

Test report No.

: 32EE0264-HO-02-A

Page Issued date FCC ID : 1 of 17 : April 4, 2012

: CWTWB1G744

RADIO TEST REPORT

Test Report No.: 32EE0264-HO-02-A

Applicant

: Alps Electric Co., Ltd.

Type of Equipment

Passive Entry System (Hand Unit)

Model No.

: TWB1G744

Test regulation

: FCC Part 15 Subpart C: 2012

FCC ID

CWTWB1G744

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

March 4 and 9, 2012

Representative test

engineer:

Tomotaka Sasagawa Engineer of WiSE Japan, UL Verification Service

Approved by:

Masanori Nishiyama

Leader of WiSE Japan, UL Verification Service

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8116

Facsimile : +81 596 24 8124

Page Issued date FCC ID : 2 of 17 : April 4, 2012 : CWTWB1G744

CONTENTS PAGE SECTION 1: Customer information ······ 3 SECTION 2: Equipment under test (E.U.T.) 3 SECTION 4: Operation of E.U.T. during testing -------7 SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) 8 SECTION 7: -20dB and 99% Occupied Bandwidth · · · · 10 Automatically deactivate......11 Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)......12

Head Office EMC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

Page : 3 of 17 Issued date : April 4, 2012 FCC ID : CWTWB1G744

SECTION 1: Customer information

Company Name : Alps Electric Co., Ltd.

Address : 6-3-36, Nakazato, Furukawa, Osaki-city, Miyagi-pref, 989-6181, Japan

Telephone Number : +81-229-23-5111
Facsimile Number : +81-229-22-3755
Contact Person : Toru Kinoshita

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Passive Entry System (Hand Unit)

Model No. : TWB1G744

Serial No. : Refer to Section 4, Clause 4.2

Receipt Date of Sample : January 28, 2012

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: TWB1G744 (referred to as the EUT in this report) is the Passive Entry System (Hand Unit).

General Specification

Feature of EUT : The Hand Unit receives LF signal from I-KEY unit installed in vehicle,

transmits RF signal and performs locking and unlocking of a door and an

engine start.

Or, it transmits RF signal by being pushed button, and performs locking

and unlocking of a door and an engine start.

Clock frequency in the system : 2MHz (CPU)

Radio Specification

(Transmitter part)

Equipment Type : Transceiver Frequency of operation : 433.92MHz

 $Type \ of \ modulation \qquad \qquad : \qquad FSK$

Antenna Type : PCB Pattern antenna Method of Frequency Generation : SAW Resonator Operating voltage (inner) : DC 3.0V

Operating Temperature : -10 to +60 deg. C

(Receiver part)

Frequency of operation : 125kHz

Antenna Type : Loop Coil and Bar Antenna

Operating voltage (inner) : DC 3.0V

Operating Temperature : -10 to +60 deg. C

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 17 Issued date : April 4, 2012 FCC ID : CWTWB1G744

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2012, final revised on February 1, 2012

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.4:2003 7. AC powerline conducted emission measurements IC: RSS-Gen 7.2.4	FCC: Section 15.207 IC: RSS-Gen 7.2.4	-N/A	N/A*1)	-
Automatically Deactivate	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: -	FCC: Section 15.231(a)(1) IC: RSS-210 A1.1.1	_N/A	Complied	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: RSS-Gen 4.8	FCC: Section 15.231(b) IC: RSS-210 A1.1.2	1.5dB 433.92MHz Horizontal (PK, AV limit) *2)	Complied	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: RSS-Gen 4.9	FCC: Section 15.205 Section 15.209 Section 15.231(b) IC: RSS-210 A1.1.2, 2.5.1 RSS-Gen 7.2.5	8.2dB 3905.28MHz Horizontal (PK, AV limit) *2)	Complied	Radiated
-20dB Bandwidth	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators IC: -	FCC: Section 15.231(c) IC: Reference data	_N/A	Complied	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC 15.31 (e)

This test was performed with the New Battery (DC 3.0V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT does not have AC Mains.

^{*2)} The test was performed with severer PK detection for average limit.

 Page
 : 5 of 17

 Issued date
 : April 4, 2012

 FCC ID
 : CWTWB1G744

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied Bandwidth	IC: RSS-Gen 4.6.1	IC: RSS-Gen 4.6.1	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room (semi- anechoic chamber)	Radiated emission (10m*)(<u>+</u> dB)								
	9kHz 30MHz 300MHz -30MHz -300MHz -1GHz								
No.1	4.1dB	5.0dB	4.8dB						
No.2									
No.3									
No.4	-	-	- 1						

^{*10}m = Measurement distance

Test room	Radiated emission									
(semi-		(3m*)((<u>+</u> dB)		(1m*))(<u>+</u> dB)	$(0.5\text{m}^*)(\underline{+}\text{dB})$			
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz			
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz			
No.1	4.2dB	5.0dB	5.1dB	4.7dB	5.7dB	4.4dB	4.3dB			
No.2	4.1dB	5.2dB	5.1dB	4.8dB	5.6dB	4.3dB	4.2dB			
No.3	4.5dB	5.0dB	5.2dB	4.8dB	5.6dB	4.5dB	4.2dB			
No.4	4.7dB	5.2dB	5.2dB	4.8dB	5.6dB	5.1dB	4.2dB			

^{*3}m/1m/0.5m = Measurement distance

Radiated emission test(3m)

[Electric Field Strength of Fundamental Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

[Electric Field Strength of Spurious Emission]

The data listed in this test report has enough margin, more than the site margin.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 32EE0264-HO-02-A Test report No.

Page : 6 of 17 Issued date : April 4, 2012 FCC ID : CWTWB1G744

3.5 **Test Location**

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

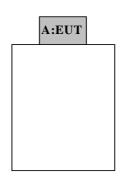
	FCC Registration Number	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
No.10 measurement room	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
No.11 measurement room	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-

^{*} Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Data of EMI, Test instruments, and Test set up.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Page : 7 of 17 Issued date : April 4, 2012 FCC ID : CWTWB1G744

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item*	Mode						
Automatically Deactivate	Normal use mode						
Duty Cycle							
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx)						
Electric Field Strength of Spurious Emission							
-20dB & 99% Occupied Bandwidth							
* The system was configured in typical fashion (as a customer would normally use it) for testing.							

4.2 Configuration and peripherals

^{*} Test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Passive Entry System	TWB1G744	12012702 *1)	Alps Electric Co., Ltd.	EUT
	(Hand Unit)		12012701 *2)		

^{*1)} Used for Normal use mode

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for Transmitting mode

: 32EE0264-HO-02-A Test report No.

Page : 8 of 17 **Issued date** : April 4, 2012 FCC ID : CWTWB1G744

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious **Emission**)

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane. The EUT was set on the center of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

[Transmitting mode]

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance

The measuring antenna height was varied between 1 and 4m (frequency 9kHz – 30MHz: loop antenna was fixed height at 1.0m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength. The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver/spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz	Above 1GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9kHz to 90kHz and	From 90kHz to	From 150kHz	From 490kHz to	From 30MHz to 1GHz	Above 1GHz *1)
	From 110kHz to	110kHz	to 490kHz	30MHz	10 10112	1)
	150kHz					
Detector	Peak	Peak	Peak	Peak	Peak *2)	Peak *2)
Type						
IF	200Hz	200Hz	9kHz	9kHz	120kHz	PK: S/A:RBW
Bandwidth						1MHz,
						VBW:3MHz

^{*}For the test below 30MHz, the noise was not detected when it was confirmed with PK detect.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is folded in or out. The worst case was confirmed that mechanical key is folded in and out, as a result, the test which mechanical key was folded out was the worst case. Therefore the test was performed under the worst condition.

Measurement range : 9kHz-3.2GHz Test data : APPENDIX

Test result : Pass

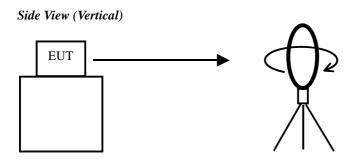
UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Refer to Figure 1 about Direction of the Loop Antenna.

^{*1)} The Spectrum Analyzer was used in 3dB resolution bandwidth.


^{*2)} Average emission measurements were not calculated with PK detect and Duty cycle factor since the PK measurement value did not exceed the AV limit.

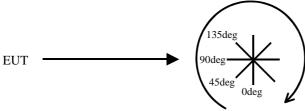
⁻ The carrier level was measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

^{*}The result is rounded off to the second decimal place, so some differences might be observed.

Page : 9 of 17
Issued date : April 4, 2012
FCC ID : CWTWB1G744

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 10 of 17
Issued date : April 4, 2012
FCC ID : CWTWB1G744

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20dB and 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20dB Bandwidth	500kHz	15kHz	47kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth	Enough width to display 20dB Bandwidth	1 % of Span	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
*1) The measuren	nent was performed with Pe	ak detector Ma	x Hold since the	e duty cycle was not 10	00%		•

Test data : APPENDIX

Test result : Pass

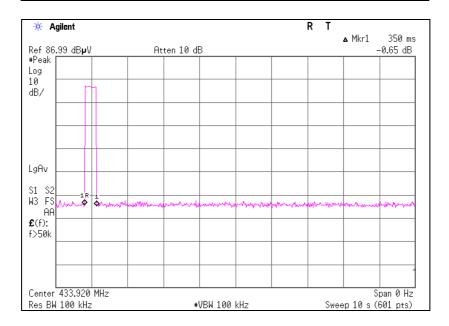
Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 11 of 17

 Issued date
 : April 4, 2012

 FCC ID
 : CWTWB1G744


APPENDIX 1: Data of EMI test

Automatically deactivate

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32EE0264-HO-02
Date 03/09/2012
Temperature/ Humidity 23 deg. C / 36% RH
Engineer Tomotaka Sasagawa
Mode Transmitting mode

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.35	5.00	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 32EE0264-HO-02-A Test report No.

Page : 12 of 17 Issued date : April 4, 2012 FCC ID : CWTWB1G744

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32EE0264-HO-02 03/04/2012 Date

Temperature/ Humidity 22 deg. C / 48% RH Engineer Tomotaka Sasagawa Mode Transmitting mode

PK Limit

Frequency	Detector	Read	ding	Ant	Loss	Gain	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
433.920	PK	82.5	79.5	17.9	10.9	32.0	79.3	76.3	100.8	21.5	24.5	Carrier
867.840	PK	31.7	30.6	22.3	13.3	31.2	36.1	35.0	80.8	44.7	45.8	Outside
1301.760	PK	47.3	47.5	24.8	1.9	33.9	40.1	40.3	73.9	33.8	33.6	Inside
1735.680	PK	48.1	53.1	25.8	2.1	32.9	43.1	48.1	80.8	37.7	32.7	Outside
2169.600	PK	45.9	45.5	27.1	2.4	32.3	43.1	42.7	80.8	37.7	38.1	Outside
2603.520	PK	43.9	44.0	28.6	2.6	32.1	43.0	43.1	80.8	37.8	37.7	Outside
3037.440	PK	43.3	43.6	28.7	2.8	31.9	42.9	43.2	80.8	37.9	37.6	Outside
3471.360	PK	43.5	42.9	28.9	3.1	31.8	43.7	43.1	80.8	37.1	37.7	Outside
3905.280	PK	44.2	42.6	29.8	3.3	31.6	45.7	44.1	73.9	28.2	29.8	Inside
4339.200	PK	42.8	42.4	30.2	3.5	31.5	45.0	44.6	73.9	28.9	29.3	Inside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier)$

AV Limit

Frequency	Detector	Read	ding	Ant	Loss	Gain	Res	sult	Limit	Ma	rgin	Remark
		[dBuV]		Factor			[dBuV/m]			[dB]		
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
433.920	PK	82.5	79.5	17.9	10.9	32.0	79.3	76.3	80.8	1.5	4.5	Carrier
867.840	PK	31.7	30.6	22.3	13.3	31.2	36.1	35.0	60.8	24.7	25.8	Outside
1301.760	PK	47.3	47.5	24.8	1.9	33.9	40.1	40.3	53.9	13.8	13.6	Inside
1735.680	PK	48.1	53.1	25.8	2.1	32.9	43.1	48.1	60.8	17.7	12.7	Outside
2169.600	PK	45.9	45.5	27.1	2.4	32.3	43.1	42.7	60.8	17.7	18.1	Outside
2603.520	PK	43.9	44.0	28.6	2.6	32.1	43.0	43.1	60.8	17.8	17.7	Outside
3037.440	PK	43.3	43.6	28.7	2.8	31.9	42.9	43.2	60.8	17.9	17.6	Outside
3471.360	PK	43.5	42.9	28.9	3.1	31.8	43.7	43.1	60.8	17.1	17.7	Outside
3905.280	PK	44.2	42.6	29.8	3.3	31.6	45.7	44.1	53.9	8.2	9.8	Inside
4339.200	PK	42.8	42.4	30.2	3.5	31.5	45.0	44.6	53.9	8.9	9.3	Inside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

UL Japan, Inc.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

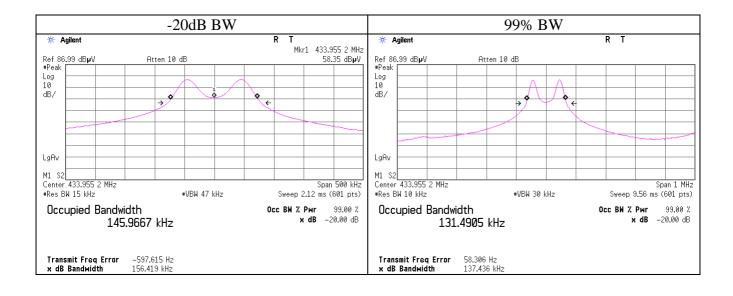
^{*}Average emission measurements were not calculated with PK detect and Duty cycle factor since the PK measurement value did not exceed the AV limit.

Page : 13 of 17
Issued date : April 4, 2012
FCC ID : CWTWB1G744

-20dB and 99% Occupied Bandwidth

Test place Head Office EMC Lab. No.3 Semi Anechoic Chamber

Report No. 32EE0264-HO-02 Date 03/09/2012 Temperature/ Humidity 23 deg C / 36% R


Temperature/ Humidity
Engineer
Mode

23 deg. C / 36% RH
Tomotaka Sasagawa
Transmitting mode

Bandwidth Limit: Fundamental Frequency 433.92 MHz x 0.25% = 1084.80 kHz

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
145.97	1084.80	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
131.49	1084.80	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 17 Issued date : April 4, 2012 FCC ID : CWTWB1G744

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)	
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2012/02/24 * 12	
MOS-13	Thermo-Hygrometer	Custom	CTH-180	-	RE	2012/02/06 * 12	
MJM-06	Measure	PROMART	SEN1955	-	RE	-	
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-	
MSA-05	Spectrum Analyzer	Advantest	R3273	160400285	RE	2011/11/23 * 12	
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2011/08/11 * 12	
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2011/10/15 * 12	
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	174	RE	2011/10/15 * 12	
MCC-51	Coaxial cable	UL Japan	-	-	RE	2011/07/15 * 12	
MAT-09	Attenuator(6dB)	Weinschel Corp	2	2 BK7973		2011/11/02 * 12	
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2012/03/16 * 12	
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2012/02/29 * 12	
MOS-15	Thermo-Hygrometer	Custom	CTH-180	-	RE	2012/02/06 * 12	
MJM-07	Measure	PROMART	SEN1955	5 -		-	
MHA-21	Horn Antenna 1- 18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2011/08/11 * 12	
MCC-56	Microwave Cable	Suhner	SUCOFLEX104	270875/4(1m) / 284655(5m)	RE	2011/03/02 * 12	
MPA-12	MicroWave System Amplifier	Agilent	83017A	MY39500780	RE	2011/03/10 * 12	
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2011/10/19 * 12	
MCC-30	Coaxial cable	UL Japan	-	-	RE	2011/07/28 * 12	

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth , Automatically deactivate and Duty cycle tests

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN