

**Measurement Report
In support of
APPLICATION FOR TYPE ACCEPTANCE**

**Astronet
Model: Wireless Base Station**

FCC ID: D8T1900MTDMABASE

This report is under a confidentiality agreement

TABLE OF CONTENTS

EXHIBIT 1: Statement of Certification	1
EXHIBIT 2: Identification Label	2
Label Material Specifications.....	2
LABEL LOCATION.....	2
EXHIBIT 3: General Information	3
Production plans following 2.981 (c).....	3
Application References following 2.1061	3
Data Submittal Procedure:.....	3
General Description:	3
EXHIBIT 4: Description	4
Transmitter Technical Characteristics - Pursuant 2.983 (d).....	4
EXHIBIT 5: Function of Active Devices	5
EXHIBIT 6: Circuit Diagrams	6
Transceiver schematics.....	6
EXHIBIT 7: Tune-up Procedure	7
Frequency.....	7
EXHIBIT 8: Circuit Description.....	8
Means for Frequency Stabilization.....	8
Means for suppression of spurious radiation	8
Means for Limiting Power.....	8
Means for modulation system.....	8
EXHIBIT 9: Measured Data	11
9.1 RF Power output data	11
9.2 Occupied Bandwidth	11
9.3 Emissions at edge of Frequency Block	11
9.4 Antenna Conducted Spurious Emissions.....	14
9.5 Radiated Spurious Emissions.....	15
9.6 Frequency Stability	16
EXHIBIT 10: Photographs.....	20
EXHIBIT 11: Test Box User's Manual	31
EXHIBIT 12: Measurement Procedure and Test Equipment	32
RF Output Power - CFR 47 Part 2.985 (a).....	33
Occupied Bandwidth - CFR 47 Part 2.989	33
Radiated Spurious - CFR 47 Part 2.993	33
Conducted Spurious Emissions - CFR 47 Part 2.991	34
Frequency Stability - CFR 47 Part 2.995	34
EXHIBIT 13: ANSI C95.1 Compliance	35
Table 13.1: ERP Calculations	35
MPE at 1.9 GHz.....	36

EXHIBIT 1: Statement of Certification

The technical data supplied with this application, having been taken under my supervision is hereby duly certified. The following is a statement of my qualifications:

- 1) BSEE from Auburn University, Alabama
- 2) 3 years of experience in the field of electromagnetic emissions testing

David J. Schramm

Position: Technical Supervisor
ITS Norcross, GA

Date: June 5, 1998

I certify that the above application was prepared under my direction and that to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

David C. Dennis

Position: Team Leader
ITS Norcross, GA

Date: June 5, 1998

EXHIBIT 3: General Information**Production plans following 2.981 (c)**

Quantity Production of this device is planned.

Application References following 2.1061

Reference is made to the following

1. PCS1900 Air Interface Specification - JCT (AIR)/94.08.04-231R4
2. Intertek Testing Services Open Area Test Site, Norcross, GA.

Data Submittal Procedure:

Data is supplied according to Part 2, Sub-part J of CFR 47.

General Description:

The TDMA system is the medium for linking calls between PBX and non-public systems users and mobile users. The system also enables a mobile user to communicate with other mobiles.

This Wireless Basestation Unit (WBSU) is the distributed radio component of a 1.9 GHz PCS System that is being developed for operation in the licensed PCS license holder. The WBSU is being developed as a subsystem component.

The WBSU provides the IS-136A air interface to handheld mobiles operating as a private in-building or campus system. The WBSU is connected to the centralized system controller via a proprietary PBX adjunct Interface. This interface utilizes a RJ 45 physical connector. This dedicated (hard-wired) connection provides external power, control communications for the WBSU, and the digital traffic (voice) channels from the WBSU to the controller. The controller component is responsible for providing the clock source used by the WBSU for the frequency control and synchronization and external 24 to 48 vdc operating power. An internal power supply within the WBSU converts the 24 to 48 vdc input into the internal working voltages of 5 and 3.3 vdc.

The WBSU is approximately 12" x 12" x 3". The unit weighs approximately 2.5 kilograms. A security screw is provided which requires a special tool for removal. The antenna are integral to the WBSU and are contained within the assembly.

The operating range of the WBSU is the standard licensed bands within the PCS spectrum. The output level of the transceiver is from -10dBw to -40dBw and is software controlled.

The network connections provided to provide voice or data connections through the WBSU to the PSTN or PABX are provided by the central controller and are not part of the WBSU.

The TDMA system is the medium for linking calls between PBX and non-public systems users and mobile users. The system also enables a mobile user to communicate with other mobiles.

The WBSU is wall mounted on exposed interior walls. The basic office environment is air conditioned, normally at 75°F. This temperature will generally fluctuate -5° to +10°F. The humidity is usually low. In an office environment, the equipment is in view but placed in locations that are out of the general traffic areas.

EXHIBIT 4: Description**Transmitter Technical Characteristics - Pursuant 2.983 (d)**

A.	RF Power Output -	100 milliwatts
B.	Number of Simultaneous Channels -	5
C.	Tunable Channel (not user tunable) -	1997
D.	Frequency Range -	1930.08 to 1989.96 MHz
E.	Frequency Stability -	0.21 ppm
F.	Emission Designations -	33K3X7W
G.	Spurious Emissions -	47.1dBc
H.	Power Supply -	-48 vdc
I.	TX Antenna Gain -	1.5 dBd
J.	RX Antenna Gain -	1.0 dBd
K.	MX 1 Antenna Gain -	1.0 dBd
L.	MX 2 Antenna Gain -	2.0 dBd

EXHIBIT 5: Function of Active Devices

This list is attached in a sealed envelope labeled EXHIBIT 5. Astronet is withholding this exhibit from public inspection under the confidentiality agreement as outlined in CFR 47 §0.459.

EXHIBIT 6: Circuit Diagrams**Transceiver schematics**

The following schematics, RF Block diagram, and pcb artwork are attached in a sealed envelope labeled EXHIBIT 6. Astronet is withholding this exhibit from public inspection under the confidentiality agreement as outlined in CFR 47 §0.459.

EXHIBIT 6-1:	TX1
EXHIBIT 6-2:	TX2
EXHIBIT 6-3:	RX_1.2 / SNI1.2
EXHIBIT 6-4:	RX1.2(RF/IF)
EXHIBIT 6-5:	RX1(DEM)
EXHIBIT 6-6:	RX2(DEM)
EXHIBIT 6-7:	TRXLO1.2 / MODLO1.2
EXHIBIT 6-8:	2ndLO1.2 / SNILO1.2
EXHIBIT 6-9:	ISDN/POWERSUPPLY/BASE CLOCK I/F & RS232C I/F
EXHIBIT 6-10:	ISDN TRANSCEIVER
EXHIBIT 6-11:	CPU
EXHIBIT 6-12:	MDSP
EXHIBIT 6-13:	MDSP2
EXHIBIT 6-14:	QDSP
EXHIBIT 6-15:	QDSP2
EXHIBIT 6-16:	INFQ1
EXHIBIT 6-17:	INFQ2

EXHIBIT 7: Tune-up Procedure**Frequency**

The Wireless base station unit comes tuned from factory, there are no user adjustments.

EXHIBIT 8: Circuit Description

This section provides the description of circuits required by CFR 47 subpart 2.983.

The following descriptions are included: (1) Means for Frequency Stabilization, (2) Means for Suppression of spurious radiation, (3) Means for Limiting Power, (4) Means for modulation systems.

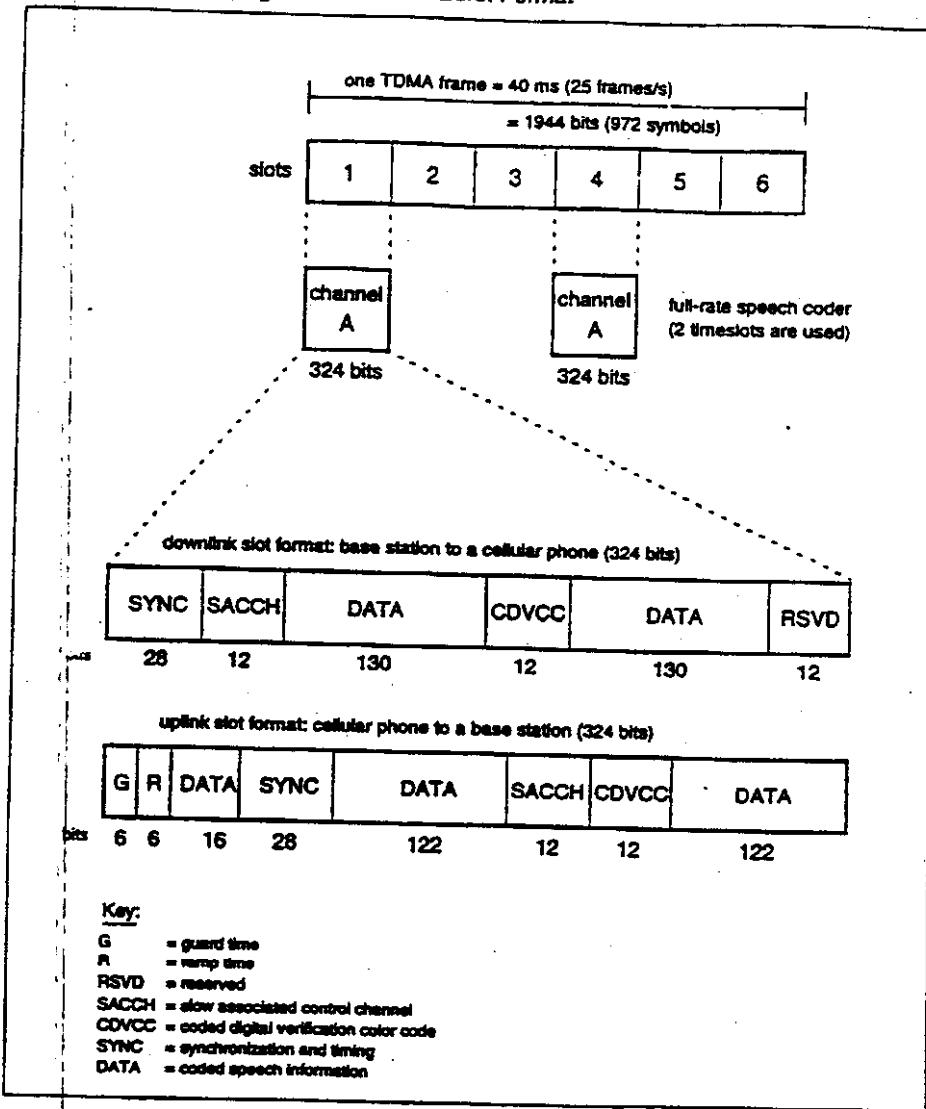
Means for Frequency Stabilization

This base station is provided a clock of 128 kHz from network. Stability of this clock is within 0.21ppm. The transmitter uses 19.2 MHz primary signal which is generated by a VCXO. Frequency of the VCXO is divided by 150 and phase of it is compared with that of 128 kHz clock. The result of comparison determined control voltage of the VCXO.

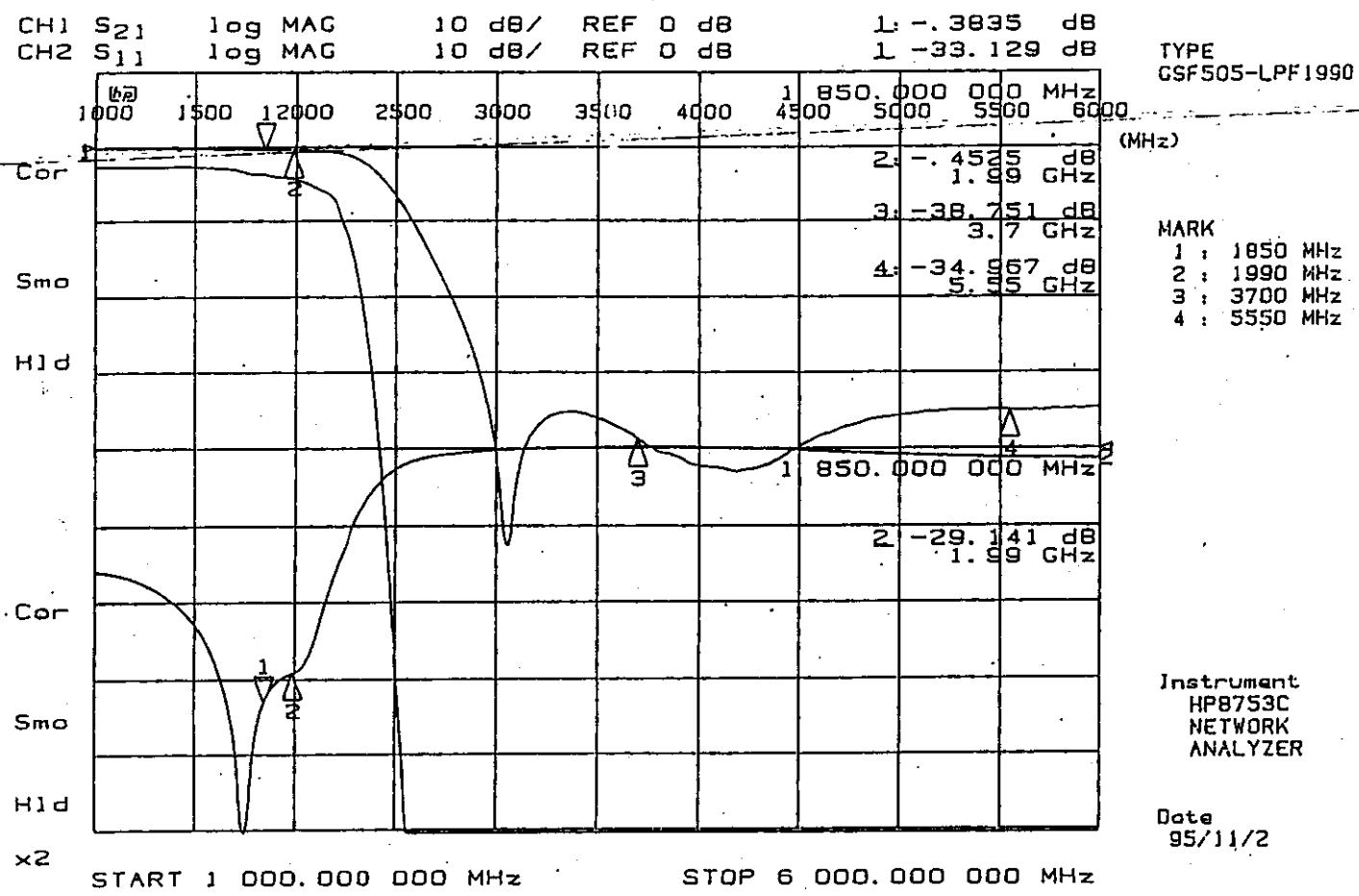
Means for suppression of spurious radiation

Major spurious are occurred as follows. A mixing circuit employed occurs an image of a carrier and leakage of a local. A power amplifier occurs harmonics due to the non-linearity. A band pass filter, which is located next to a power amplifier, attenuates harmonics 30dB at least. Furthermore, each blocks on TRX board are shielded against spread of spurious.

Means for Limiting Power


An auto power controller (APC) circuit employing regulates transmitter power in a range of +2 dB to -4 dB of its nominal power. An APC circuit compares detected power with nominal power and adjusts a gain of an amplifier. These procedures are done by MPU with digital data. When an excessive adjustment occurred by a certain disturbance, it is neglected according to a given threshold. So transmitter power does not excess the nominal too much.

Means for modulation system


The transmitter is capable of generating $\sqrt{2}$ -DQPSK signals. The baseband wave generator have a square root raised cosine Nyquist filter with roll off factor of 0.35 for the pulse shaping. The symbol rate is 24.3k symbols per second.

TDMA Information

Fig. 1. TDMA Burst Format

Low Pass Filter Response

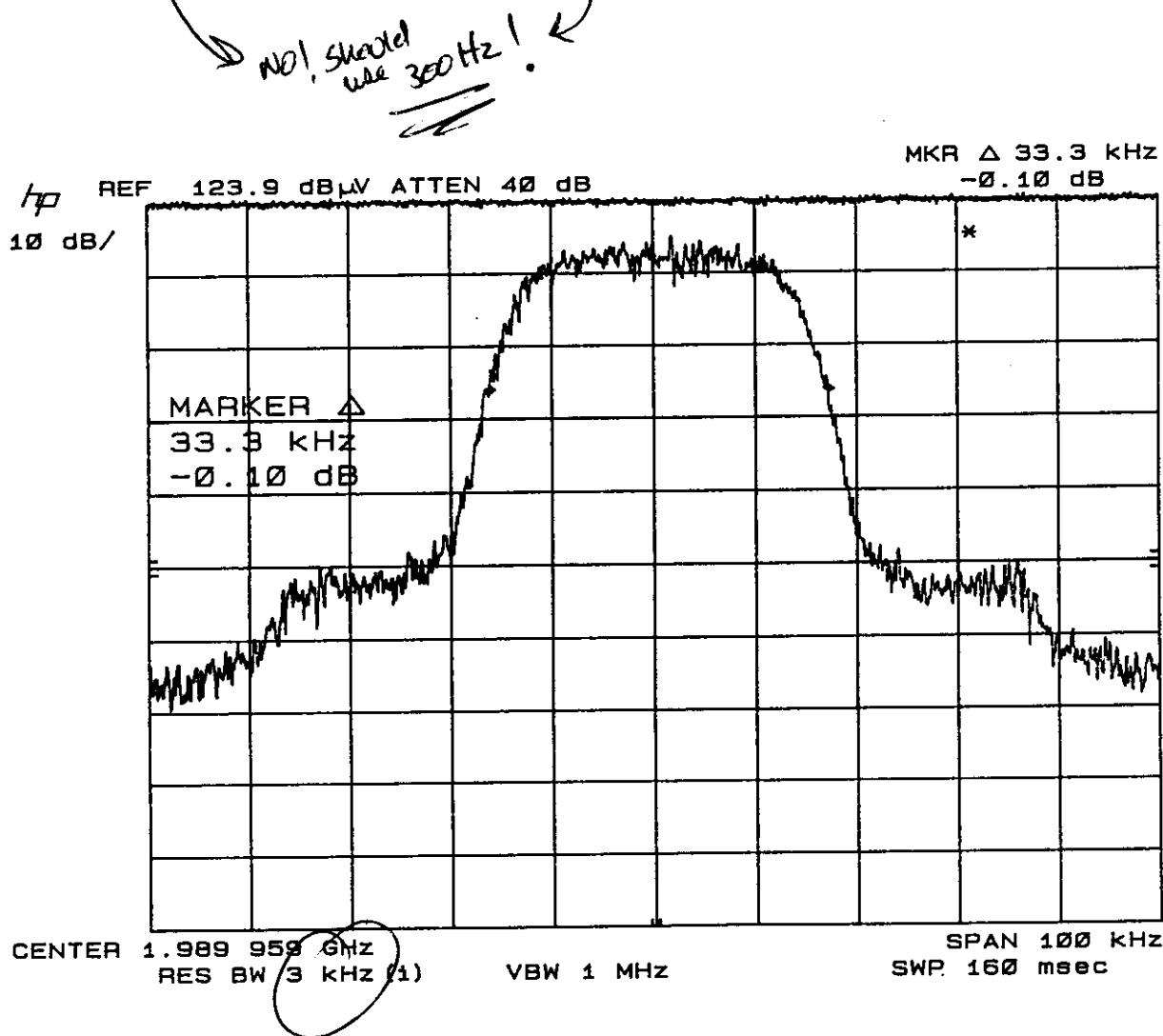


EXHIBIT 9: Measured Data**9.1 RF Power output data**

The RF power output was measured with the peak power meter. The output for carrier one was directly connected to peak power meter through a short, low loss cable. The power was measured to be 19.8dBm.

9.2 Occupied Bandwidth

The bandwidth for this device is 33.3 kHz. The following page(s) show bandwidth plot(s). This measurement was taken with direct connection from the output of antenna to the spectrum analyzer. The wave shape was captured in trace A using a Resolution Bandwidth of 1 MHz a Video Bandwidth of 1 MHz. The reference was adjusted to be equal trace A. Then for trace B the Resolution Bandwidth was adjusted to 3 kHz which is approximately 1% of occupied bandwidth. The occupied Bandwidth is the width of the Emission in trace B measured 26 dB below Reference level.

9.3 Emissions at edge of Frequency Block

The following plots show the emissions at the edge of the upper and lower frequency blocks.

Figure 9.3.1: Band Edge Plot

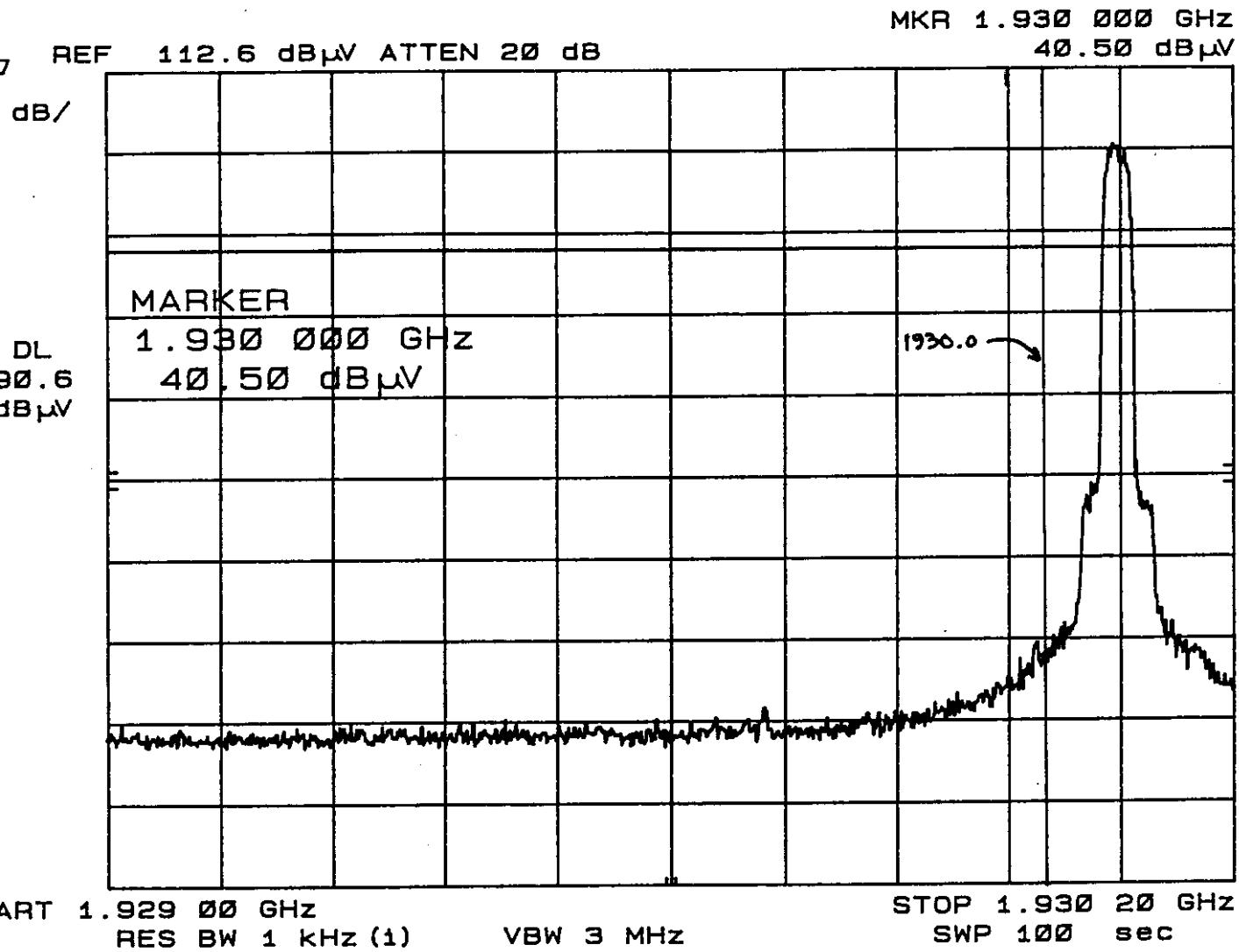
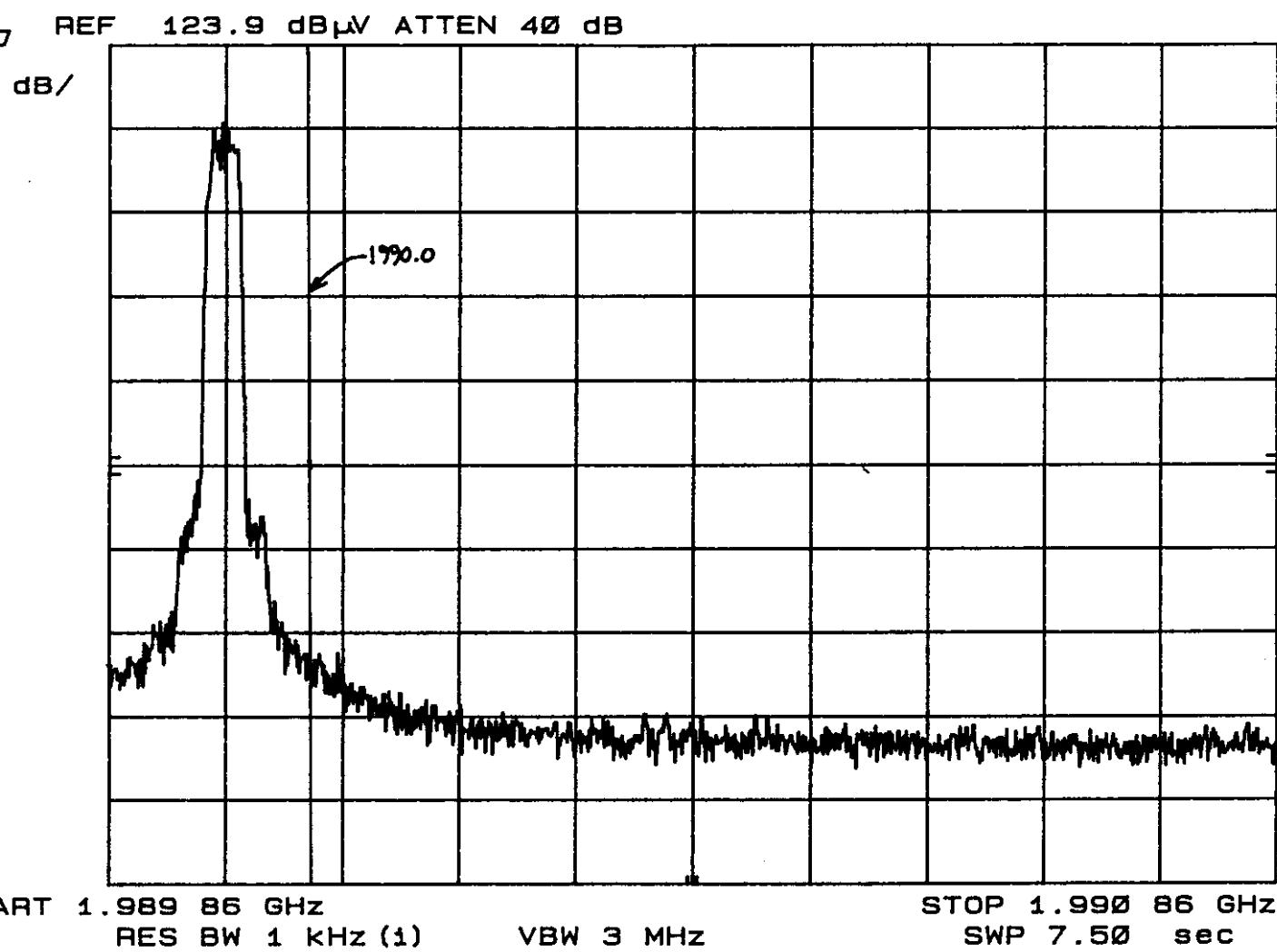



Figure 9.3.2: Band Edge Plot

9.4 Antenna Conducted Spurious Emissions

The following data table and figures show the conducted spurious emissions for the WBSU. All measurements above 1 GHz were made with a RBW of 1 MHz and a VBW of 1 MHz. All measurements below 1 GHz were made with a quasi-peak detector, a RBW of 120 kHz, a VBW of 1 MHz. Due to the internal high pass filter of the HP8566B, external attenuation was not required for emissions measured above 2.5 GHz. Below 2.5 GHz, 20 dB of external attenuation was used to prevent overload in the front end of the spectrum analyzer.

Table 9.4.1: Conducted Spurious Emissions

Company: Astronet
Model: Wireless Base Station

Date: 06/04/98
Tested by: Greg A. Thompson

Notes: Initial Results

Job Number: J98-10883

Standard: FCC Part 24
Conducted

	Frequency (MHz)	Reading (dBuV)	Ext. Attn. (dB)	Cable Loss (dB)	Pre-amp Factor (dB)	(dB)	Net (dBuV)	Limit (dBuV)	Margin (dB)
1930 MHz									
	1720.019	57.7	10.0	0.9	0.0	0.0	68.6	93.8	-25.2
	1930.079	115.8	10.0	1.0	0.0	0.0	126.8		
	2140.019	55.5	10.0	1.0	0.0	0.0	66.5	93.8	-35.4
	3860.127	46.9	10.0	1.5	0.0	0.0	58.4	93.8	-47.9
	5790.200	24.0	10.0	1.9	0.0	0.0	35.9	93.8	-60.7
	7720.290	20.6	10.0	2.5	0.0	0.0	33.1	93.8	
1990 MHz									
	1779.869	59.6	10.0	0.9	0.0	0.0	70.5	91.3	-20.8
	1989.690	113.3	10.0	1.0	0.0	0.0	124.3		
	3979.889	46.5	10.0	1.5	0.0	0.0	58.0	91.3	-43.3
	5969.849	26.0	10.0	1.9	0.0	0.0	37.9	91.3	-53.4
	7959.809	20.9	10.0	2.5	0.0	0.0	33.4	91.3	-57.9
1960 MHz									
	1749.959	57.1	10.0	0.9	0.0	0.0	68.0	92.1	-24.1
	1960.019	114.1	10.0	1.0	0.0	0.0	125.1		
	2170.019	49.2	10.0	1.0	0.0	0.0	60.2	92.1	-31.9
	3919.978	47.4	10.0	1.5	0.0	0.0	58.9	92.1	-33.2
	5880.057	25.7	10.0	1.9	0.0	0.0	37.6	92.1	-54.5
	7840.076	21.9	10.0	2.5	0.0	0.0	34.4	92.1	-57.7

Conducted Power meter reading.

(dBm)

1960.019	18.8	0.0	1.0	0.0	0.0	19.8		
----------	------	-----	-----	-----	-----	------	--	--

9.5 Radiated Spurious Emissions

The following data tables and figures show the radiated spurious emissions for each amplifier tested in the AirSite Remote Radio. All measurements above 1 GHz were made with a RBW of 1 MHz and a VBW of 1 MHz. All measurements below 1 GHz were made with a quasi-peak detector, a RBW of 120 kHz, a VBW of 1 MHz. Due to the internal high pass filter of the HP8566B, external attenuation was not required for emissions measured above 2.5 GHz. Below 2.5 GHz, 20 dB of external attenuation was used to prevent overload in the front end of the spectrum analyzer.

Table 9.5.1: Radiated Spurious Emissions

Company: Astronet
 Model: Wireless Base Station
 Notes: Initial Results

Date: 06/03/98
 Tested by: Greg A. Thompson
 Test Distance: 3
 Job Number: J98-10883

Standard: FCC Part 24

Antenna Polarity	Frequency (MHz)	Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-amp Factor (dB)	Distance Factor (dB)	Net (dBuV/m)	Limit (dBuV/m)	Margin (dB)
1930 MHz									
z	1720.000	33.7	27.8	1.9	0.0	0.0	63.3	83.8	-20.4
z	1930.070	86.1	28.7	2.0	0.0	0.0	116.8		
y	2140.000	33.2	29.3	2.0	0.0	0.0	64.5	83.8	-19.3
z	3860.148	25.1	33.6	3.0	0.0	0.0	61.7	83.8	-22.1
z	5790.227	27.3	35.4	3.9	0.0	0.0	66.6	83.8	-17.2
1990 MHz									
y	1779.918	38.7	28.0	1.9	0.0	0.0	68.6	83.8	-15.2
z	1989.959	85.4	28.9	2.0	0.0	0.0	116.3		
z	2186.370	33.3	29.3	2.0	0.0	0.0	64.6	83.8	-19.2
y	3979.900	32.3	33.9	3.0	0.0	0.0	69.2	83.8	-14.6
z	5969.870	21.3	35.4	3.9	0.0	0.0	60.6	83.8	-23.2
1960 MHz									
y	1749.959	36.9	27.9	1.9	0.0	0.0	66.7	88.0	-21.3
y	1959.959	90.2	28.8	2.0	0.0	0.0	121.0		
z	2186.340	33.3	29.3	2.0	0.0	0.0	64.6	88.0	-23.4
y	3920.038	35.3	33.9	3.0	0.0	0.0	72.2	88.0	-15.8
z	5880.063	22.2	35.4	3.9	0.0	0.0	61.5	88.0	-26.5

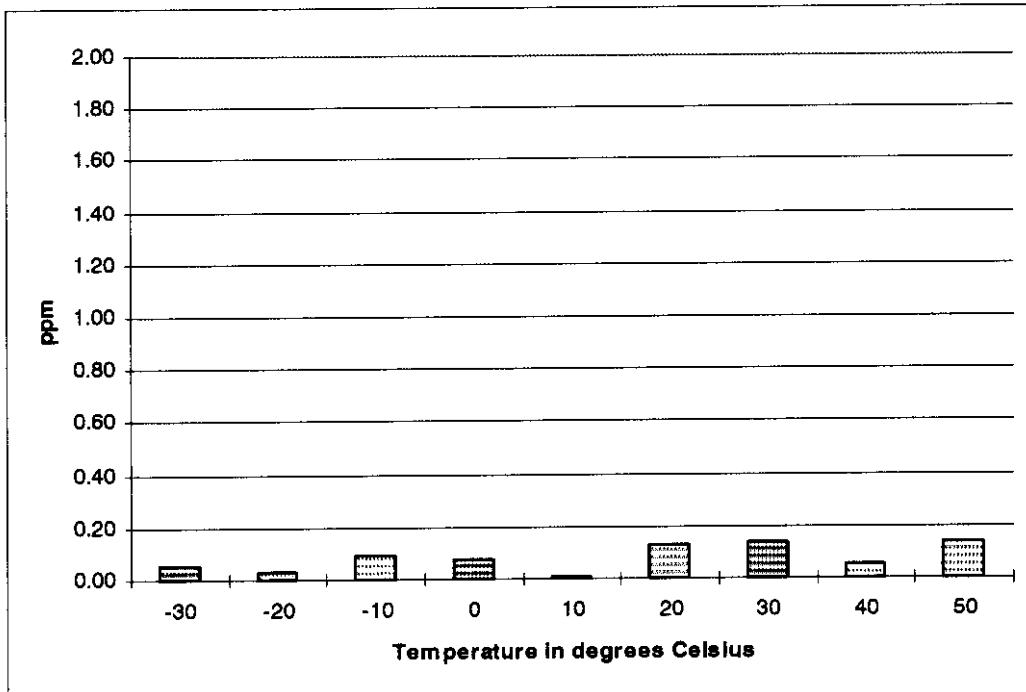

9.6 Frequency Stability

Table 9.6.1: Frequency Stability vs. Temperature, Center frequency 1930.08

Company: Astronet
 Model: Wireless Base Station
 Center Frequency: 1930.08

Engineer: Candy Campbell
 Date: 5/13/98

Temperature degrees C	Frequency MHz	Deviation ppm	Limit ppm
-30	1930.0799	0.05	2.00
-20	1930.0799	0.03	2.00
-10	1930.0802	0.09	2.00
0	1930.0801	0.07	2.00
10	1930.0800	0.01	2.00
20	1930.0798	0.13	2.00
30	1930.0797	0.13	2.00
40	1930.0799	0.06	2.00
50	1930.0797	0.13	2.00

Table 9.6.2: Frequency Stability vs. Temperature, Center frequency 1989.96

Model: Wireless Base Station
Center Frequency: 1989.96

Date: 5/13/98

Temperature degrees C	Frequency MHz	Deviation ppm	Limit ppm
-30	1989.9597	0.14	2.00
-20	1989.9596	0.20	2.00
-10	1989.9597	0.17	2.00
0	1989.9597	0.14	2.00
10	1989.9599	0.08	2.00
20	1989.9599	0.05	2.00
30	1989.9601	0.05	2.00
40	1989.9596	0.21	2.00
50	1989.9601	0.03	2.00

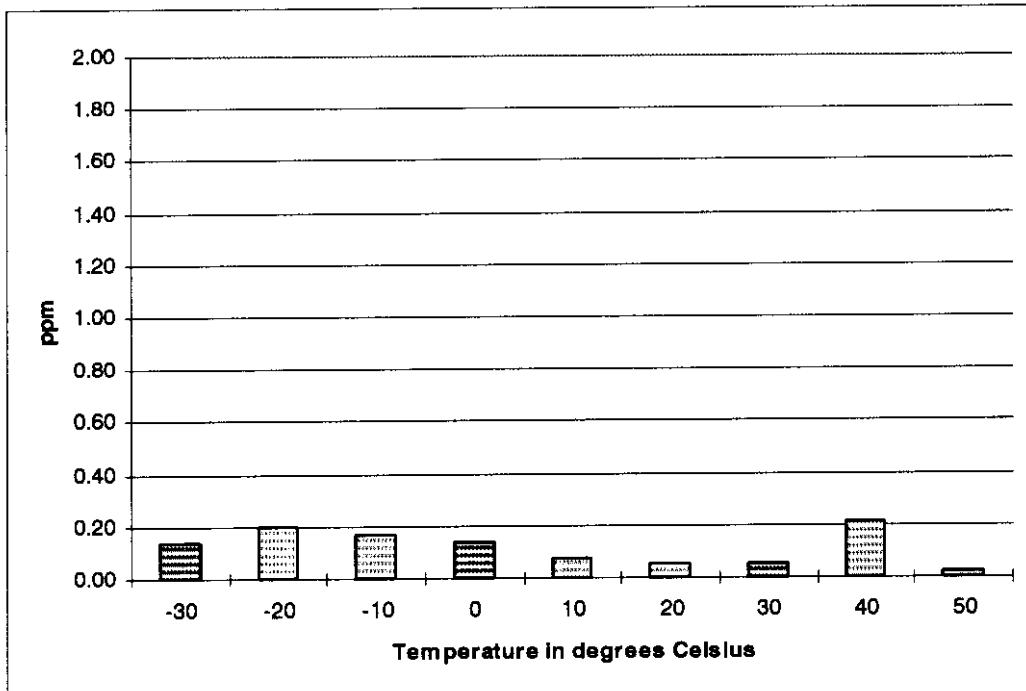
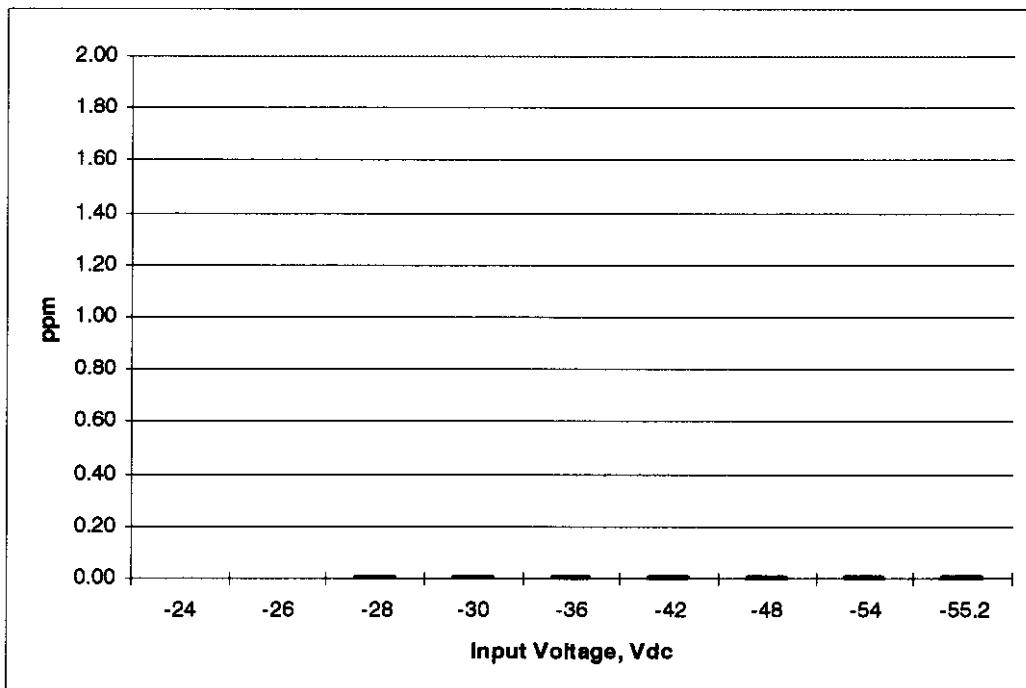



Table 9.6.3: Frequency Stability vs. Input Voltage, Center frequency 1930.08

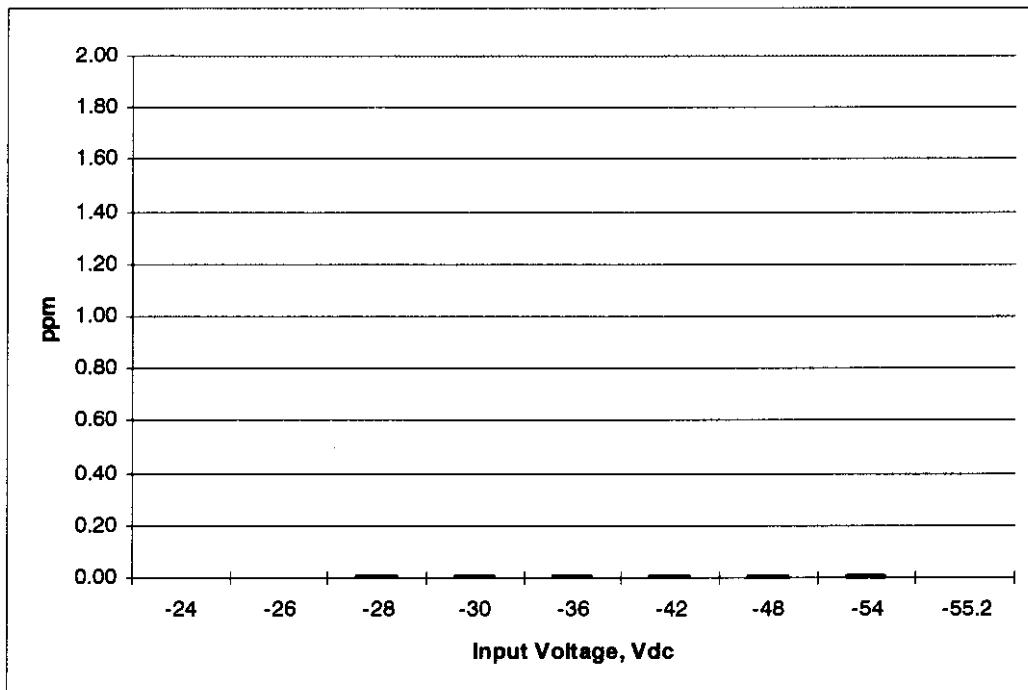
Company: Astronet
Model: Wireless Base Station
Center Frequency: 1930.08

Engineer: David J. Schramm
Date: 6/10/98

Temperature Degrees C	Frequency MHz	Deviation ppm	Limit ppm
-24	N/A		2.00
-26	N/A		2.00
-28	1930.0800	0.01	2.00
-30	1930.0800	0.01	2.00
-36	1930.0800	0.01	2.00
-42	1930.0800	0.01	2.00
-48	1930.0800	0.01	2.00
-54	1930.0800	0.01	2.00
-55.2	1930.0800	0.01	2.00

Table 9.6.3: Frequency Stability vs. Input Voltage, Center frequency 1989.96

Company: Astronet


Engineer: David J. Schramm

Model: Wireless Base Station

Date: 6/10/98

Center Frequency: 1989.96

Temperature degrees C	Frequency MHz	Deviation ppm	Limit ppm
-24	N/A		2.00
-26	N/A		2.00
-28	1989.9600	0.01	2.00
-30	1989.9600	0.01	2.00
-36	1989.9600	0.01	2.00
-42	1989.9600	0.01	2.00
-48	1989.9600	0.01	2.00
-54	1989.9600	0.01	2.00
-55.2	N/A		2.00

17-011-770-921-1889

FAX Transmission

TO: Harada san

We have re-tested the same device which was examined in ITS-At1 from June 3 to 4. The device's serial number is "1776008". Attached six plots are result of the occupied bandwidth. Each plots are measured in the setting as follow.

1. TX 1 channel 2 (1930.08MHz)
2. TX 1 channel 1000 (1960.02MHz)
3. TX 1 channel 1998 (1989.98MHz)
4. TX 2 channel 2 (1930.08MHz)
5. TX 2 channel 1000 (1960.02MHz)
6. TX 2 channel 1998 (1989.98MHz)

Would you send these results to ITS with ASC's letterhead, they may need it to verify the correspondence of the device.

Thank you

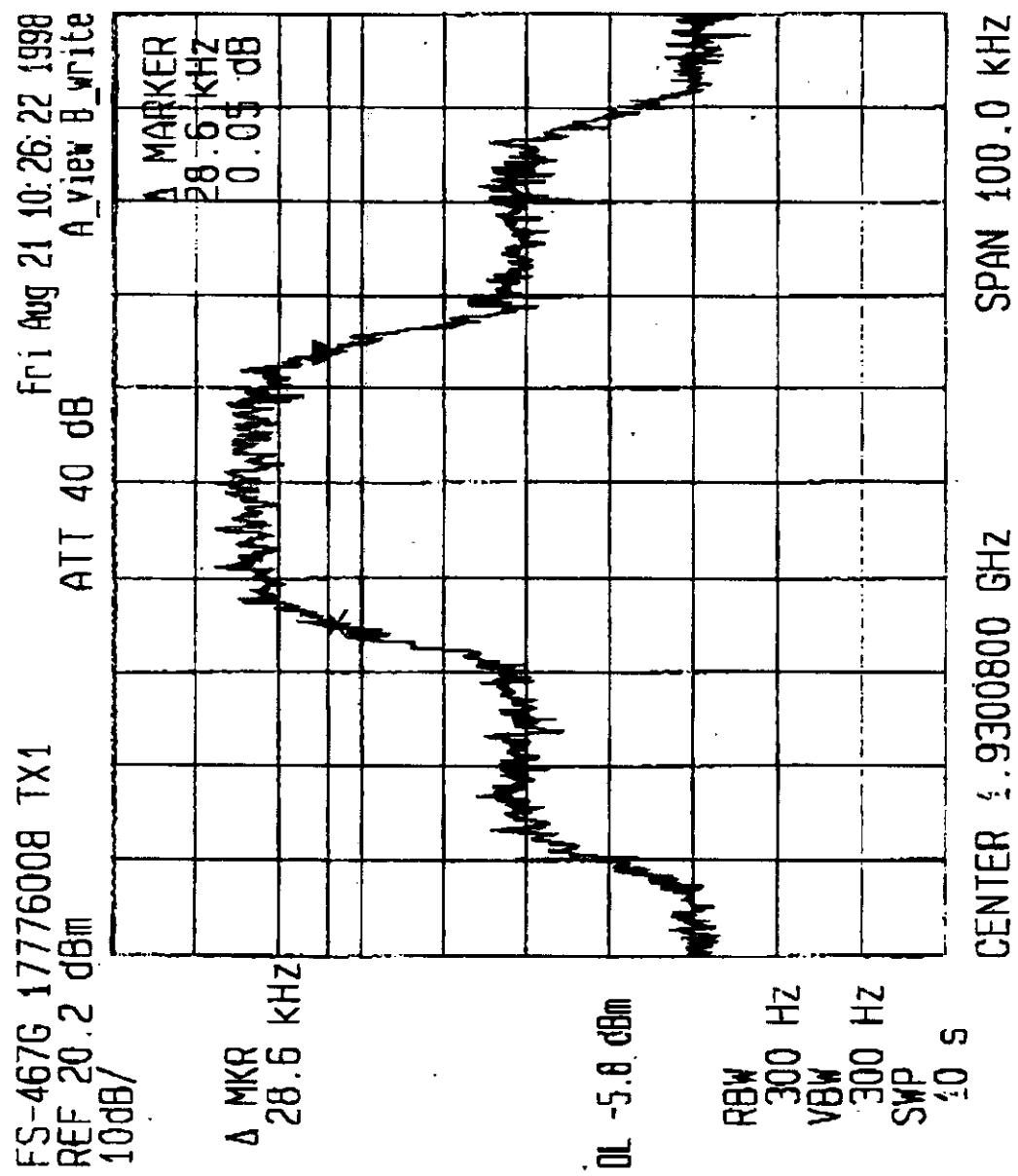
Mitsubishi

1-87 73

(H. Kojima)

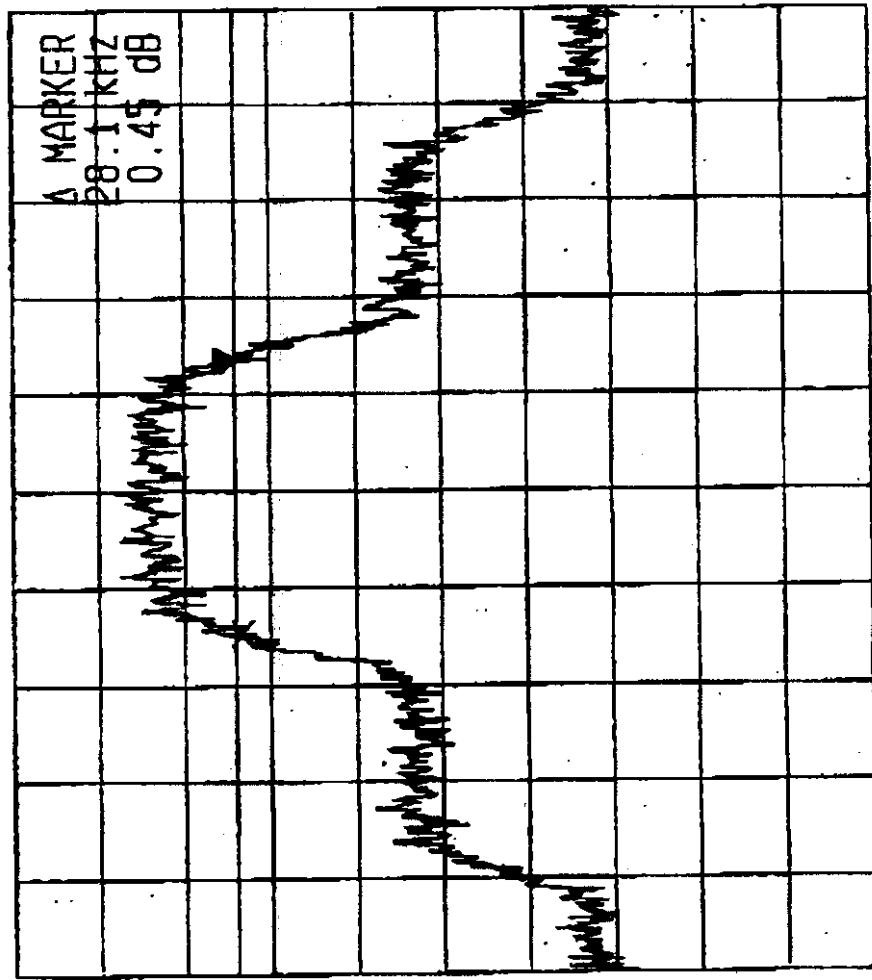
2nd page is missing

I will confirm later


AUG-21-98 FRI 03:57 PM

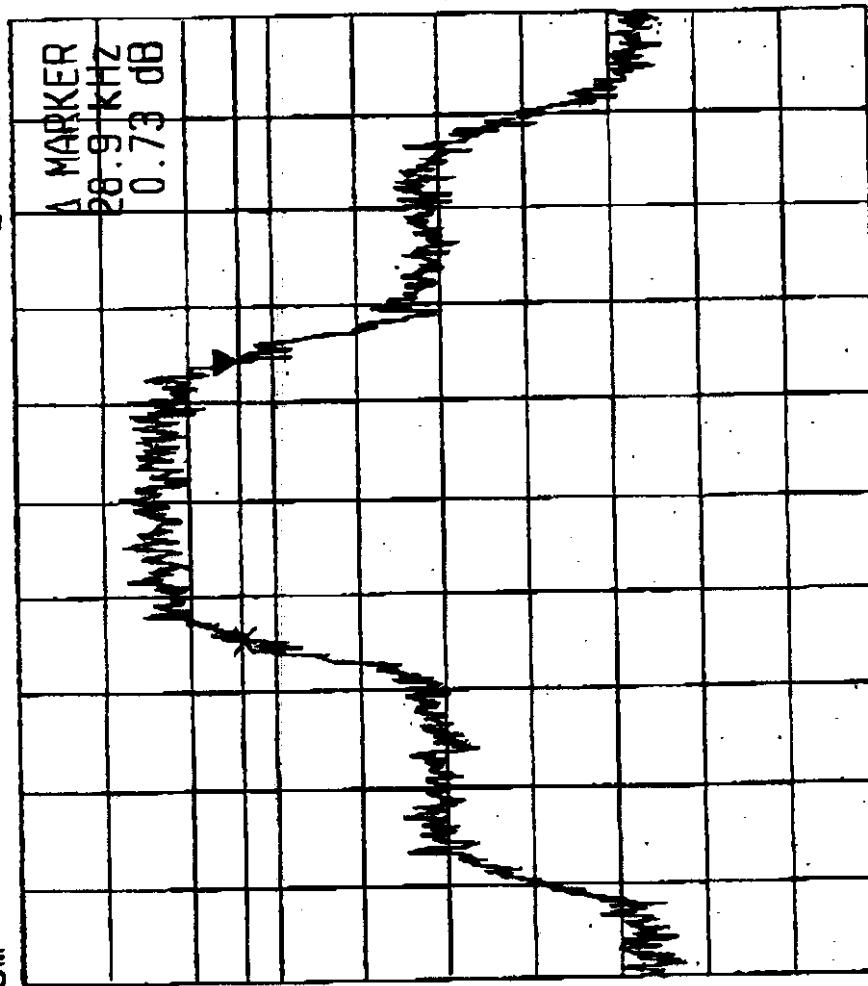
98 08/21 FRI 23:56 FAX 06 497 5270

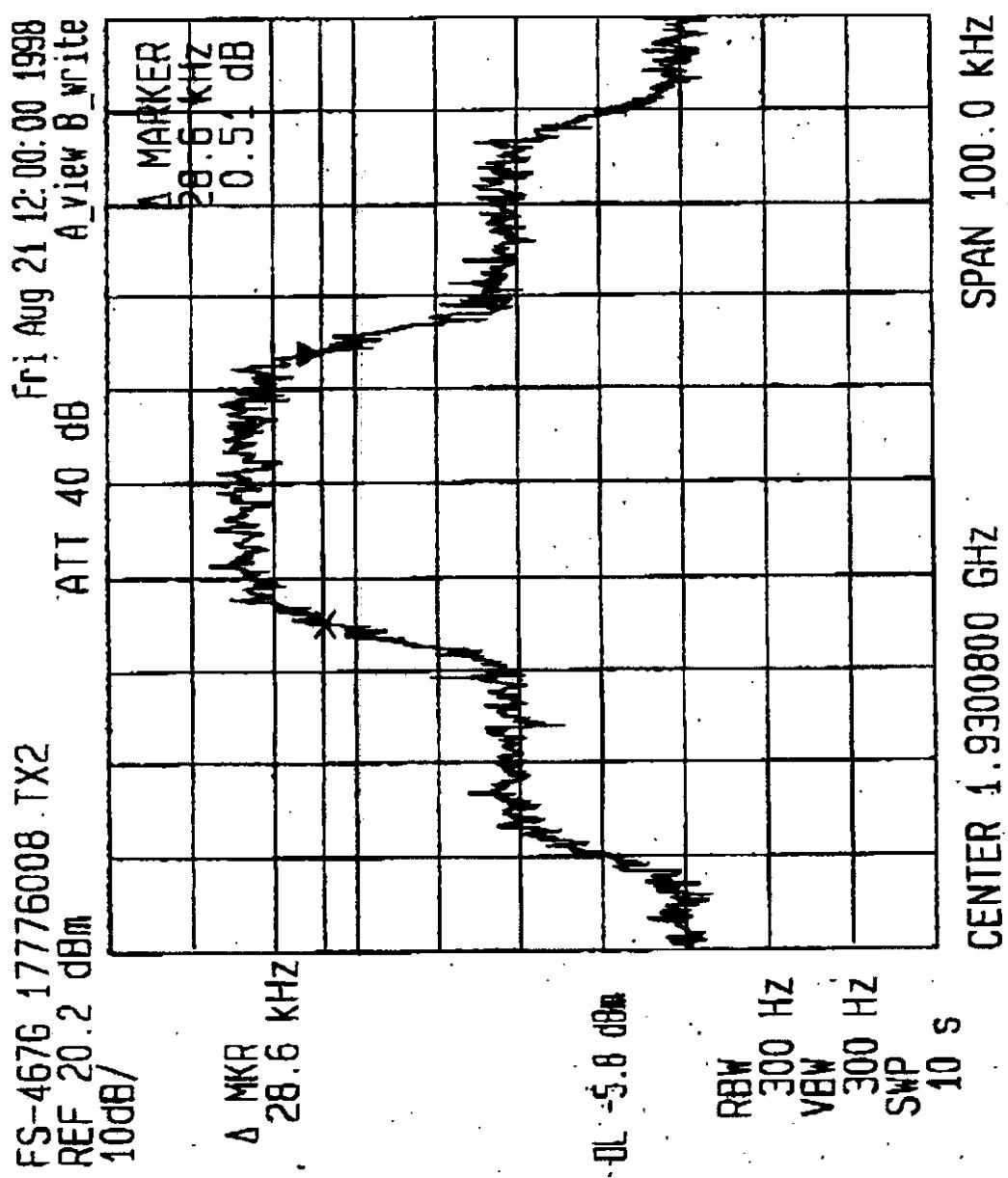
FAX NO.


P. 03

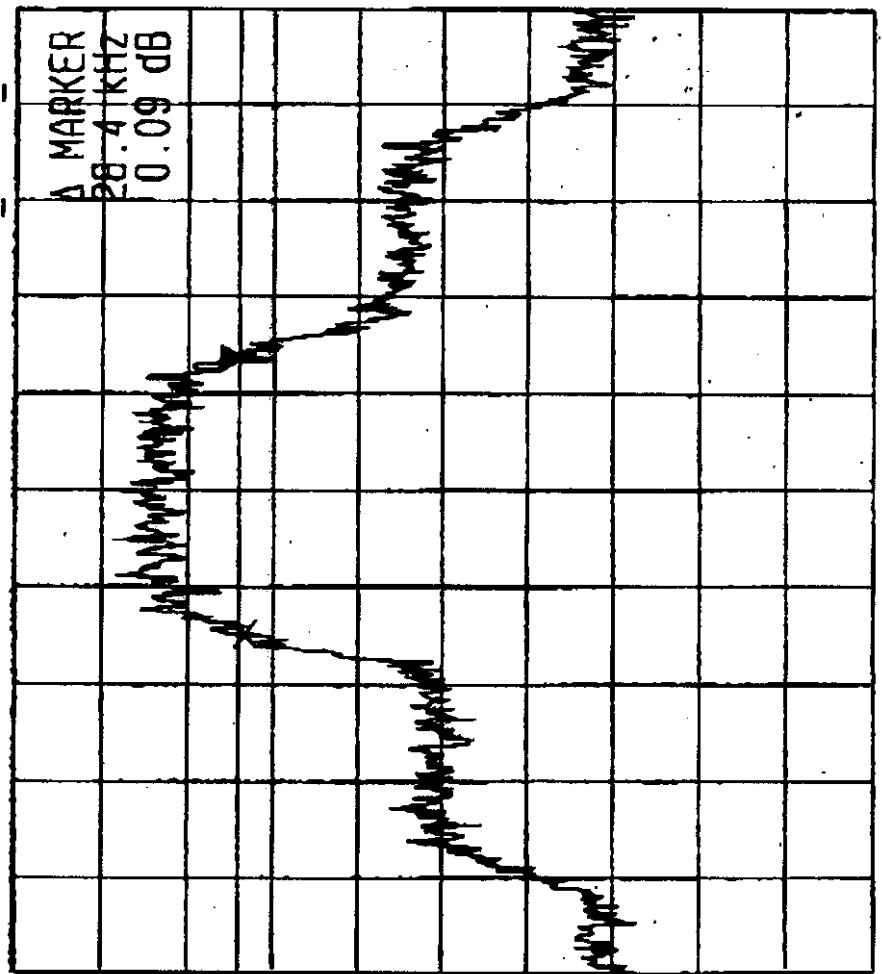
002

FS-4676 17776008 TX1
REF 20.6 dBm
10dB/
3/


Fri Aug 21 10:34:27 1998
ATT 40 dB
A view B write

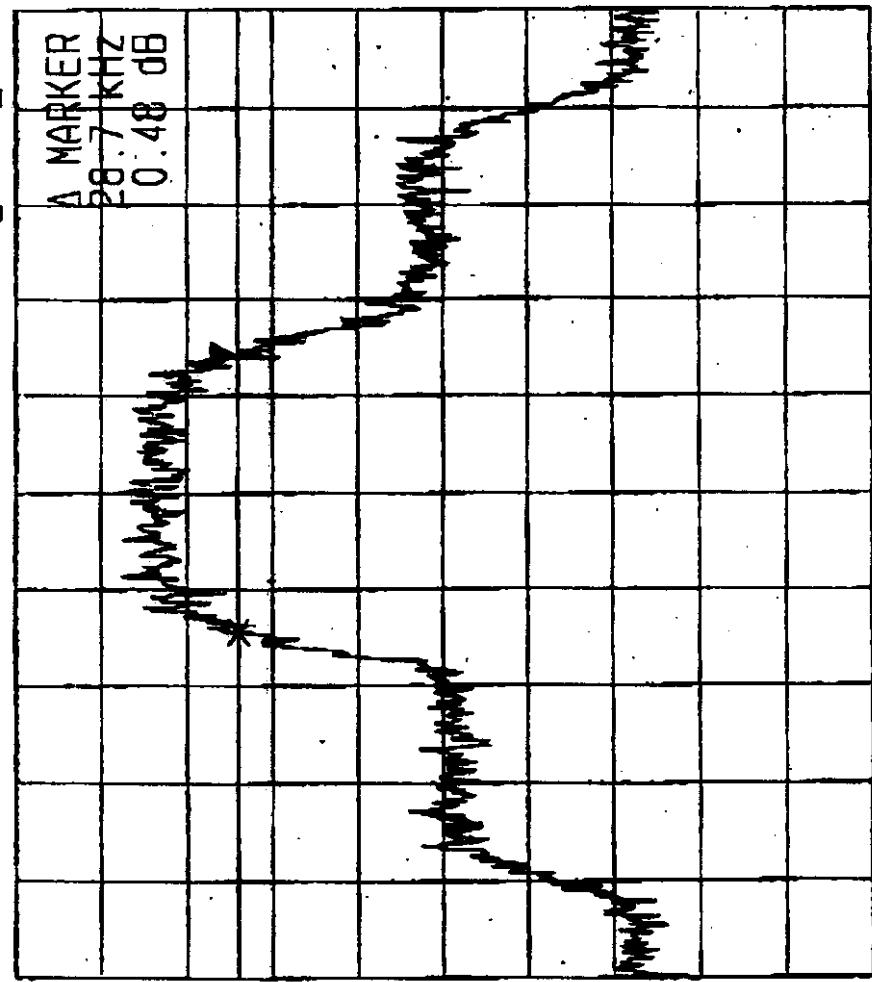

RBW 300 Hz
VBW 300 Hz
SWP 10 s
3/

FS-467G 17776008. TX1
REF 20.7 dBm
10dB/
10dB/


Fri Aug 21 10:42:51 1998
ATT 40 dB
A view 0 write

RBW 300 Hz
VBW 300 Hz
SWP 10 S

FS-467G 17776008 TX2
REF 20.0 dBm
10dB/
ATT 30 dB



Fri Aug 21 12:05:12 1998
A_view B_Write
CENTER 1.9600200 GHz SPAN 100.0 kHz

RBW 300 Hz
VBW 300 Hz
SWP 10 S

FS-4676 17776008 TX2
 REF 20.2 dBm
 10dB/
 10dB/

Fri Aug 21 11:26:45 1998
 ATT 40 dB A_view B_write

D -5.8 dBm
 RBW 300 Hz
 VBW 300 Hz
 SWP 10 s

CENTER 1.9899600 GHz SPAN 100.0 kHz