APPENDIX II Test Report Cover Sheet/Performance Test Data

COMPANY NUMBER: 4524A MODEL NUMBER: 11-00680-R MANUFACTURER: GTCO CALCOMP, INC. TESTED TO RADIO STANDARD SPECIFICATION NO: RSS 210 Issue 6, September 2005 OPEN AREA TEST SITE INDUSTRY CANADA NUMBER: 2043 FREQUENCY RANGE (or fixed frequency): 2.400-2.480 GHz R.F. POWER IN WATTS: 0.000395 W (Conducted) FIELD STRENGTH (at what distance): 103.88 dBuV @ 3m OCCUPIED BANDWIDTH (99% BW): 1.2 MHz TYPE OF MODULATION: Gaussian Frequency Shift Keying (GFSK) EMISSION DESIGNATOR (TRC-43): 1M2OF2D TRANSMITTER SPURIOUS (worst case): 58.16 dBuV @ 3m **RECEIVER SPURIOUS (worst case):** <u>No detectable spurious emissions</u> COMPLIANCE STATEMENT: ATTESTATION: I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standard(s). And that the radio equipment identified in this application has been subject to all the applicable test conditions specified in the departmental standards and all of the requirements of the standards have been met. D. Leunakeron Signature: Date: January 3, 2006 **Dusmantha Tennakoon**

DOC-ICR011 11/24/2004

EMC Engineer

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313

January 3, 2006

Industry Canada Certification and Engineering Bureau PO Box 11490, Station H Building 94 Ottawa, Ontario K2H 8S2

Dear Technical Reviewer:

We (MET Laboratories, Inc.) wish to obtain radio equipment approval by the Certification and Engineering Bureau of Industry Canada. The device for certification is a PRS-RF Hub. It has already been granted an equipment authorization by the FCC (Federal Communications Commission). The FCCID is CTW-RFHUB. It is our desire to use an FCC test report to demonstrate compliance with the applicable Industry Canada standards. Below is a cross reference table for your review:

RSS-210 Cross Reference

Name of Test	RSS-210	FCC Test Requirement
Antenna Requirement	RSS-GEN 7.1.4	Part 15, Subpart C, §15.203
Restricted Bands of Operation	Section 2.2	Part 15, Subpart C, §15.205
Conducted Emissions	RSS-GEN 7.2.2	Part 15, Subpart C, §15.207
Bandwidth Requirements	A8.2(1)	Part 15, Subpart C, §15.247(a)
Output Power and RF Exposure	A8.4	Part 15, Subpart C, §15.247(i)
Spurious Emissions	A8.5	Part 15, Subpart C, §15.247(c)
Power Spectral Density	A8.2(2)	Part 15, Subpart C, §15.247(d)
Band Edge Measurement	A8.2	Part 15, Subpart C, §15.247

Dusmantha Tennakoon

Q. Lemakeno

EMC Engineer

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313

GTCO CalComp, Inc. 7125 Riverwood Dr. Columbia, MD 21046 January 3, 2006

Dear Mark Plasterer,

Enclosed is the EMC test report for compliance testing of the GTCO CalComp, Inc., PRS-RF Hub has tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-03 ed.), Part 15 Subpart C, §15.247 for Intentional Radiators and FCC Declaration of Conformity under CFR, Part 15, Subpart B For a Class B Unintentional Radiator.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Micol Et ellen

Nicole E. Hellen

Documentation Department

Reference: (\GTCO CalComp, Inc.\ PRS-RF Hub\ EMC18676A-FCC247)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc. While use of the National Voluntary Laboratory Accreditation Program (NVLAP) letters or the NVLAP Logo, the Standards Council of Canada Logo, A2LA, or the Nationally Recognized Testing Laboratory (NRTL) Letters in this report reflects MET Accreditation under these programs, these letters, logo, or statements do not claim product endorsement by these organizations or any Agency of the U.S. Government. This letter of transmittal is not a part of the attached report.

DOC-EMC702 2/26/2004

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313

Electromagnetic Compatibility Test Report

For the

GTCO CalComp, Inc. PRS-RF Hub

Tested in Accordance with
Title 47 of the CFR
FCC Part 15, Subpart B and Subpart C

MET Report: 18676A-FCC247

January 3, 2006

Prepared For:

GTCO CalComp, Inc. 7125 Riverwood Dr. Columbia, MD 21046

> Prepared By: MET Laboratories, Inc. 914 West Patapsco Avenue Baltimore, MD 21230

Electromagnetic Compatibility Test Report

For the

GTCO CalComp, Inc. PRS-RF Hub

Tested in Accordance with
Title 47 of the CFR
FCC Part 15, Subpart B and Subpart C

Dusmantha Tennakoon

Electromagnetic Compatibility Lab

D. Lemaknow

Nicole E. Hellen

Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 15, §15.247 of the FCC Rules under normal use and maintenance.

Kevin Mehaffey

Electromagnetic Compatibility Lab

Kamehaffey

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	January 3, 2006	Initial Issue.

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Deci Bels
${ m d}{ m B}\mu{ m V}$	Deci-Bels above one micro Volt
${ m dB}\mu{ m V/m}$	Deci-Bels above one micro Volt per meter
DC	Direct Current
DCF	Distance Correction Factor
E	Electric Field
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
Н	Magnetic Field
GHz	Giga Hertz
Hz	Hertz
ICES	Interference-Causing Equipment Standard
kHz	kilohertz
kPa	kilopascal
kV	kilo Volt
LISN	Line Impedance Stabilization Network
MHz	MegaHertz
μ H	micro Henry
μ F	micro Farad
μ S	micro seconds
RF	Radio Frequency
RMS	Root-Mean-Square

Table of Contents

1	Introduction	1
	1.1 Overview	1
	1.2 Test Site	1
	1.3 Testing Summary	2
2	Equipment Configuration	
	2.1 Description of EUT	3
	2.2 Equipment Configuration	3
	2.3 Support Equipment	3
	2.4 Ports and Cabling Information	3
	2.5 Mode Of Operation	4
	2.6 Modifications to EUT	4
	2.7 Disposition of EUT	4
3	Electromagnetic Compatibility Test Data	5
	3.1 Antenna Limits	5
	3.2 Conducted Limits	
	3.3 Restricted Bands Of Operation	12
	3.4 Unintentional Radiators	16
	3.5 Bandwidth Requirements	20
	3.6 Peak Power Output	24
	3.7 RF Exposure	
	3.8 Spurious Conducted Emissions Requirements	
	3.9 Power Spectral Density	39
	3.10 Band Edge Measurements	
4	Test Equipment	55
5	Compliance Information	
	5.1 Certification Information	
	5.2 Label and User's Manual Information	60
	List of Tables	
	ole 1. Testing Summary	
	ble 2. Equipment Configuration	
Tal	sle 3. Support Equipment	3
	ele 4. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Section 15.207(a)	
	ble 5. Conducted Emission, Phase Line Test Results	
	ble 6. Conducted Emissions, Neutral Line Test Results	
	ele 7. Restricted Bands of Operation from FCC Part 15, § 15.205	
	ble 8. Radiated Emissions Limits from § 15.209 (a)	
	le 9. Radiated Emission Test Results, Average	
	le 10. Radiated Emission Test Results, Peak	
	le 11. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)	
	le 12. Unintentional Radiators Test Results	
	ble 13. Limits for Maximum Permissible Exposure (MPE)	
Tab	ele 14. Restricted Bands of Operation from FCC Part 15, § 15.205	44

List of Figures

List of Photographs Photograph 6. Internal Photograph (1) 49 Photograph 10. External Photograph, Front View. 53 **List of Plots**

1.0 Introduction

1.1 Overview

MET Laboratories, Inc. was contracted by GTCO CalComp, Inc. to perform testing on the PRS-RF Hub, under GTCO CalComp, Inc. purchase order number 35972.

This document describes the test setups, test methods, required test equipment, and the test limits used to perform compliance testing of the PRS-RF Hub. All applicable tests were performed in accordance with Title 47 of the CFR, FCC Part 15, Subpart B and Subpart C.

Type of Submission/Rule:	Part 15.247 Original Filing	;		
Model(s) Tested:	PRS-RF Hub			
Model(s) Covered:	PRS-RF Hub			
	Primary Power:	120VAC, 60Hz		
	FCC ID:	CTW-RFHUB		
	Equipment Class:	DTS		
EUT Specifications:	RF Power Output:	-4.046 dBm (0.000395 Watts)		
	Equipment Frequency Range:	2.402 -2.479 GHz		
Analysis:	The results obtained relate only to the item(s) tested.			
Evaluated by:	Dusmantha Tennakoon			
Date(s):	November 8, 2005 to December 8, 2005			

1.2 Test site

All testing was performed at MET Laboratories, Inc., 914 West Patapsco Avenue, Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed a semi-anechoic chamber. In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories. In accordance with §2.948(d), MET Laboratories has been accredited by the National Voluntary Laboratory Accreditation Program (Lab Code: 100273-0).

1.3 Testing Summary

Paragraph	Name of Test	Compliance
Part 15, Subpart C, §15.203	Antenna Requirement	Compliant
Part 15, Subpart C, §15.205	Restricted Bands of Operation	Compliant
Part 15, Subpart C, §15.107	Conducted Emissions Voltage	Compliant
Part 15, Subpart C, §15.207	Conducted Emissions	Compliant
Part 15, Subpart B, §15.109	Unintentional Radiators	Compliant
Part 15, Subpart C, §15.209	Radiated Emissions	Compliant
Part 15, Subpart C, §15.247(a)	Bandwidth Requirements	Compliant
Part 15, Subpart C, §15.247(i)	Output Power and RF Exposure	Compliant
Part 15, Subpart C, §15.247(c)	Spurious Conducted Emissions	Compliant
Part 15, Subpart C, §15.247(d)	Power Spectral Density	Compliant
Part 15, Subpart C, §15.247	Band Edge Measurement	Compliant

Table 1. Testing Summary

2.0 Equipment Configuration

2.1 Description of EUT

The PRS-RF Hub, Equipment Under Test (EUT) is connected to a computer via a USB cable and is used to control the wireless communications from multiple PRS-RF Remotes.

2.2 Equipment Configuration

The EUT was set up as outlined in Figure 1. All equipment incorporated as part of the EUT is included in the following list.

Ref. ID	Slot # Name / Description		Slot # Name / Description Model Number Part Number		Serial Number	Rev. #
A	N/A	PRS-RF Hub	11-00680-R	11-00680-R	HUB-0002 & HUB-0003	N/A
В	N/A	Power Supply	GT-41052-1509	WR9QD1700L9P-N	N/A	N/A

Table 2. Equipment Configuration

2.3 Support Equipment

Ref. ID	Name / Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
С	Computer	Dell	Latitude	N/A

Table 3. Support Equipment

2.4 Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty. Length (m) Shielde		Shielded?	Termination Box ID & Port Name
A,1	Power	2 conductor, 18 AWG	1	1.83	Yes	В
A,2	USB	5 conductor, 24 AWG	1	4.57	Yes	С

2.5 Mode Of Operation

The EUT was transmitting continuously at max power and max data rate.

2.6 Modifications to EUT

No modifications were made to the unit.

2.7 Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to GTCO CalComp, Inc. upon completion of testing.

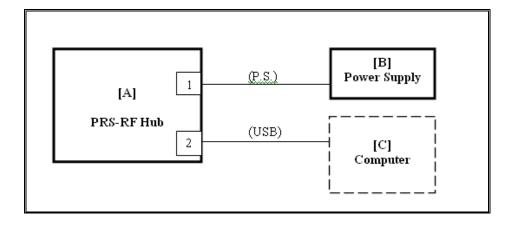


Figure 1. Block Diagram of Test Configuration

3.0 Electromagnetic Compatibility Test Data

3.1 Antenna Requirements

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results:

The EUT complies with the requirements of this section. The antenna is permanently mounted inside the unit and has a maximum gain of 3 dBi.

Type of Antenna: Surface Mount Antenna

Gain of Antenna: 3.0 dBi (Max)

Test Engineer(s): Dusmantha Tennakoon

Test Date(s): November 11, 2005

Photograph 1. Antenna Requirement Test Setup

3.2 Conducted Limits

Test Requirement(s):

15.207(a), Except as shown in paragraphs (b) and (c) of this section*, charging, AC adapters or battery eliminators the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the Table 4, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency range	Class A Cond (dB)		*Class B Conducted Limits (dBµV)		
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	
* 0.15- 0.45	79	66	66 - 56	56 - 46	
0.45 - 0.5	79	66	56	46	
0.5 - 30	73	60	60	50	

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — The limit decreases linearly with the logarithm if the frequency in the range 0.15 MHz to 0.5 MHz.

Table 4. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Section 15.207(a)

^{* --} Limits per Subsection 15.207(a).

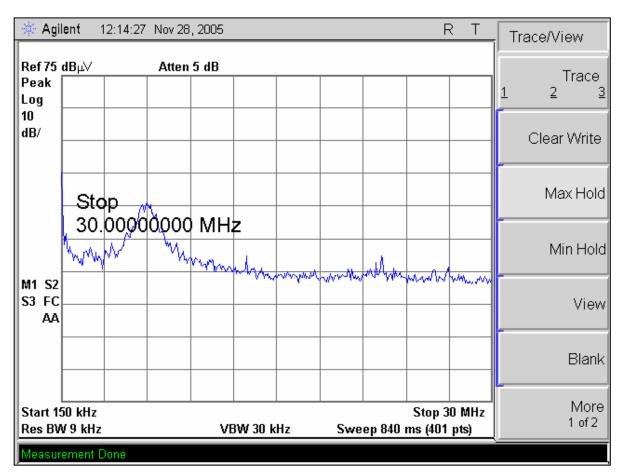
Test Procedure:

The EUT was installed inside a shielded enclosure (See Photograph 2). The EUT was situated such that the back of the EUT was 0.4 m from one wall of the shielded enclosure, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-1992 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.45 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter. The tests were conducted in a RF-shielded enclosure.

Results: The EUT complied with the requirement(s) of this section.

Test Engineer(s): Dusmantha Tennakoon

Test Date(s): November 28, 2005

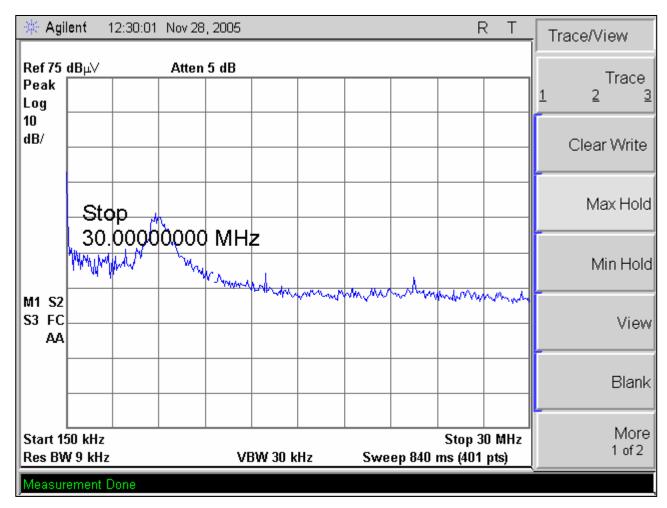


Conducted Limits

15.207 (a) Conducted Emissions - Voltage, Worst Case Emissions, AC Power, Phase Line, 120VAC, 60Hz

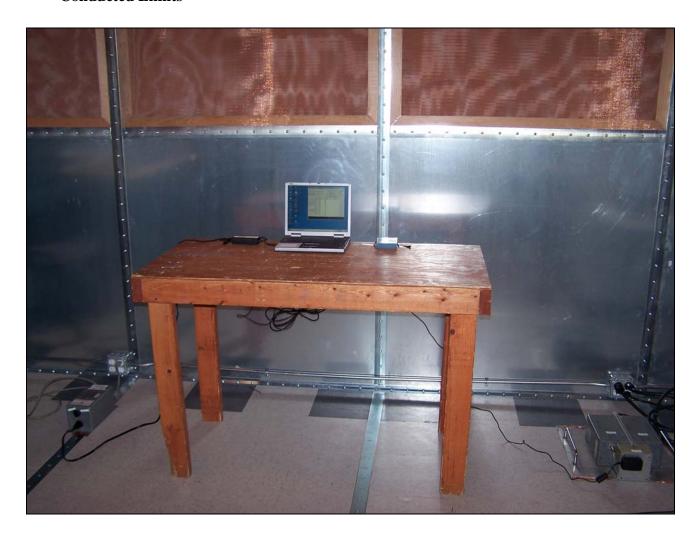
Frequency (MHz)	Quasi-Peak Amplitude (dBμV)	Quasi-Peak Limit (dBµV)	Quasi-Peak Margin (dBµV)	Average Amplitude (dBµV)	Average Limit (dBµV)	Average Margin (dBµV)
0.2078	31.66	63.29	-31.63	35.45	53.29	-17.84
6.123	32.8	60	-27.2	34.03	50	-15.97
6.19	32.28	60	-27.72	33.97	50	-16.03
5.773	31.86	60	-28.14	34.64	50	-15.36
0.233	27.64	62.34	-34.7	24.16	52.34	-28.18
5.174	24.49	60	-35.51	6.99	50	-43.01

Table 5. Conducted Emission, Phase Line Test Results


Plot 1. Conducted Emission, Phase Line Test Results

15.207 (a) Conducted Emissions - Voltage, Worst Case Emissions, AC Power, Neutral Line, 120VAC, 60Hz

Frequency (MHz)	Quasi-Peak Amplitude (dBµV)	Quasi-Peak Limit (dBµV)	Quasi-Peak Margin (dBµV)	Average Amplitude (dBµV)	Average Limit (dBμV)	Average Margin (dBμV)
6.121	33.16	60	-26.84	36.98	50	-13.02
0.1861	33.07	64.21	-31.14	36.67	54.21	-17.54
0.2066	32.23	63.34	-31.11	34.5	53.34	-18.84
5.842	30.31	60	-29.69	32.19	50	-17.81
5.286	23.97	60	-36.03	10.42	50	-39.58
0.2407	25.41	62.07	-36.66	9.96	52.07	-42.11


Table 6. Conducted Emissions, Neutral Line Test Results

Plot 2. Conducted Emission, Neutral Line Test Results

Conducted Limits

Photograph 2. Conducted Limits, Test Setup

3.3 Restricted Bands Of Operation

Test Requirement(s): § 15.205 (a): Except as shown in paragraph (d) of 15.205 Restricted bands of operation, only spurious emissions are permitted in any of the frequency bands specified in Table 7:

MHz	MHz	MHz	GHz	
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15	
0.495–0.505 (Note 1)	16.69475–16.69525	608–614	5.35-5.46	
2.1735–2.1905	16.80425–16.80475	960-1240	7.25–7.75	
4.125–4.128	25.5–25.67	1300-1427	8.025–8.5	
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2	
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5	
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7	
6.26775–6.26825	108-121.94	1718.8-1722.2	13.25–13.4	
6.31175–6.31225	123–138	2200–2300	14.47–14.5	
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2	
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4	
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12	
8.41425–8.41475	162.0125-167.17	3260–3267	23.6–24.0	
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8	
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5	
12.57675–12.57725	322–335.4	3600–4400	(Note 2)	
13.36–13.41.				

Note 1: Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Note 2: Above 38.6

Table 7. Restricted Bands of Operation from FCC Part 15, § 15.205

§ 15.205 (b): (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§ 15.35 (b): ... When average radiated emission measurements are specified in this part, including emission measurements below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules...

Frequency (MHz)	Field Strength (Microvolts/meter)	Measurement Distance (meters)			
0.009 - 0.490	2400/F (kHz)	300			
0.490 - 1.705	24000/F (kHz)	30			
1.705 – 30.0	30	30			
30 - 88	100 **	3			
88 - 216	150 **	3			
216 - 960	200 **	3			
Above 960	500	3			

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Table 8. Radiated Emissions Limits from § 15.209 (a)

Test Procedure: The EUT was configured with the control software to transmit at maximum power.

Measurements were made with a ridge guide horn antenna at a distance of 3 meters. Cable loss has been accounted for in the raw measurement. The frequency range of interest was that indicative to spurious emissions associated with the intentional radiator section of the EUT.

Test Results: The EUT complies with the requirements of this section.

Test Engineer(s): Dusmantha Tennakoon

Test Date(s): December 12, 2005

Radiated Emissions Limits Test Results, 15.209 (a)

Frequency (GHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)	System Gain (dB) (-)	Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuv)	Limit (dBuv)	Margin (dB)
4.884	90	Н	1	21.64	33.75	0.00	9.54	45.85	54	-8.15
4.884	90	V	1	21.11	33.88	0.00	9.54	45.45	54	-8.55
7.3205	90	Н	1	13.7	37.03	0.00	9.54	41.19	54	-12.81
7.3205	90	V	1	13.56	37.00	0.00	9.54	41.02	54	-12.98

Table 9. Radiated Emission Test Results, Average

Frequency (GHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)	System Gain (dB) (-)	Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuv)	Limit (dBuv)	Margin (dB)
4.884	90	Н	1	31.71	33.75	0.00	9.54	55.92	74	-18.08
4.884	90	V	1	32.91	33.88	0.00	9.54	57.25	74	-16.75
7.3205	90	Н	1	28.76	37.03	0.00	9.54	56.25	74	-17.75
7.3205	90	V	1	30.7	37.00	0.00	9.54	58.16	74	-15.84

Table 10. Radiated Emission Test Results, Peak

Photograph 3. Radiated Spurious Emission Test Setup

Unintentional Radiators

Test Requirement(s):

15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the Class B limits expressed in Table 11.

	Field Strength (dBµV/m)					
Frequency (MHz)	§15.109 (b), Class A Limit (dBμV) @ 10m	§15.109 (a),Class B Limit (dBμV) @ 3m				
30 - 88	39.00	40.00				
88 - 216	43.50	43.50				
216 - 960	46.40	46.00				
Above 960	49.50	54.00				

Table 11. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)

Test Procedures:

The EUT was configured to operate at maximum power. Though the purpose of this test is to measure the unintentional radiation from the digital portion, the transmitter was operated in case any digital circuitry lay idle while the transmitter is not operating.

For final radiated measurements, the EUT was placed on a 0.8 m high non-conductive table inside a semi-anechoic chamber, and located 3 m from an adjustable antenna mast. For prescanning, the spectrum analyzer scanned the frequency range from 30 MHz to 1 GHz to obtain an emission profile of the EUT.

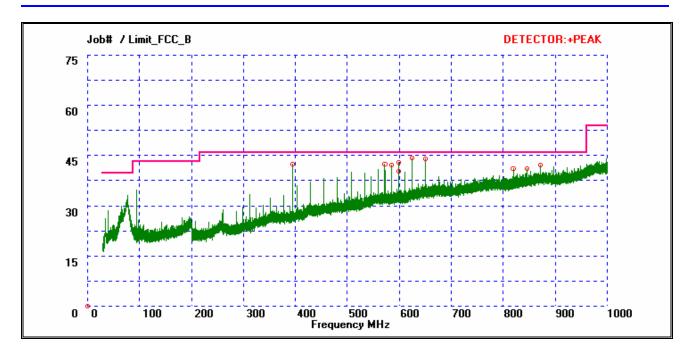
For each point of measurement, the turntable was rotated, and the antenna height was varied between 1 m and 4 m, in order to find the maximum radiated emissions. Measurements above 30 MHz were taken using this technique with the antenna in two polarizations: horizontal and vertical.

Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz bandwidth for below 1 GHz. See Photograph 4 for a picture of the test setup.

Unintentional Radiators Test Results

Test Results: The EUT was compliant with the requirements of this section.

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuv)	Antenna Correction Factor (dB) (+)	Cable Loss (dB) (+)	Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuv)	Limit (dBuv)	Margin (dB)
76.078	360	Н	1.00	6.69	8.64	1.00	0.00	16.33	40.00	-23.67
76.078	143	V	1.00	22.63	7.43	1.00	0.00	31.06	40.00	-8.94
572.000	130	Н	1.45	18.57	18.36	2.15	0.00	39.08	46.00	-6.92
572.000	0	V	1.00	17.17	18.26	2.15	0.00	37.58	46.00	-8.42
585.000	131	Н	1.39	17.17	18.40	2.10	0.00	37.67	46.00	-8.33
585.000	0	V	1.00	18.13	18.10	2.10	0.00	38.33	46.00	-7.67
598.000	130	Н	1.22	19.44	18.50	2.01	0.00	39.95	46.00	-6.05
598.000	0	V	1.00	19.96	18.46	2.01	0.00	40.43	46.00	-5.57
*624.000	131	Н	1.22	21.56	19.30	2.16	0.00	43.02	46.00	-2.98
624.000	0	V	1.00	17.78	19.84	2.16	0.00	39.78	46.00	-6.22
650.000	125	Н	1.18	18.89	20.00	2.17	0.00	41.06	46.00	-4.94
650.000	0	V	1.00	13.99	20.00	2.17	0.00	36.16	46.00	-9.84


Table 12. Unintentional Radiators Test Results

Note:

* - At this frequency, the measured electric-field strength exhibits a margin of compliance that is less than 3 dB below the specification limit. We recommend that every emission measured, have at least a 3 dB margin to allow for deviations in the emission characteristics that may occur during the production process.

Test Engineer(s): Dusmantha Tennakoon

Test Date(s): December 7, 2005

Plot 3. Unintentional Radiators Prescan

Photograph 4. Unintentional Radiators Test Setup

3.4 Bandwidth Requirements

Test Requirements: § 15.247(a): Operation under the provisions of this section is limited to frequency hopping

and digitally modulated intentional radiators that comply with the following provisions:

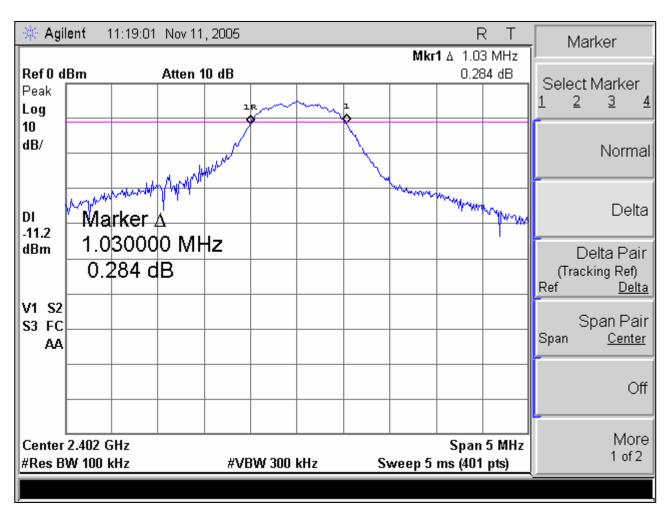
§ 15.247(a) (2): Systems using digital modulation techniques may operate in the 902 - -928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth

shall be at least 500 kHz.

Test Procedure: The EUT's transmitter output was connected directly to the spectrum analyzer. The

bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW of $100 \, \text{kHz}$ and a VBW> RBW. The 6 dB bandwidth was measured and recorded.

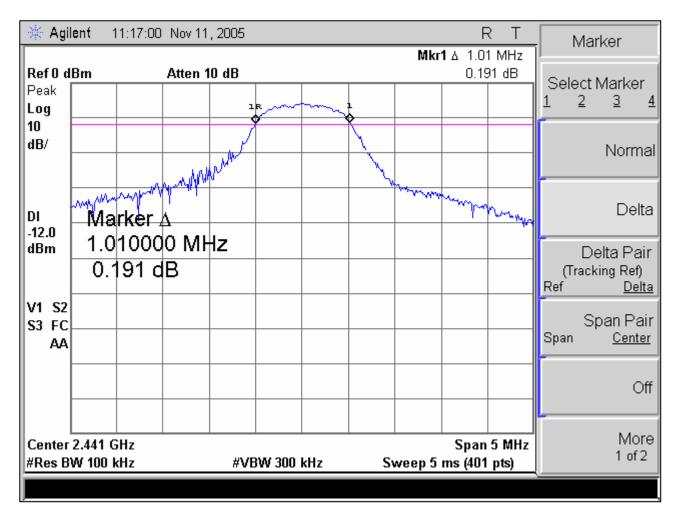
Test Results The EUT complies with the requirements of this section.


Test Engineer: Dusmantha Tennakoon

Test Date: November 11, 2005

Occupied Bandwidth Test Data

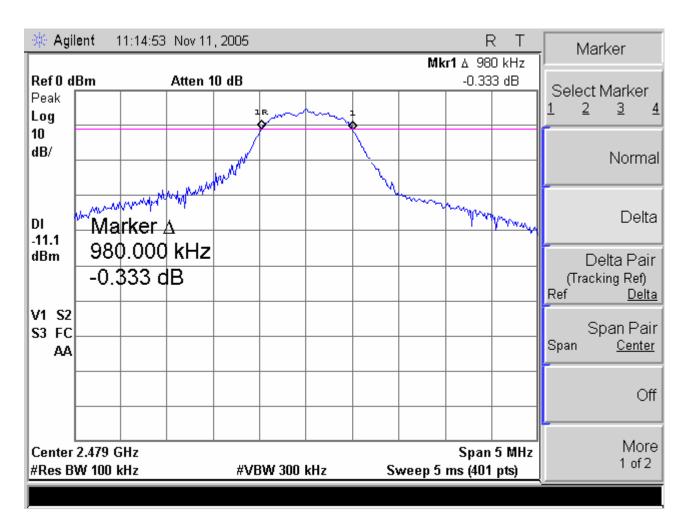
Occupied Bandwidth - Low Channel


Plot 4. Occupied Bandwidth; Test Results, Channel 1

BW = 1.03 MHz

Occupied Bandwidth Test Data

Occupied Bandwidth - Mid Channel


Plot 5. Occupied Bandwidth; Test Results, Channel 38

BW = 1.01 MHz

Occupied Bandwidth Test Data

Occupied Bandwidth - High Channel

Plot 6. Occupied Bandwidth; Test Results, Channel 78

BW = 980 kHz

3.5 Peak Power Output

Test Requirements: §15.247(b): The maximum peak output power of the intentional radiator shall not exceed the

following:

§15.247(b) (3): For systems using digital modulation in the 902 – 928 MHz, 2400 – 2483.5

MHz, and 5725 - -5850 MHz bands: 1 Watt.

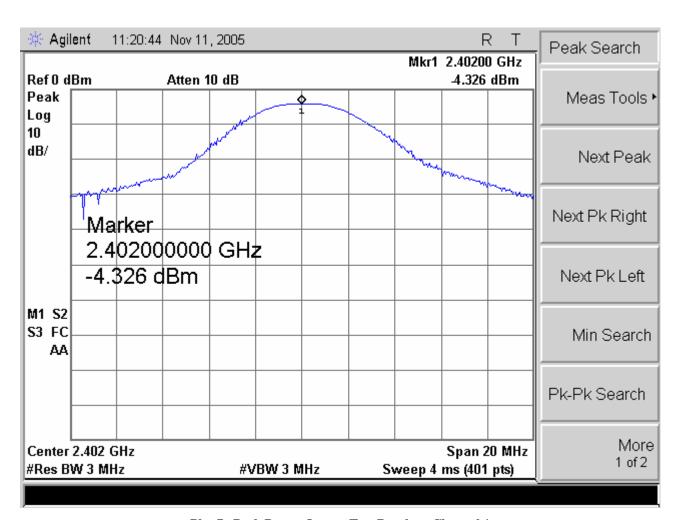
Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi

without any corresponding reduction in transmitter peak output power.

Test Procedure: The transmitter output of the EUT was connected to the spectrum analyzer through an attenuator. The power was set to the maximum output; low, mid, and high

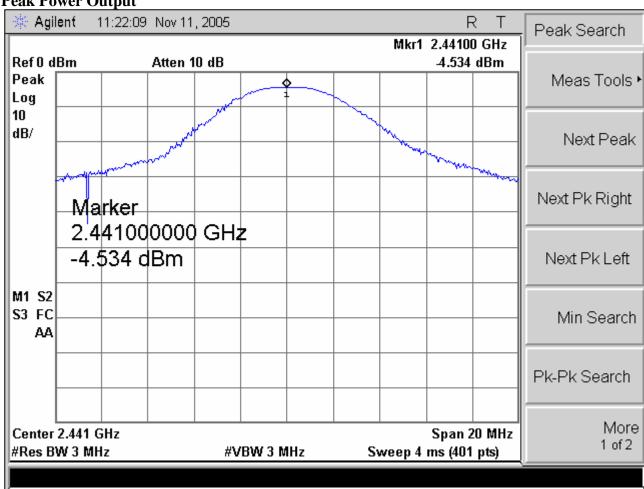
channels were measured.

Test Results: The EUT complies with the requirements of this section.


Peak Output Power = -4.046 dBm (0.000395 Watts)

The peak output power was determined from the plots on the following page(s).

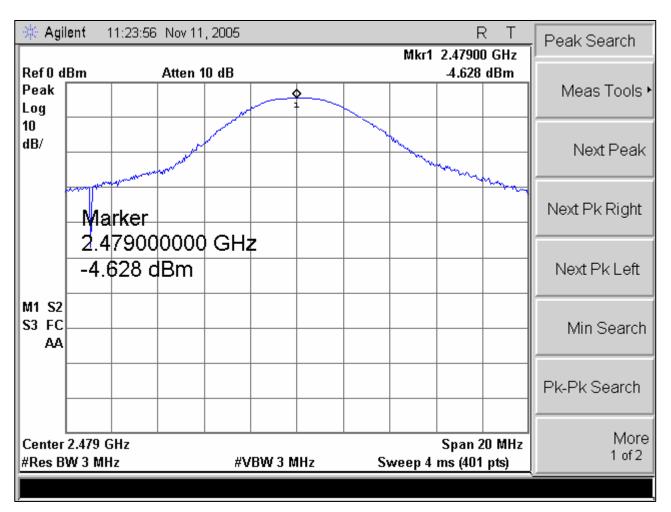
Test Engineer: Dusmmantha Tennakoon


Test Date: November 11, 2005

Peak Power Output Test Results

Plot 7. Peak Power Output Test Results - Channel 1

Peak Output Power = Measured + Cable Loss = -4.326 + 0.28 = -4.046 dBm **Peak Power Output**



Plot 8. Peak Power Output Test Results - Channel 38

Peak Output Power = Measured + Cable Loss = -3.685 + 0.29= -3.395 dBm

Peak Power Output

Plot 9. Peak Power Output Test Results - Channel 78

Peak Output Power = Measured + Cable Loss = -4.628 + 0.29 = -4.338 dBm

3.6 RF Exposure

RF Exposure Requirements - §15.247(b)(5): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limits:

§1.1310: As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307 (b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1903 of this chapter.

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time				
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(minutes)				
(A) Limits for Occupational / Control Exposures								
30 - 300	61.4	0.163	1.0	6				
300 - 1500			F/300	6				
1500 - 100,000			5	6				
(B) Limits for General Population / Uncontrolled Exposure								
30 - 300	27.5	0.073	0.2	30				
300 - 1500			F/1500	30				
1500 - 100,000			1.0	30				

Table 13. Limits for Maximum Permissible Exposure (MPE)

Note: F = Frequency in MHz

Test Results: MPE Limit Calculation: the EUT's operating frequencies @ 2402 – 2479 MHz; conducted power =

-4.046 dBm (peak) with maximum antenna gain of 3 dBi. Therefore, Limit for Uncontrolled exposure:

1 mW/ cm² or 10 W/m²

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \sqrt{PG / 4\pi S}$

Where, $S = Power Density (10 W/m^2)$

P = Power Input to antenna (0.000395 Watts)

G = Antenna Gain (2 numeric)

R = distance to the center of radiation of antenna (in meter)

 $R = \sqrt{0.000395} \text{ W} * \sqrt{2} \text{ dB} / 4\pi (10 \text{ W/m}^2) = 0.00251 \text{ m}$

The distance between the human and the RF antenna should not be less than 0.00251 m

Test Engineer: Dusmantha Tennakoon,

Test Date: December 20, 2005

3.7 Spurious Emissions

Test Requirements: §15.247(c): In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits

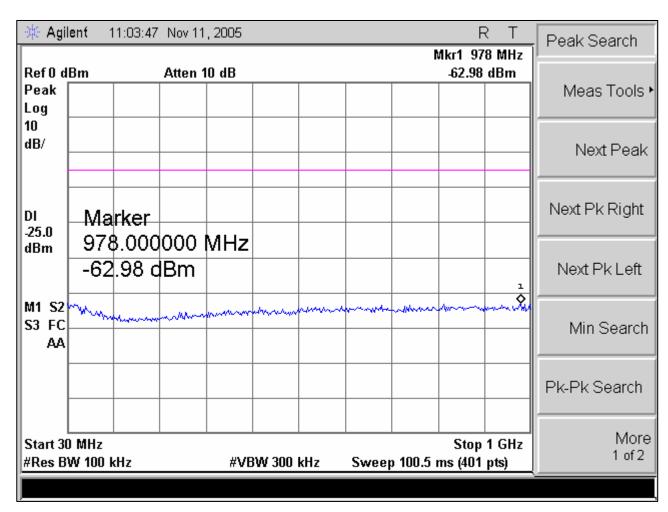
specified in § 15.209(a).

Test Procedure: The EUT was configured with the control software to transmit at maximum power. The

transmit output was connected to the analyzer through an attenuator. RBW = 100 kHz, VBW

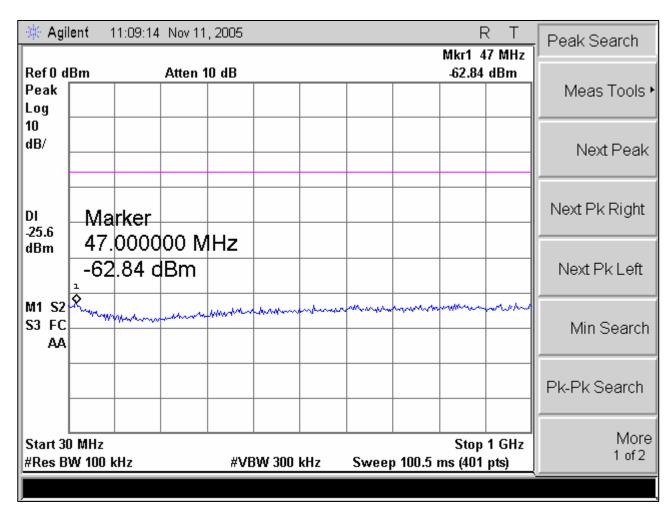

 \geq RBW.

Test Results: The EUT complies with the requirements of this section. Plots were taken between 30 MHz

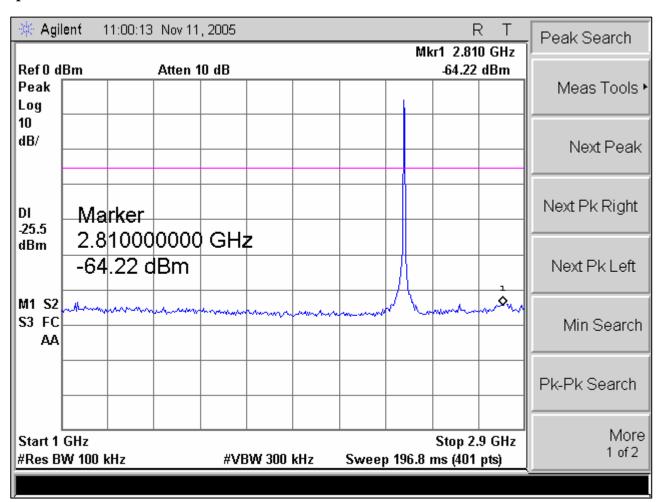

and 25 GHz to ensure that no conducted Spurious Emission was greater than -20 dBc.

Test Engineer: Dusmantha Tenakoon

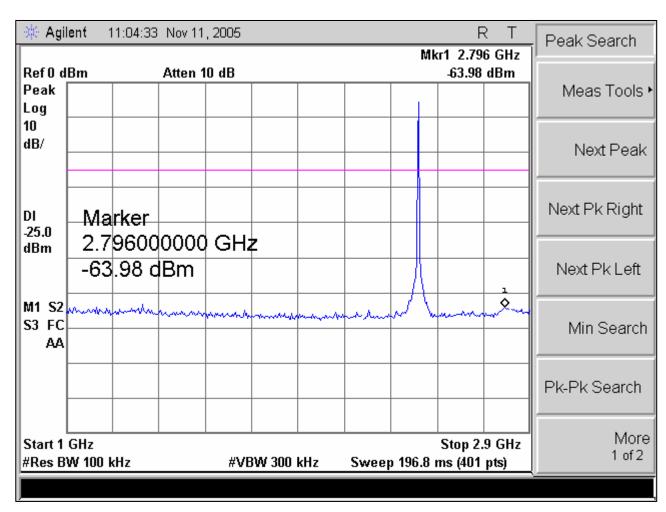
Test Date: November 11, 2005



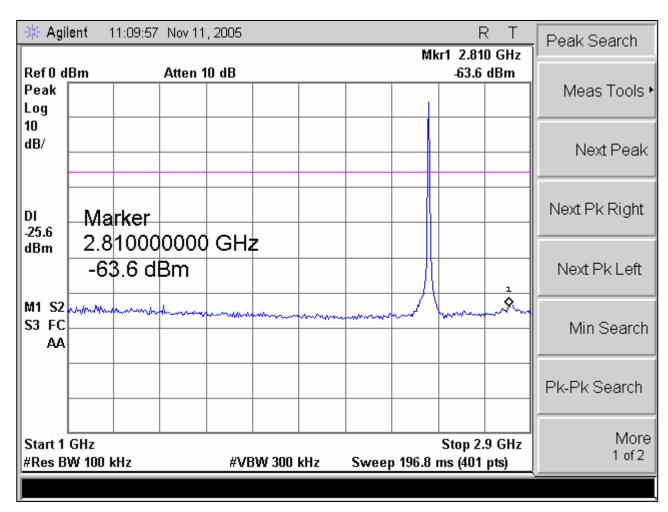
Plot 10. Channel 1 Spurious Conducted Emission Test Plot (1)

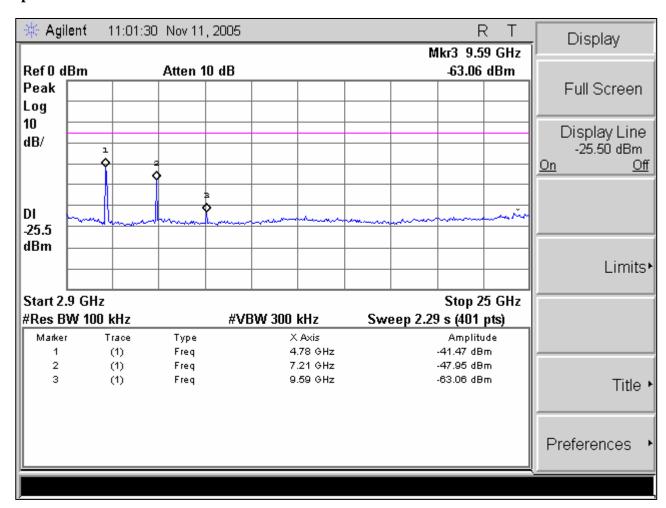


Plot 11. Channel 38 Spurious Conducted Emission Test Plot (1)

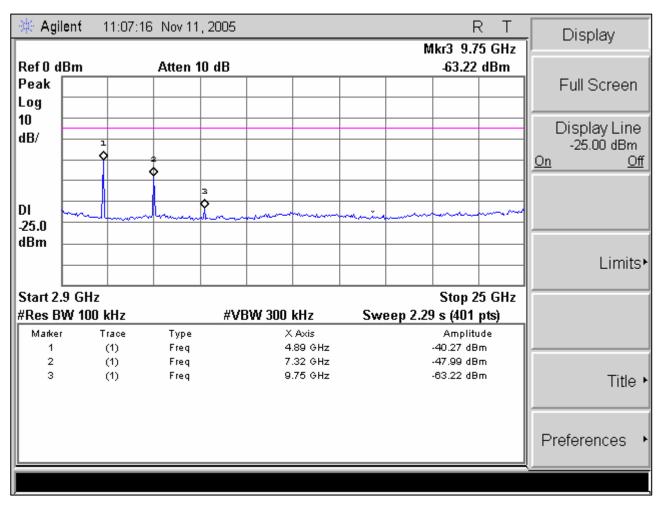


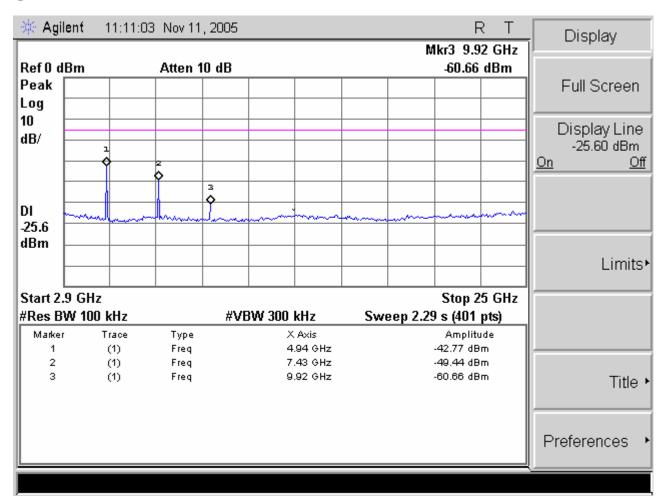
Plot 12. Channel 78 Spurious Conducted Emission Test Plot (1)


Plot 13. Channel 1 Spurious Conducted Emission Test Plot (2)



Plot 14. Channel 38 Spurious Conducted Emission Test Plot (2)




Plot 15. Channel 78 Spurious Conducted Emissions Test Plot (2)

Plot 16. Channel 1 Spurious Conducted Emissions Test Plot (3)

Plot 17. Channel 38 Spurious Conducted Emissions Test Plot (3)

Plot 18. Channel 78 Spurious Conducted Emissions Test Plot (3)

3.8 Power Spectral Density

Test Requirements: §15.247(d): For digitally modulated systems, the peak power spectral density conducted

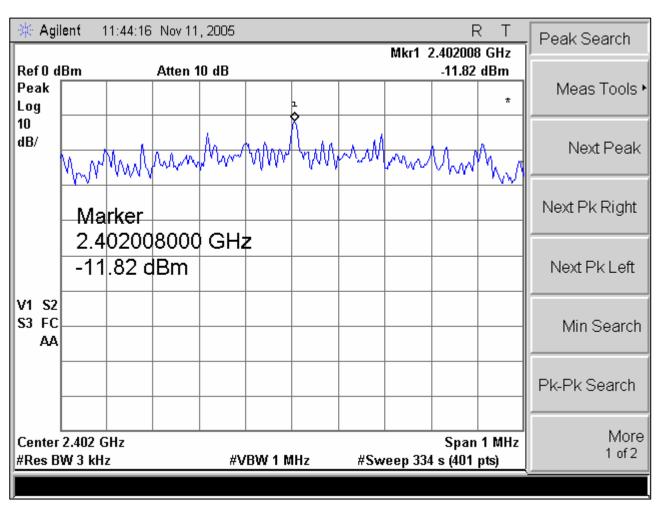
from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band

during any time interval of continuous transmission.

Test Procedure: The transmitter output was connected to the spectrum analyzer through an attenuator.

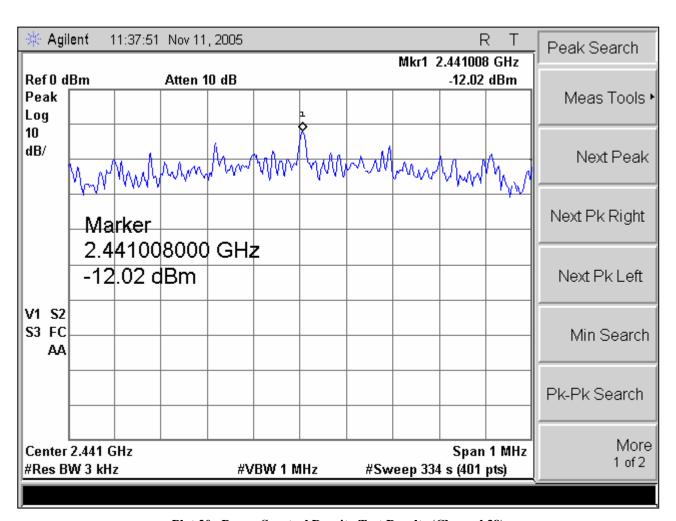
RBW = 3kHz, VBW > RBW

Sweep = Span/3kHz


Test Results: Equipment complies with the power spectral density limits of §15.247 (d). The power

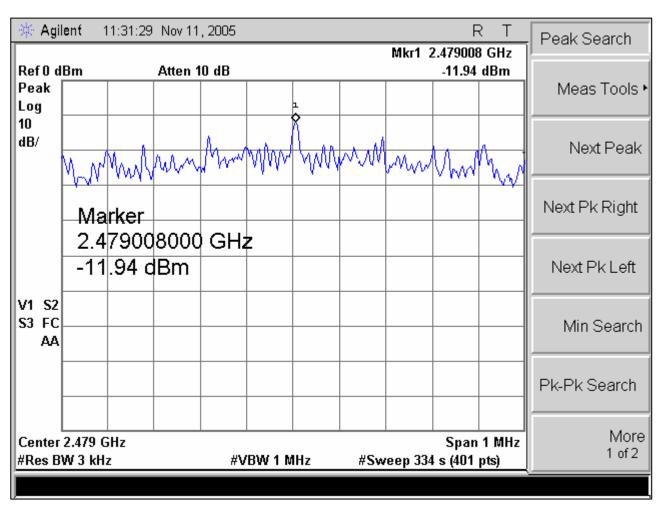
spectral density was determined from plots on the following page(s).

Test Engineer: Dusmantha Tannakoon


Test Date: November 11, 2005

Power Spectral Density Test Results

Plot 19. Power Spectral Density Test Results (Channel 1)


Power Spectral Density Test Results

Plot 20. Power Spectral Density Test Results (Channel 38)

Power Spectral Density Test Results

Plot 21. Power Spectral Density Test Results (Channel 78)

Photograph 5. Power Spectral Density Test Setup

Band Edge Measurements

Test Requirement(s): § **15.205** (a): Except as shown in paragraph (d) of **15.205** Restricted bands of operation, only spurious emissions are permitted in any of the frequency bands specified in Table 7:

MHz	MHz	MHz	GHz	
0.090-0.110	16.42–16.423	399.9–410	4.5-5.15	
0.495–0.505 (Note 1)	16.69475–16.69525	608–614	5.35-5.46	
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75	
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5	
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2	
4.20725-4.20775	73–74.6 1645.5–1646.5		9.3–9.5	
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7	
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4	
6.31175–6.31225	123–138	2200–2300	14.47–14.5	
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2	
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4	
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12	
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0	
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8	
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5	
12.57675–12.57725	322–335.4	3600–4400	(Note 2)	
13.36–13.41.				

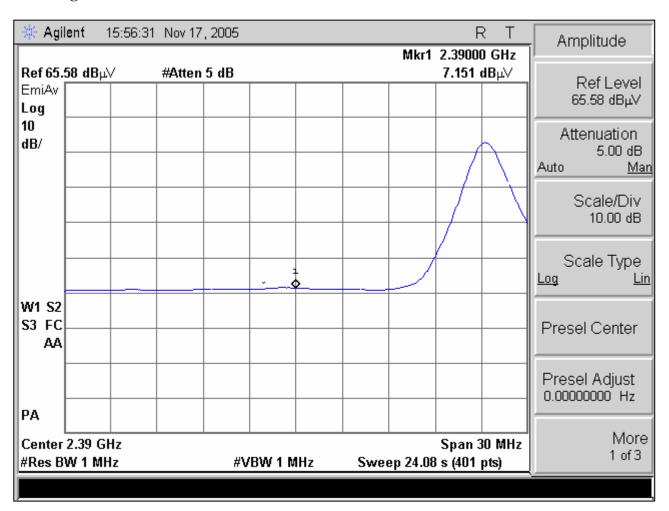
Note 1: Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

Note 2: Above 38.6

Table 14. Restricted Bands of Operation from FCC Part 15, § 15.205

Test Procedure: The EUT was set up at maximum power, first on Channel 1, then on Channel 78. A plot of

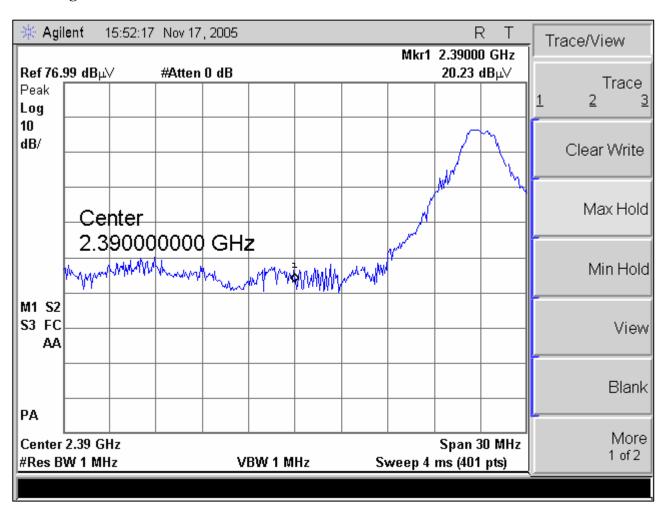
each channel was taken with a marker showing the nearest bordering Restricted Band.


Test Results: The EUT complies with Band Edge Measurement requirements.

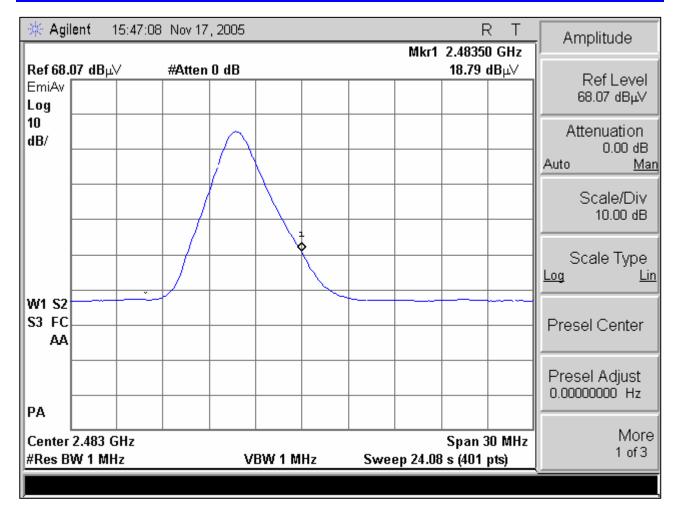
Test Engineer: Dusmantha Tennakoon

Test Date: November 11, 2005

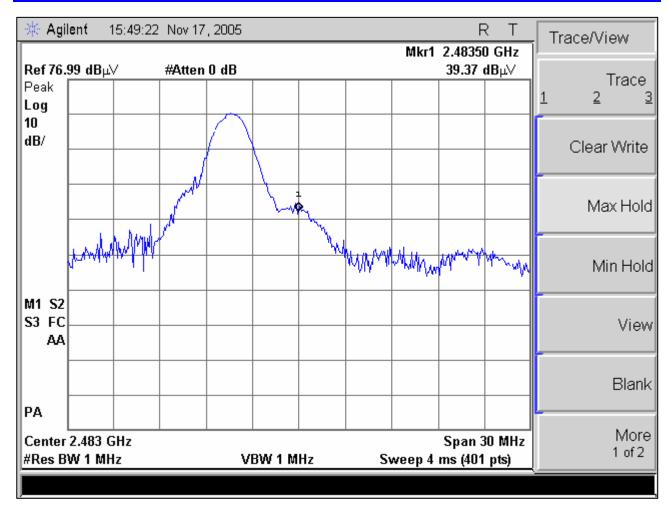
Band Edge Measurements Test Results



Plot 22. Channel 1 Band Edge Test Results, Average (Channel 1)


Average Power Level @ 2.39 GHz = Measured + Antenna Correction Factor + Cable Loss = 7.151 + 28.29 + 2.40 = $38.441 \ dB\mu V$

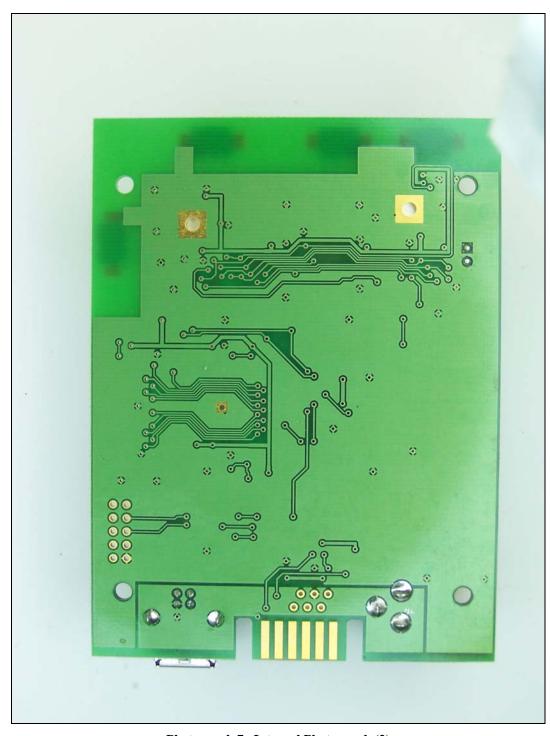
Band Edge Measurements Test Results



Plot 23. Channel 1 Band Edge Test Results, Peak (Channel 1)

Plot 24. Channel 78 Band Edge Test Results, Average (Channel 78)

Average Power Level @ 2.4835 GHz = Measured + Antenna Correction Factor + Cable Loss = 18.79 + 28.29 + 2.6 = $50.28 \text{ dB}\mu\text{V}$


Plot 25. Channel 78 Band Edge Test Results, Peak (Channel 78)

Internal Photographs

Photograph 6. Internal Photograph (1)

Photograph 7. Internal Photograph (2)

Photograph 8. Internal Photograph (3)

External Photographs

Photograph 9. External Photograph, Back View

Photograph 10. External Photograph, Front View

Photograph 11. External Photograph, Side View

4.0 Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date
1T4303	ANTENNA; BILOG	SCHAFNER - CHASE EMC	CBL6140A	05/13/2005	05/13/2006
1T4300	SEMI-ANECHOIC CHAMBER # 1	EMC TEST SYSTEMS	NONE	05/03/2003	04/03/2006
1T4459	Thermo-Hygrometer	Fisher Scientific	11-661-71D	11/08/2004	11/08/2006
1T4409	EMI Receiver	Rhode & Schwarz	ESIB7	04/14/2005	04/14/2006
IT2665	Antenna; horn	EMCO	3115	3/28/05	3/28/06
IT4351	Spectrum Analyzer	Agilent	E7405A	10/4/05	10/4/06
IT4503	Shielded Room	Universal Shielding	N/A	4/30/05	4/30/06

Note: Functionally verified test equipment is verified using calibrated instrumentation at the time of testing.

5.0 Compliance Information

5.1 Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or pre-production stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

GTCO CalComp, Inc. Sensor model AM01

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs
 (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

GTCO CalComp, Inc. Sensor model AM01

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

MET Report: EMC18676A-FCC247

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

5.2 Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

GTCO CalComp, Inc. Sensor model AM01

§ 15.27 Special Accessories.

(a) Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in §2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

§ 15.105 Information to the user.

(a) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.