

Measurement of RF Interference from a Model CA5500R Transceiver

For : Intermatic
Spring Grove, IL

P.O. No. : 912771

Date Received: March 8, 2006

Date Tested : March 8, 2006

Test Personnel: Daniel E. Crowder, NARTE® Certified EMC Test
Engineer, ATL-0152-E

Specification : FCC "Code of Federal Regulations" Title 47
Part 15, Subpart B and Subpart C, Section 15.249
for Intentional Radiators Operating within the
902MHz to 928MHz band

Test Report By

MARK E. LONGINOTTI

:
Mark E. Longinotti
NARTE® Certified EMC Test
Engineer, ATL-0154-E

Approved By

Raymond J. Klouda

:
Raymond J. Klouda
Registered Professional Engineer
of Illinois - 44894

TABLE OF CONTENTS

<u>PARAGRAPH</u>	<u>DESCRIPTION OF CONTENTS</u>	<u>PAGE NO.</u>
1.0 INTRODUCTION		3
1.1 Description of Test Item.....		3
1.2 Purpose.....		3
1.3 Deviations, Additions and Exclusions		3
1.4 Applicable Documents		3
1.5 Subcontractor Identification		3
1.6 Laboratory Conditions.....		3
2.0 TEST ITEM SETUP AND OPERATION.....		3
2.1 Power Input		3
2.2 Grounding.....		4
2.3 Peripheral Equipment.....		4
2.4 Interconnect Cables.....		4
2.5 Operational Mode		4
2.6 Test Item Modifications.....		4
3.0 TEST EQUIPMENT		4
3.1 Test Equipment List.....		4
3.2 Calibration Traceability.....		4
3.3 Measurement Uncertainty.....		4
4.0 REQUIREMENTS, PROCEDURES AND RESULTS		5
4.1 Powerline Conducted Emissions		5
4.1.1 Requirements		5
4.2 Radiated Measurements.....		5
4.2.1 Receiver.....		5
4.2.1.1 Requirements		5
4.2.1.2 Procedures.....		5
4.2.1.3 Results.....		6
4.2.2 Transmitters.....		6
4.2.2.1 Requirements		6
4.2.2.2 Procedures.....		7
4.2.2.3 Results.....		7
4.3 Occupied Bandwidth Measurements		8
4.3.1 Requirement		8
4.3.2 Procedures.....		8
4.3.3 Results		8
5.0 CONCLUSIONS		8
6.0 CERTIFICATION		8
7.0 ENDORSEMENT DISCLAIMER.....		8
TABLE I - EQUIPMENT LIST		9

THIS REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL,
WITHOUT THE WRITTEN APPROVAL OF ELITE ELECTRONIC ENGINEERING INC.

Measurement of RF Emissions from a Transceiver, Model No. CA5500R

1.0 INTRODUCTION:

1.1 Description of Test Item - This document presents the results of the series of radio interference measurements performed on a Transceiver, Model No.CA5500R (hereinafter referred to as the test item). No Serial Number was assigned to the test item. The test item was submitted for testing by Intermatic located in Spring Grove, IL.

1.2 Purpose - The test series was performed to determine if the test item meets the conducted and radiated RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Sections 15.107 and 15.109, and Subpart C, Sections 15.207 and 15.249 for Intentional Radiators Operating within the 902MHz -928MHz band. Testing was performed in accordance with ANSI C63.4-2003.

1.3 Deviations, Additions and Exclusions - There were no deviations, additions to, or exclusions from the test specification during this test series.

1.4 Applicable Documents - The following documents of the exact issue designated form part of this document to the extent specified herein:

Federal Communications Commission "Code of Federal Regulations", Title 47, Part 15, dated 1 October 2004

ANSI C63.4-2003, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

1.5 EMC Laboratory Identification - This series of tests was performed by Elite Electronic Engineering Incorporated of Downers Grove, Illinois. The laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP). NVLAP Lab Code: 100278-0.

1.6 Laboratory Conditions The temperature at the time of the test was 22°C and the relative humidity was 22%.

2.0 TEST ITEM SET-UP AND OPERATION:

The test item is a Transceiver, Model No. CA5500R. A block diagram of the test item set-up is shown as Figure 1.

2.1 Power Input - The test item was powered with 3VDC from 2 "AA" batteries.

2.2 Grounding - The test item was ungrounded during the tests.

2.3 Peripheral Equipment - The test item was submitted for testing with no peripheral equipment.

2.4 Interconnect Cables - The test item was submitted for testing with no interconnect cables.

2.5 Operational Mode - For all tests, the test item was placed on an 80cm high non-conductive stand. The test item was energized. The test item was set up so that upon power up it would transmit continuously at 908.4MHz. The test item was then reprogrammed so that upon power up it would receive continuously at 908.4MHz.

2.6 Test Item Modifications - No modifications were required for compliance to the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Sections 15.107 and 15.109, and Subpart C, Sections 15.207 and 15.249 requirements.

3.0 TEST EQUIPMENT:

3.1 Test Equipment List - A list of the test equipment used can be found on Table I. All equipment was calibrated per the instruction manuals supplied by the manufacturer.

3.2 Calibration Traceability Test equipment is maintained and calibrated on a regular basis. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

3.3 Measurement Uncertainty - All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

The measurement uncertainty budgets were based on guidelines in "ISO Guide to the Expression of Uncertainty in Measurements" and NAMAS NIS81 "The Treatment of Uncertainty in EMC Measurements".

The measurement uncertainty for these tests is presented below:

Conducted Emission Measurements		
Combined Standard Uncertainty	1.07	-1.07
Expanded Uncertainty (95% confidence)	2.1	-2.1

Radiated Emission Measurements		
Combined Standard Uncertainty	2.26	-2.18
Expanded Uncertainty (95% confidence)	4.5	-4.4

4.0 REQUIREMENTS, PROCEDURES AND RESULTS:

4.1 Powerline Conducted Emissions

4.1.1 Requirements - Since the test item was powered by internal batteries, no conducted emissions tests were required.

4.2 Radiated Measurements

4.2.1 Receiver

4.2.1.1 Requirements - - All emanations from a receiver shall be below the levels shown on the following table:

RADIATION LIMITS FOR RECEIVERS

Frequency MHz	Distance between Test Item And Antenna in Meters	Field Strength uV/m	Field Strength dBuV/m
30-88	3	100	40
88-216	3	150	43.5
216-960	3	200	46
Above 960	3	500	54

Note: The tighter limit shall apply at the edge between the two frequency bands. Measurements are required up to 30MHz to 5GHz.

4.2.1.2 Procedures - All tests were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4 2003 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Since quasi-peak and average measurements require long integration times, it is not practical to automatically sweep through the quasi-peak or average levels. Therefore, radiated emissions from the test item were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector.

For preliminary radiated emissions sweeps from 30MHz to 10GHz, the broadband measuring

antenna was positioned at a 3 meter distance from the test item. The frequency range from 30MHz to 10GHz was investigated using a peak detector function with the bilog antenna below 1GHz and the double-ridged waveguide antenna above 1GHz. The maximum levels were plotted.

Final radiated emissions were performed on all significant broadband and narrowband emissions found in the preliminary sweeps using the following methods:

- 1) Measurements below 1GHz were made using a quasi-peak detector and a bilog antenna. Measurements above 1GHz were made using an average detector and a double ridged waveguide antenna.
- 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - a. The test item was rotated so that all of its sides were exposed to the receiving antenna.
 - b. Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - c. The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.

4.2.1.3 Results - The preliminary plots are presented on pages 13 and 14. The plots are presented for a reference only, and are not used to determine compliance. The final radiated

levels are presented on page 15. As can be seen from the data, all emissions measured from the test item were within the specification limits for receivers. The emissions level closest to the limit (worst case) occurred at 908.4MHz. The emissions level at this frequency was 4.6dB within the limit. Photographs of the test configuration which yielded the highest or worst case, radiated emission levels are shown on Figure 2a.

4.2.2 Transmitters -

4.2.2.1 Requirements - The test item must comply with the requirements of FCC "Code of Federal Regulations Title 47", Part 15, Subpart C, Section 15.205 et seq.

Paragraph 15.249(a) has the following radiated emission limits:

Fundamental Frequency MHz	Field Intensity mV/m @ 3 meters	Field Strength Harmonics and Spurious uV/m @ 3 meters
902 to 928	50	500

In addition, emissions appearing in the Restricted Bands of Operation listed in paragraph 15.205(a) shall not exceed the general requirements shown in paragraph 15.209.

4.2.2.2 Procedures - All measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2003 for site attenuation.

A preliminary radiated emissions test was performed to determine the emission characteristics of the test item. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the test item. The entire frequency range from 30MHz to 10GHz was investigated using a peak detector function. The data was then processed by the computer to calculate equivalent field intensity.

The final emission tests were then manually performed over the frequency range of 30MHz to 9.1GHz. Between 30MHz and 1000MHz, a bilog antenna was used as the pick-up device. A broadband double ridged waveguide antenna was used as the pick-up device for all frequencies above 1GHz. All significant broadband and narrowband signals were measured and recorded.

To ensure that maximum or worst case, emission levels were measured, the following steps were taken:

- (1) The test item was rotated so that all of its sides were exposed to the receiving antenna.
- (2) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
- (3) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
- (4) For hand-held or body-worn devices, the test item was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.

4.2.2.3 Results - The preliminary plots, with the test item transmitting at 908.4MHz, are presented on data pages 16 and 17. The plots are presented for a reference only, and are not used to determine compliance. The final radiated levels, with the test item transmitting at 908.4MHz, are presented on data page 18. As can be seen from the data, all emissions measured from

the test item were within the specification limits. The emissions level closest to the limit (worst case) occurred at 908.4MHz. The emissions level at this frequency was 0.1dB within the limit. Photographs of the test configuration which yielded the highest or worst case, radiated emission levels are shown on Figure 2b.

4.3 Occupied Bandwidth Measurements

4.3.1 Requirement - In accordance with paragraph 15.249(d), all emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuate by at least 50dB below the level of the fundamental or to the general radiated emissions limits in 15.209, which ever is the lesser attenuation.

4.3.2 Procedures - The test item was placed on an 80cm high non-conductive stand. The unit was set to transmit continuously. With an antenna positioned nearby, occupied bandwidth emissions were displayed on the spectrum analyzer. The resolution bandwidth was set to 100 kHz and span was set to 30 MHz. The frequency spectrum near the fundamental was plotted.

4.3.3 Results - The plot of the emissions near the fundamental frequency is presented on data page 19. As can be seen from this data page, the transmitter met the occupied bandwidth requirements.

5.0 CONCLUSIONS:

It was determined that the Intermatic Transceiver, Model No. CA5500R, Serial Number none assigned, did fully meet the conducted and radiated emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, Sections 15.107 and 15.109 for receivers, and Subpart C, Sections 15.207 and 15.249 for Intentional Radiators Operating within the 902MHz -928MHz band, when tested per ANSI C63.4-2003.

6.0 CERTIFICATION:

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the test item at the test date. Any electrical or mechanical modification made to the test item subsequent to the specified test date will serve to invalidate the data and void this certification.

7.0 ENDORSEMENT DISCLAIMER:

This report must not be used to claim product endorsement by NVLAP or any agency of the US

Government.

TABLE I: TEST EQUIPMENT LIST

ELITE ELECTRONIC ENG. INC.							Page: 1		
Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Cal Inv	Due Date	
Equipment Type: ACCESSORIES, MISCELLANEOUS									
XJW	5W, 50 OHM TERMINATION	JFW INDUSTRIES	50T-052	31	DC-2GHZ	10/10/05	12	10/10/06	
XZG4	ATTENUATOR/SWITCH DRIVER	HEWLETT PACKARD	11713A	2223A01683	---	N/A			
Equipment Type: AMPLIFIERS									
APK4	PREAMPLIFIER OPT H02	HEWLETT PACKARD	8449B	3008A00329	1-26.5GHZ	01/27/06	12	01/27/07	
Equipment Type: ANTENNAS									
NTA1	BILOG ANTENNA	CHASE EMC LTD.	BILOG CBL611	2054	0.03-2GHZ	08/08/05	12	08/08/06	
NWHO	RIGHTGED WAVE GUIDE	TENSOR	4105	2081	1-12.4GHZ	10/01/05	12	10/01/06	
Equipment Type: CONTROLLERS									
CDS2	COMPUTER	GATEWAY	MFATXPNT NMZ	0028483108	1.8GHZ		N/A		
Equipment Type: PRINTERS AND PLOTTERS									
HRE1	LASER JET 5P	HEWLETT PACKARD	C3150A	USHB061052	---		N/A		
Equipment Type: RECEIVERS									
RACA	RF PRESELECTOR	HEWLETT PACKARD	85685A	2926A00980	20HZ-2GHZ	02/05/06	12	02/05/07	
RAEC	SPECTRUM ANALYZER	HEWLETT PACKARD	8566B	3014A06690	100HZ-22GHZ	02/02/06	12	02/02/07	
RAF3	QUASI PEAK ADAPTER	HEWLETT PACKARD	85650A	3303A01775	0.01-1000MHZ	02/04/06	12	02/04/07	

Cal. Interval: Listed in Months I/O: Initial Only N/A: Not Applicable
Note 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

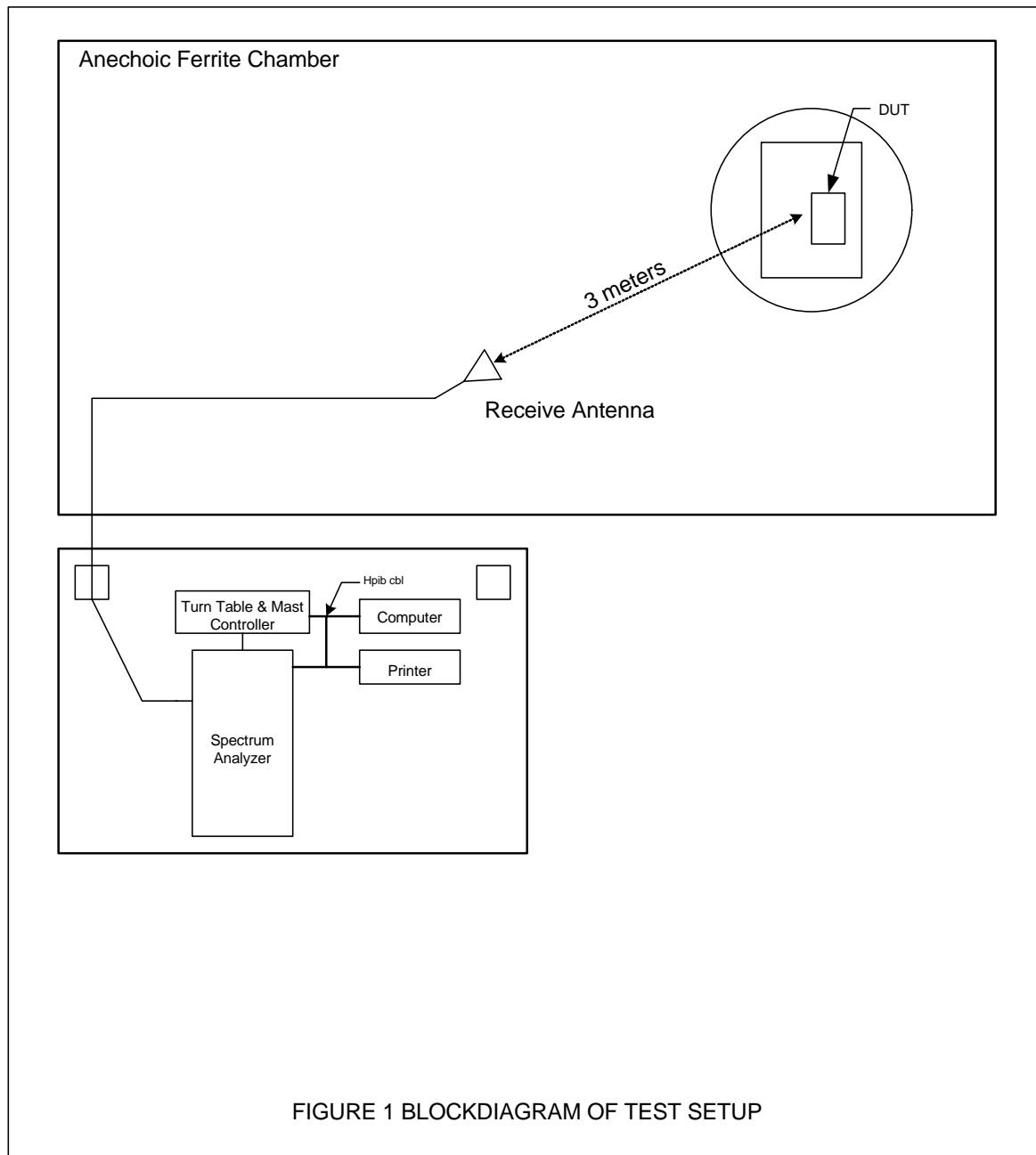
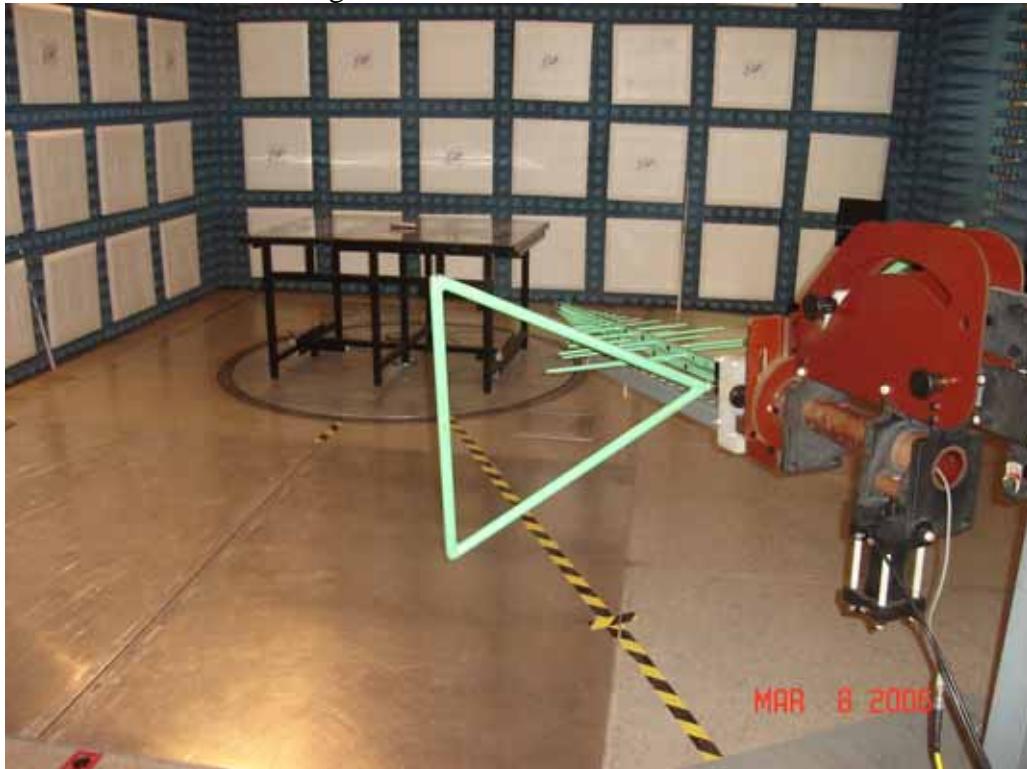
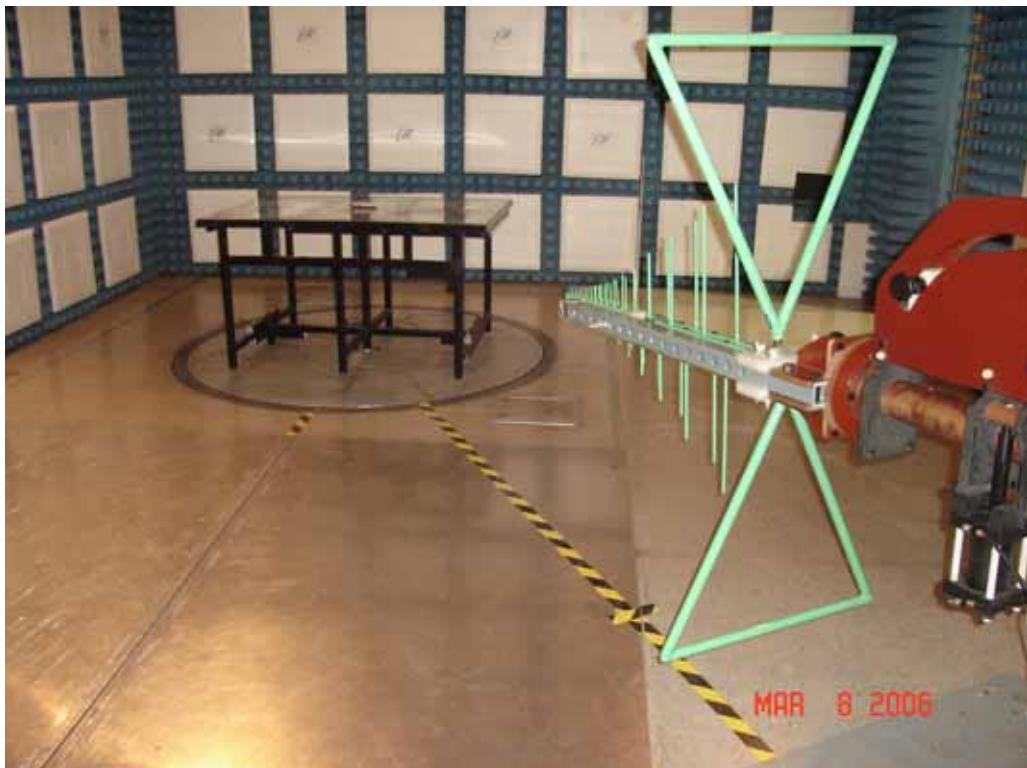
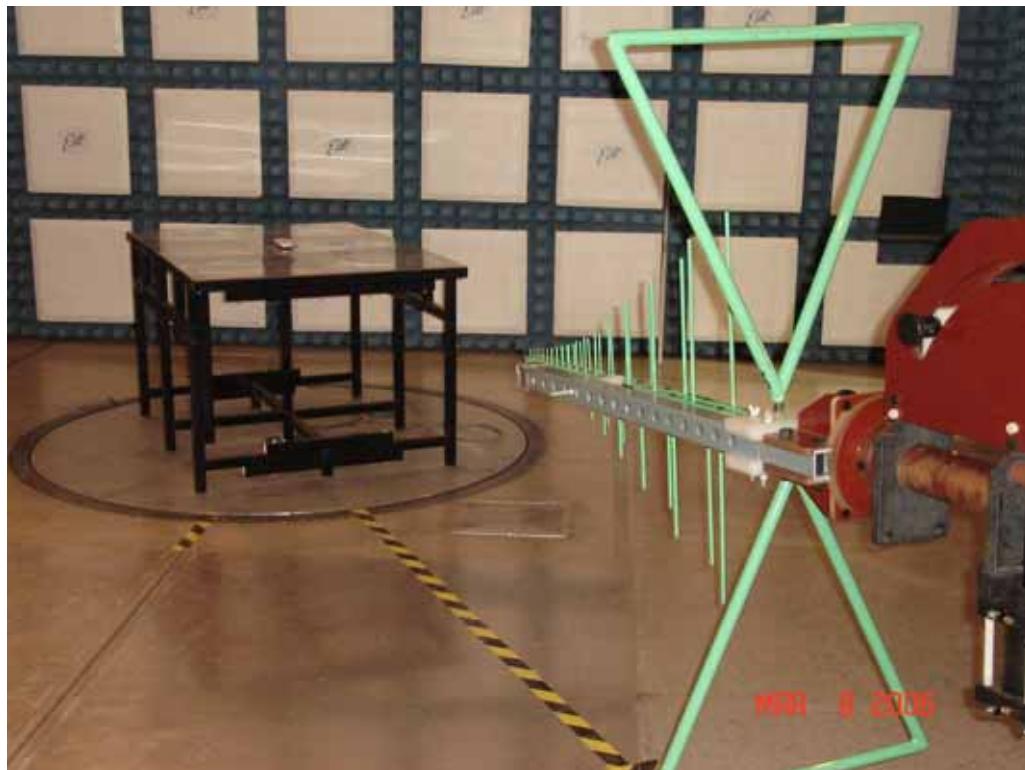
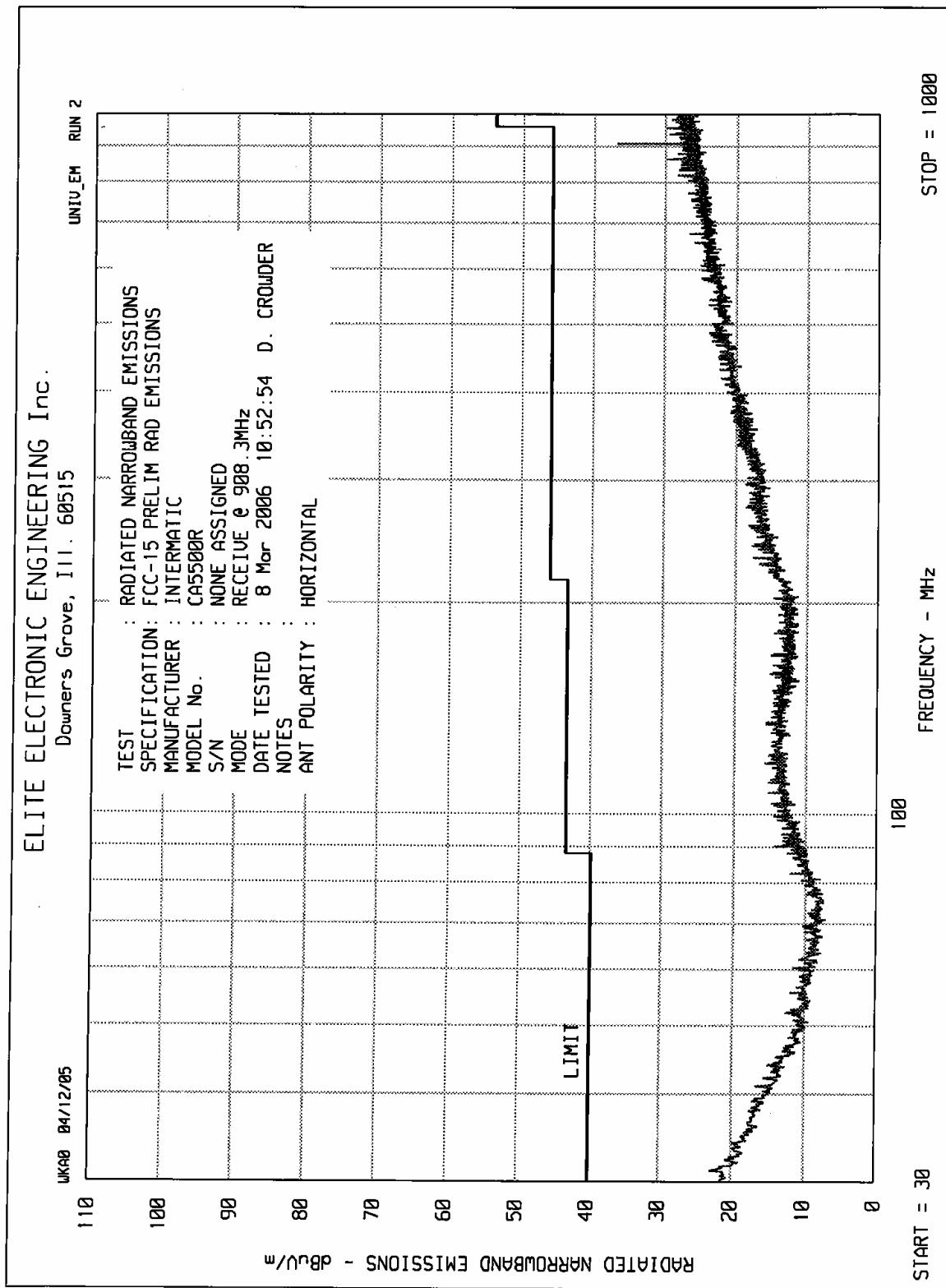




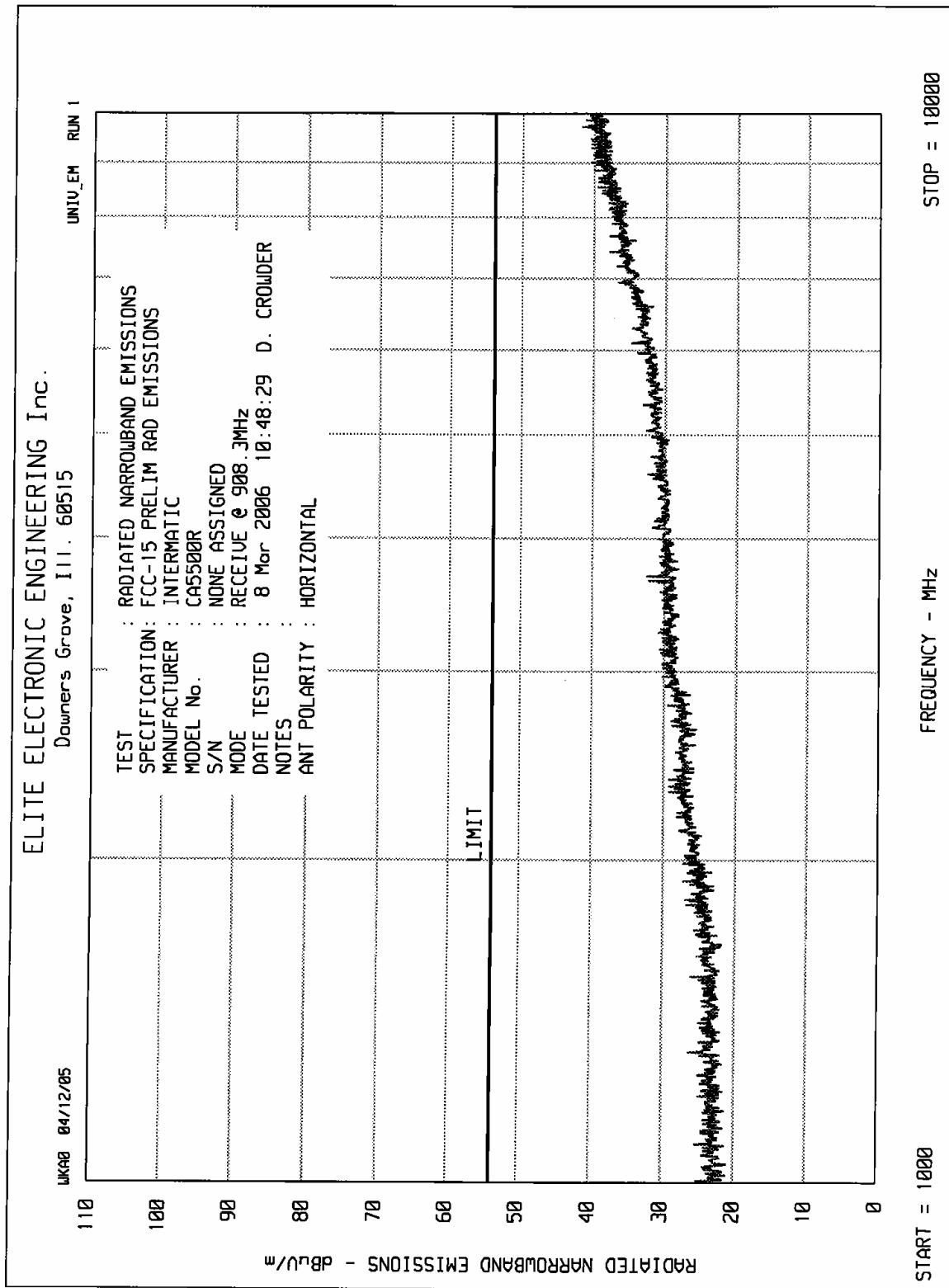
Figure 2a - Receive at 908.4MHz

Test Set-up for Radiated Emissions, 908.4MHz – Horizontal Polarization



Test Set-up for Radiated Emissions, 908.4MHz – Vertical Polarization

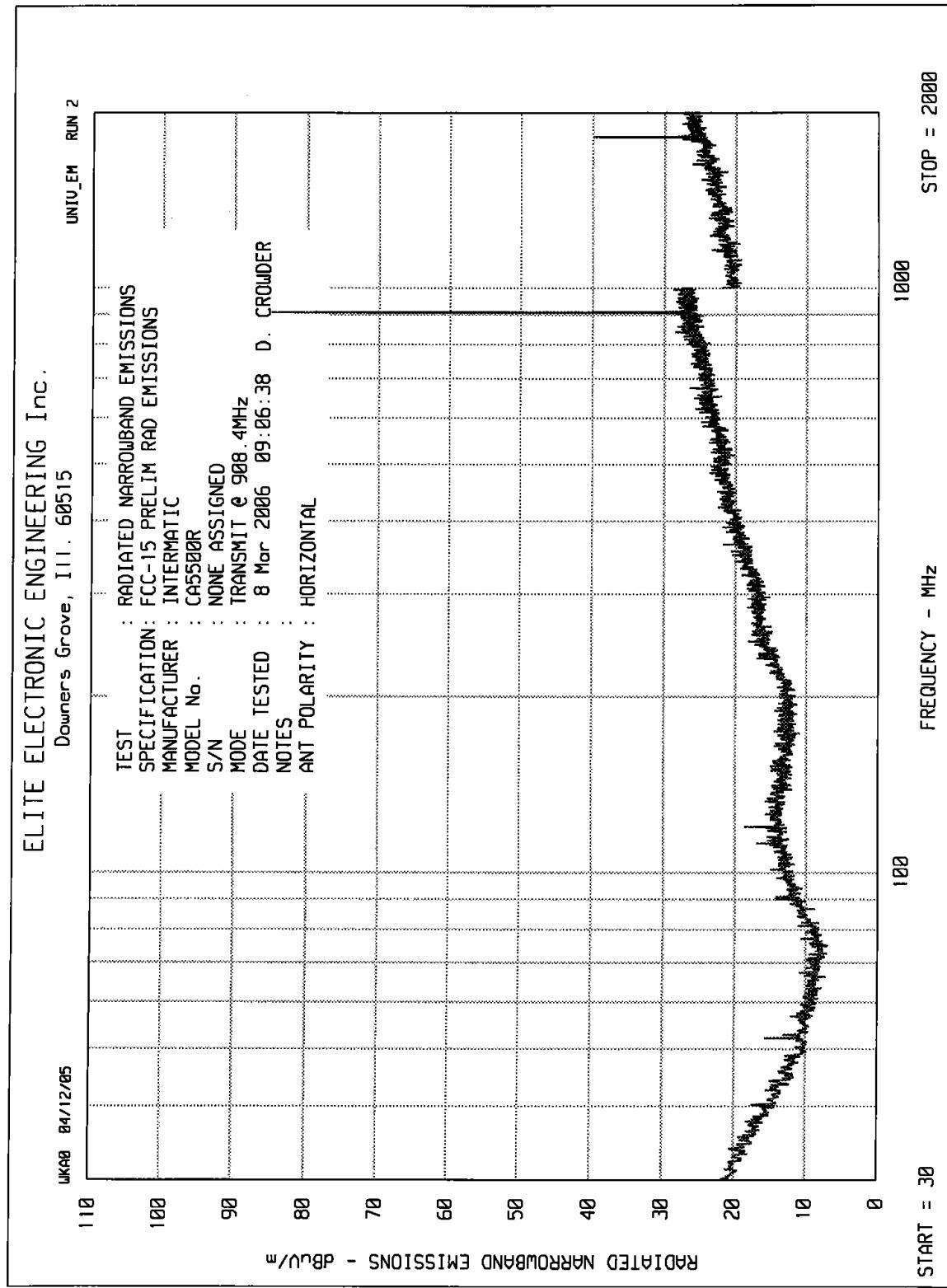

Figure 2b - Transmit at 908.4MHz

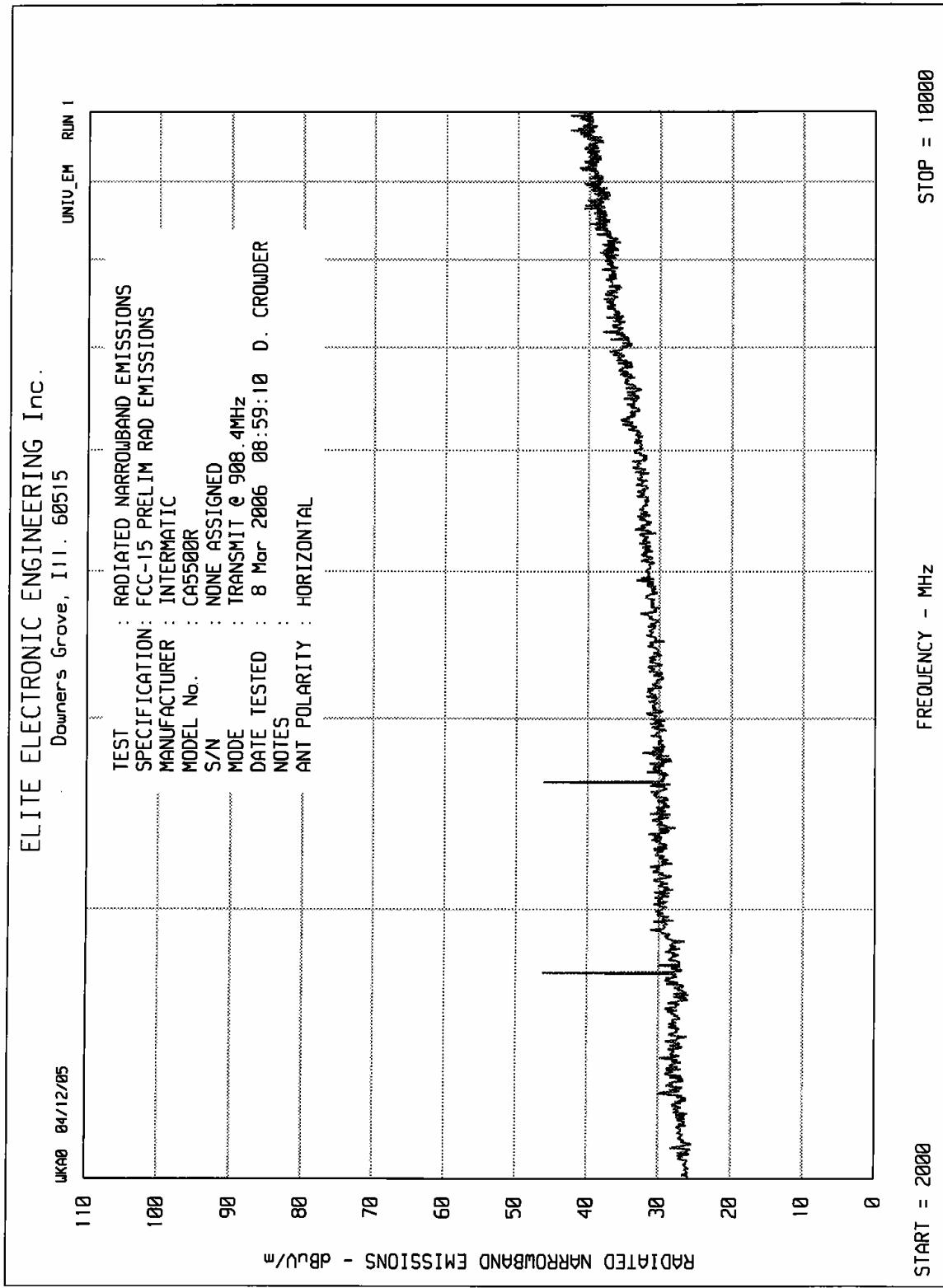


Test Set-up for Radiated Emissions 908.4MHz – Horizontal Polarization

Test Set-up for Radiated Emissions 908.4MHz – Vertical Polarization

MANUFACTURER : Intermatic
TEST ITEM : Transceiver
MODEL NO. : CA5500R
SERIAL NO. : None Assigned
TEST SPECIFICATION : FCC 15.109(a), Radiated Emissions
MODE : Receive @ 908.4MHz
TEST DATE : March 8, 2006
TEST DISTANCE : 3 meters


Frequency MHz	Antenna Polarity	Meter Reading dBuV	Ambient	Cable Loss dB	Antenna Factor dB	Preamp Gain dB	Total dBuV/m	Total uV/m	Limit uV/m
908.4	H	17.2		1.9	22.3	0.0	41.4	118.1	200.0
908.4	V	9.9		1.9	22.3	0.0	34.1	51.0	200.0
1816.8	H	43.9	*	2.9	28.1	-36.3	38.5	84.4	500.0
1816.9	V	44.8	*	2.9	28.1	-36.3	39.4	93.6	500.0
2725.2	H	41.5	*	3.8	31.4	-35.9	40.8	109.3	500.0
2725.3	V	42.4	*	3.8	31.4	-35.9	41.7	121.3	500.0
3633.6	H	41.9	*	4.4	32.5	-35.6	43.2	145.2	500.0
3633.7	V	41.3	*	4.4	32.5	-35.6	42.6	135.5	500.0
4542.0	H	40.5	*	4.8	32.9	-35.3	42.9	140.4	500.0
4542.2	V	39.4	*	4.8	32.9	-35.3	41.8	123.7	500.0


H – Horizontal

V = Vertical

Total = Meter Reading + Cable Loss + Antenna Factor + Preamp Gain

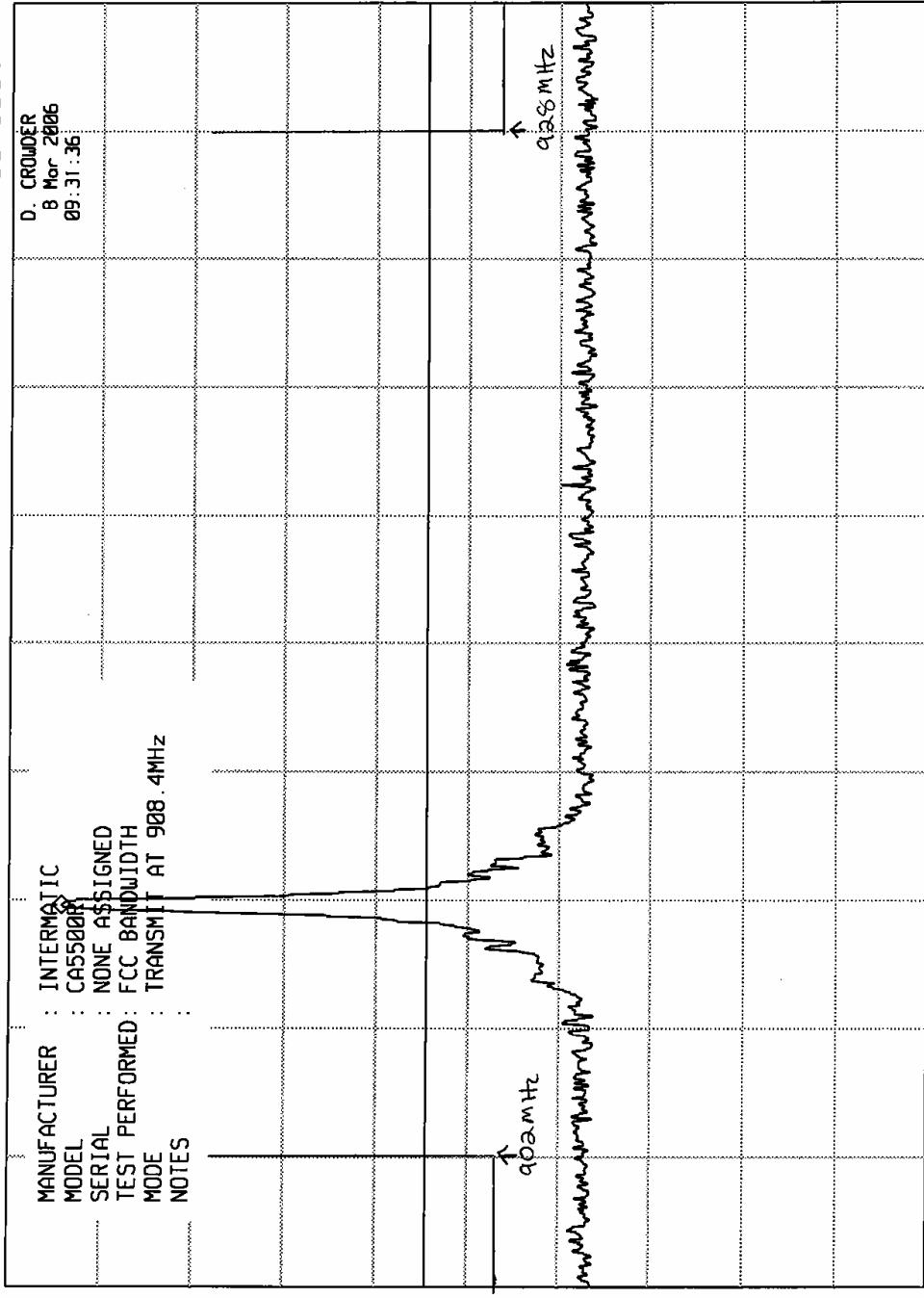
Checked By:

MANUFACTURER : Intermatic
TEST ITEM : Transceiver
MODEL NO. : CA5500R
SERIAL NO. : None Assigned
TEST SPECIFICATION : FCC 15.249(a), Radiated Emissions
MODE : Transmit @ 908.4MHz
TEST DATE : March 8, 2006
TEST DISTANCE : 3 meters

Frequency MHz	Antenna Polarity	Meter Reading dBuV	Ambient	Cable Loss dB	Antenna Factor dB	Preamp Gain dB	Total dBuV/m	Total uV/m	Limit uV/m
908.4	H	69.7		1.9	22.3	0.0	93.9	49817.1	50000.0
908.4	V	60.5		1.9	22.3	0.0	84.7	17273.5	50000.0
1816.8	H	54.6		2.9	28.1	-36.3	49.2	289.4	500.0
1816.9	V	58.6		2.9	28.1	-36.3	53.2	458.7	500.0
2725.2	H	52.4		3.8	31.4	-35.9	51.7	383.5	500.0
2725.3	V	44.8		3.8	31.4	-35.9	44.1	159.9	500.0
3633.6	H	50.2		4.4	32.5	-35.6	51.5	377.6	500.0
3633.7	V	48.1		4.4	32.5	-35.6	49.4	296.5	500.0
4542.0	H	42.3	Ambient	4.8	32.9	-35.3	44.7	172.7	500.0
4542.2	V	43.2	Ambient	4.8	32.9	-35.3	45.6	191.6	500.0
5450.4	H	40.4	Ambient	5.2	35.3	-35.2	45.8	194.2	500.0
5450.6	V	40.7	Ambient	5.2	35.3	-35.2	46.1	201.1	500.0
6358.8	H	41.7	Ambient	5.9	36.1	-35.3	48.4	264.0	500.0
6359.0	V	41.5	Ambient	5.9	36.1	-35.3	48.2	258.0	500.0
7267.2	H	41.0	Ambient	6.6	37.7	-35.6	49.7	307.0	500.0
7267.4	V	40.9	Ambient	6.6	37.7	-35.6	49.6	303.5	500.0
8175.6	H	42.0	Ambient	7.1	37.7	-35.8	51.0	353.9	500.0
8175.9	V	41.4	Ambient	7.1	37.7	-35.8	50.4	330.3	500.0
9084.0	H	42.9	Ambient	7.5	38.0	-36.2	52.2	407.4	500.0
9084.3	V	42.8	Ambient	7.5	38.0	-36.2	52.1	402.8	500.0

H – Horizontal

V = Vertical


Total = Meter Reading + Cable Loss + Antenna Factor + Preamp Gain

Checked By:

ELITE ELECTRONIC ENGINEERING Inc.

 MKR 908.44 MHz
 69.30 dBuU

hp REF 75.0 dBuU ATTN 0 dB

 10 dB/
 OFFSET
 -10.0
 dB

 DL 29.5
 dBuU

 General
 Limit

 START 899.0 MHz
 RES BU 100 kHz(i) UBU 1 MHz

 STOP 931.0 MHz
 SWP 24.0 msec