	1.1	0.0	16.0	40.0	-24.0
115.20	32.9	Peak	9	2	v	14.9	22.3	1.3	0.0	26,8	43.5	-16.7
		2 0		2								
										1		1700
			100 V 100									

												199
				1	1							
			L									4.64
		1927573	200			- 000	2000				313	
								2.7				***
		9 0									207	197
4.4												
P										6000	-	
				e les site	ce + 0	vara va						
											100000000000000000000000000000000000000	***
											0.00	



Radiated Emissions Test Data

Company:	GVC	Model #:	MH-9026	THE RESERVE THE PROPERTY OF THE PERSON NAMED IN
	cordiess phone (spread spectrum)	S/N #;	not labeled	8(andary_ FCC Part 15B
Project #:	J99007969	Test Date:	April 2, 1996	Literia 2
Test Mode:	Standby, handset	Engineer:	Cleveland K. A.	Test Distance 3 maters

And the State of	SAME THAT STREET, BY	She Am	PERMIT	2200568	Cotto!	WHI I		905	
Number: 9	7 0	0	2	0	0	13	0	0	
Model: KRCO	SM PA Norte	None, It	4P 8447D]	huns	Sone	52 37	Sens	73000	CHIS
STATEMENT OF THE PARTY OF	20 - 20 to 10 to 1	48 0 000 000	distribution on	050040404	DENTERIOR	aroma sig	1140000000	Test In Oak	SECTION S

requency	Medica	Detector	Ant	Amp	Ant.	Ant. Factor	Prei	Load	O.C.F.	N#1	Citals ©Sm	Mary
West.	onur;	PAG		in the	HY	48(176)	OB	08.01	100	offered li	dharwhat	114
38.40	28.0	Peak	9	2	V	9.9	22.3	1.3	0.0	16.9	40.0	-23.1
48.00	24.0	Peak	9	2	V	10.0	22.3	1.3	0.0	13.1	40.0	-26.
57.60	27.5	Peak	9	2	V	13.6	22.3	1.4	0.0	20.2	40.0	-19.
115.30	34.9	Peak	9	2	V	14.9	22.3	1.6	0.0	29.1	43.5	-14.
124.90	39.0	Peak	9	2	V	14.4	22.3	1.6	0.0	32.7	43.5	-10.
134,50	29.7	Peak	9	2	V	13.2	22.4	2.0	0,0	22.5	43.5	-21.
	The same and									1		-
	7											
									L			-
											2000	-
				-	A550 0000	a halvedill						-
		-		100								
	-											
						1		100.100		100		
						10000000					200	-
									120			
					200							
				2 20					1			
												-
-	1									-		
1.					NOOT 10		20,000,00					
11										-		
											- 2.00	
											0.000	
									-	9		
- 1.0												-

a) O.C.F. Other Correction Factor, D.C.F. Distance Correction Factor
b) Insert Loss = Cable A + Cable B + Cable C + OCF.
c) Negative signs (-) in Margin column signify leves below the limits.
d) All other unissions not reported are below the equipment noise floor which is at least 20 dB below the limits.

A CONTRACTOR

