

Page 1 of 31

TEST REPORT							
Test Report No.:	SKTRFC-120709-015						
Applicant:	CORE OPTIX Inc.						
Applicant Address:	Rm.201~205, Suwon Venture Valley, #5	958, Gosaek-dong, Gwonseo	n-gu, Suwon-si, Gyeonggi-Do, Korea				
Manufacturer:	CORE OPTIX Inc.		,				
Manufacturer Address:	Rm.201~205, Suwon Venture Valley, #5	958, Gosaek-dong, Gwonseo	n-gu, Suwon-si, Gyeonggi-Do, Korea				
Device Under Test:	Smart-Stand						
FCC ID:	CR4-TZC-BH02	Model Name:	TZC-BH02				
Brand/Trade Name:	Smart-Stand		٠				
Receipt No.:	SKTEU12-0661	Date of receipt:	May 24, 2012				
Date of Issue:	July 9, 2012	7					
Location of Testing:	SK TECH CO., LTD. #820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, 472-905 South Korea						
Test Procedure:	ANSI C63.10-2009 and ANSI C63.4-2009						
Test Specification:	47CFR, FCC Part 15 Rules						
FCC Equipment Class:	DSS - Part 15 Spread Spectru	um Transmitter					
Test Result:	The above-mentioned device	e has been tested and	l passed.				
Tested & Reported by: Jung	gtae Kim A	Approved by: Jongsoo	Yoon				
Signature	July 9, 2012 Date	Signo	July 9, 2012 nture Date				
Other Aspects:	-						
Abbreviations:	· OK, Pass = passed · Fail = failed	$1 \cdot N/A = not applicable$	e .				

- This test report is not permitted to copy partly and entirely without our permission. This test result is dependent on only equipment to be used.
- This test result is based on a single evaluation of submitted samples of the above mentioned.

Page 2 of 31

>> CONTENTS <<

1. GENERAL	4
2. TEST SITE	4
2.1 Location ·····	4
2.2 List of Test and Measurement Instruments	5
2.3 Test Date ·····	5
2.4 Test Environment ·····	5
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST	
3.1 Rating and Physical Characteristics	6
3.2 Equipment Modifications	
3.3 Submitted Documents	6
4. MEASUREMENT CONDITIONS	
4.1 Description of test configuration	7
4.2 List of Peripherals	
4.3 Type of Used Cables · · · · · · · · · · · · · · · · · · ·	
4.4 Uncertainty	7
5. TEST AND MEASUREMENTS	8
5.1 ANTENNA REQUIREMENT	
5.1.1 Regulation ·····	
5.1.2 Result	8
5.2 MAXIMUM PEAK OUTPUT POWER ······	
5.2.1 Regulation ·····	
5.2.2 Test Procedure	_
5.2.3 Test Results	_
Table 1: Measured values of the Maximum Peak Output Power (Conducted)······	
Figure 1: Plot of the Maximum Peak Output Power (Conducted) · · · · · · · · · · · · · · · · · · ·	10
5.3 CARRIER FREQUENCY SEPARATIONS and 20 dB BANDWIDTH \cdots	
5.3.1 Regulation ·····	
5.3.2 Test Procedure ····	
5.3.3 Test Results	11
Table 2: Measured values of the Carrier Frequency Separation and 20 dB Bandwidth	
Figure 2: Plot of the Carrier Frequency Separation	
Figure 3: Plot of the 20dB Channel Bandwidth	
5.4 NUMBER OF HOPPING CHANNELS	
5.4.1 Regulation ·····	
5.4.2 Test Procedure	
5.4.3 Test Results	
Table 3: Measured values of the Number of Hopping Channels	
Figure 4: Plot of the Number of Hopping Channels	15

Page 3 of 31

5.5 TIME (OF OCCUPANCY (DWELL TIME)	16
5.5.1 Reg	gulation ·····	· 16
5.5.2 Tes	t Procedure ·····	· 16
5.5.3 Tes	t Results	· 16
Table	4: Measured values of the Time of Occupancy	16
Figure	5: Plot of the Time of Occupancy	
	OUS EMISSION, BAND EDGE, AND RESTRICTED BANDS	
•	gulation ·····	
	t Procedure ·····	
5.6.3 Tes	t Results	· 20
Table	5: Results for the final radiated measurements of the field strength of spurious emission \cdots	
Figure	6: Plot of the Band Edge (Conducted) ·····	21
Figure	7: Plot of the Band Edge (Radiated)·····	22
Figure	8: Spurious RF conducted emission ·····	24
Figure	9: Emission plot for the preliminary radiated measurements · · · · · · · · · · · · · · · · · · ·	25
	WER LINE CONDUCTED EMISSIONS	
5.7.1 Reg	gulation ·····	· 28
5.7.2 Tes	t Procedure ·····	· 28
5.7.3 Tes	t Results · · · · · · · · · · · · · · · · · · ·	· 29
Table	6: Measured values of the Conducted Emissions ·····	
Figure	10: Plot of the Conducted Emissions	30
5.8 RF EX	POSURE ·····	31
•	gulation ·····	
5.8.2 RF	Exposure Compliance Issue ·····	. 31

Page 4 of 31

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.10-2009 and ANSI C63.4-2009 for intentional radiators, and in accordance with the limits set forth in FCC Part 15.247. The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK TECH CO., LTD. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH CO., LTD.

2.1 Location

#820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, 472-905 South Korea (FCC Registered Test Site Number: 938639)

(OPEN AREA TEST SITE INDUSTRY CANADA NUMBER: IC 5429A-1)

This laboratory is also notified to FCC by RRA as a Conformity Assessment Body, and designated to perform compliance testing on equipment subject to Declaration of Conformity (DOC) and Certification under Parts 15 and 18 of the FCC Rules. Designation number: KR0007

SKTRFC-120709-015 FCC ID: CR4-TZC-BH02

SK TECH CO., LTD.

Page 5 of 31

2.2 List of Test and Measurement Instruments

No.	Description	Manufacturer	Model No.	Serial No.	Calibrated until	Used
1	Spectrum Analyzer	Agilent	E4405B	US40520856	2013.03	
2	Spectrum Analyzer	Agilent	E4440A	MY46186322	2013.03	\boxtimes
3	EMC Spectrum Analyzer	Agilent	E7405A	US40240203	2013.03	
4	EMI Test Receiver	Rohde&Schwarz	ESPI7	101206	2012.07	
5	EMI Test Receiver	Rohde&Schwarz	ESHS10	835871/002	2012.12	
6	Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	836679/018	2012.07	
7	Pre-amplifier	HP	8447F	3113A05153	2012.07	
8	Pre-amplifier	MITEQ	AFS44	1116321	2012.12	
9	Pre-amplifier	MITEQ	AFS44	1116322	2012.07	
10	Power Meter	Agilent	E4417A	MY45100426	2012.07	
11	Power Meter	Agilent	E4418B	US39402176	2012.07	
12	Power Sensor	Agilent	E9327A	MY44420696	2012.07	
13	Power Sensor	Agilent	8482A	MY41094094	2012.07	
14	Attenuator (10dB)	HP	8491B	38067	2012.07	\boxtimes
15	High Pass Filter	Wainwright	WHKX3.0/18G	8	2012.07	
16	VHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	VHAP	1014 / 1015	2012.11	
17	UHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	UHAP	989 / 990	2012.11	
18	Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	2013.01	
19	TRILOG Broadband Antenna	Schwarzbeck	VULB9168	230	2012.12	
20	Horn Antenna	AH Systems	SAS-200/571	304	N/A	
21	Horn Antenna	EMCO	3115	00040723	2013.04	
22	Horn Antenna	EMCO	3115	00056768	2012.09	
23	Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170318	2013.09	
24	Vector Signal Generator	Agilent	E4438C	MY42080359	2012.07	
25	PSG analog signal generator	Agilent	E8257D-520	MY45141255	2012.07	
26	DC Power Supply	HP	6622A	3348A03223	2012.07	
27	DC Power Supply	HP	6633A	3325A04972	2012.07	
28	Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	2012.07	
29	Temperature/Humidity Chamber	All Three	ATM-50M	20030425	2013.03	
30	Temperature/Humidity Chamber	DAEJIN	DJ-THC02	06071	2013.03	

2.3 Test Date

Date of Test: June 20, 2012 ~ July 2, 2012

2.4 Test Environment

See each test item's description.

Page 6 of 31

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

Power source	DC 3.7 V Li-ion battery	
Transmit Frequency	2402 ~ 2480 MHz (1 MHz step, 79 channels)	
X-tal or Oscillator	X-tal: 26 MHz	
Antenna Type	Integral (Chip antenna, Peak gain: 0 dBi)	
Type of Modulation	FHSS (GFSK)	
RF Output power	Under 4 dBm (declared by the applicant)	

3.2 Equipment Modifications

None

3.3 Submitted Documents

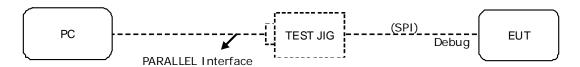
Block diagram

Schematic diagram

Antenna Specification

Part List

User manual



Page 7 of 31

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The measurements were taken in continuous transmitting mode using the TEST MODE. For controlling the EUT as TEST MODE, the test program and the cable assembly were provided by the applicant.

[System Block Diagram of Test Configuration]

4.2 List of Peripherals

Equipment Type	Equipment Type Manufacturer		S/N
Personal Computer**	DELL INC.	DCNE	7XH86BX
TEST JIG	-	-	-

^{**} For control of the RF module via SPI interface at the Debug port in the EUT. For radiated spurious emission measurements, the measurements were performed without PC after setting the radio module to TEST MODE.

If not otherwise stated, for modulating the transmitter, a pseudo random bit sequence with a pattern type DH5 for GFSK was used. The power setting value of Basic 46 was used as the maximum transmitter power. BC6 (Hardware ID 0xE3) firmware version 5987

4.3 Type of Used Cables

#	START		END		CABLE	
#	NAME	I/O PORT	NAME	I/O PORT	LENGTH(m)	SHIELDED
1	EUT	SPI	TEST JIG	SPI	0.1	NO
2	TEST JIG	Parallel interface	PC	LPT	1.5	NO

4.4 Uncertainty

Measurement Item	Combined Standard Uncertainty <i>Uc</i>	Expanded Uncertainty $U = kUc \ (k = 2)$
Conducted RF power	± 1.49 dB	± 2.98 dB
Radiated disturbance	± 2.30 dB	± 4.60 dB
Conducted disturbance	± 1.96 dB	± 3.92 dB

Page 8 of 31

5. TEST AND MEASUREMENTS(Part 15.247)

Summary of Test Results

Requirement	CFR 47 Section	Report Section	Test Result
Antenna Requirement	15.203, 15.247(b)(4)	5.1	PASS
Maximum Peak Output Power	15.247(b)(1), (4)	5.2	PASS
Carrier Frequency Separation	15.247(a)(1)	5.3	PASS
20dB Channel Bandwidth	15.247(a)(1)	5.3	PASS
Number of Hopping Channels	15.247(a)(iii), 15.247(b)(1)	5.4	PASS
Time of Occupancy (Dwell Time)	15.247(a)(iii)	5.5	PASS
Spurious Emission, Band Edge, and Restricted bands	15.247(d), 15.205(a), 15.209(a)	5.6	PASS
AC power line Conducted emissions	15.207(a)	5.7	PASS
RF Exposure	15.247(i), 1.1307(b)(1)	5.8	PASS

5.1 ANTENNA REQUIREMENT

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result: PASS

The transmitter has an integral Chip antenna. The directional gain of the antenna is 0 dBi.

Page 9 of 31

5.2 MAXIMUM PEAK OUTPUT POWER

5.2.1 Regulation

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts

According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 2. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via SPI interface and make sure the spectrum analyzer is operated in its linear range.
- 3. Set the spectrum analyzer as follows:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = \max hold

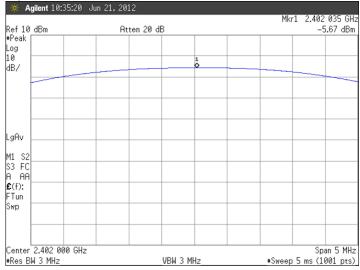
- 4. Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 5. Repeat above procedures until all frequencies measured were complete.

5.2.3 Test Results:

PASS

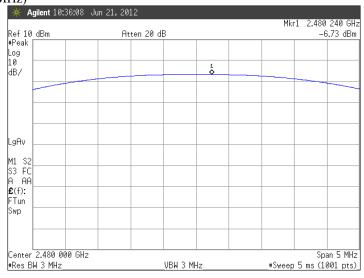
Table 1: Measured values of the Maximum Peak Output Power (Conducted)							
Modulation	Operating	Resolution	Measu	ıred value	Limit		
Modulation	Frequency	Bandwidth	dBm	W	Limit		
D:-	2402 MHz	3 MHz	-5.67	0.000 27	1 W		
Basic (GFSK)	2441 MHz	3 MHz	-4.85	0.000 33	(the number of the non-overlapping hopping		
(GI SK)	2480 MHz	3 MHz	-6.73	0.000 21	channels is equal to or greater than 75)		

NOTE 1. Since the directional gain of the integral antenna declared by the manufacturer (GAIN = 0 dBi) does not exceed 6.0 dBi, there was no need to reduce the output power.


NOTE 2. We took the insertion loss of the cable loss into consideration within the measuring instrument.

Page 10 of 31

Figure 1. Plot of the Maximum Peak Output Power (Conducted)


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)

Highest Channel (2480 MHz)

Page 11 of 31

5.3 CARRIER FREQUENCY SEPARATIONS and 20 dB BANDWIDTH

5.3.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.3.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 2. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via SPI interface.
- 3. Set the spectrum analyzer as follows:

For measurements of Carrier Frequency Separation

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For measurements of 20 dB Bandwidth

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth

 $VBW \ge RBW$

Sweep = auto

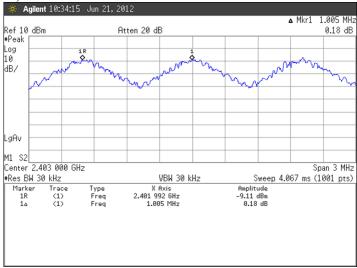
Detector function = peak

Trace = max hold

- 4. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
- 5. Repeat above procedures until all frequencies measured were complete.

5.3.3 Test Results:

PASS


Table 2: Measured values of the Carrier Frequency Separation and 20 dB Bandwidth							
Modulation	Operating Frequency	Frequency Separation	20 dB Bandwidth	LIMIT (Frequency Separation)			
ъ.	2402 MHz	1 005 kHz	912 kHz	> 251H 20 ID1 1 1H			
Basic (GFSK)	2441 MHz	1 008 kHz	912 kHz	≥ 25 kHz or 20 dB bandwidth, whichever is greater			
	2480 MHz	1 002 kHz	912 kHz	Williams to 15 greater			

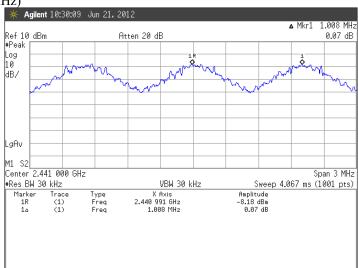
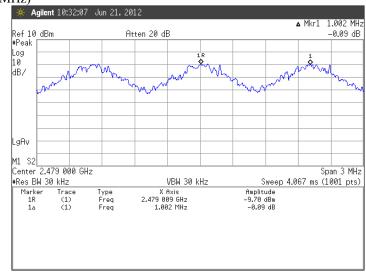
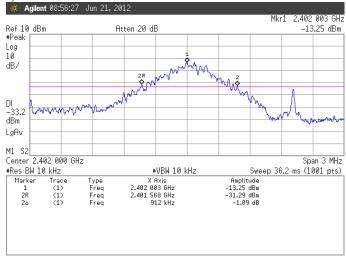

Page 12 of 31

Figure 2. Plot of the Carrier Frequency Separation Basic (GFSK)


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)

Highest Channel (2480 MHz)



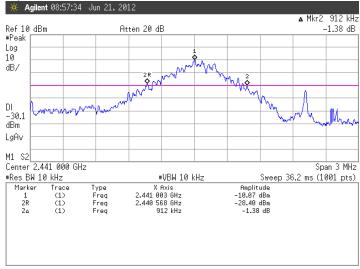
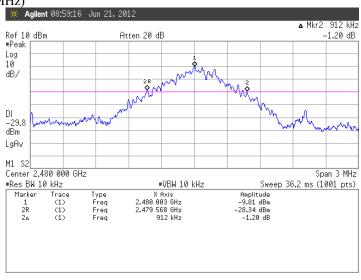

Page 13 of 31

Figure 3. Plot of the 20 dB Channel Bandwidth Basic (GFSK)


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)

Highest Channel (2480 MHz)

Page 14 of 31

5.4 NUMBER OF HOPPING CHANNELS

5.4.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to §15.247(b)(1), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.4.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 2. Turn on the EUT and set the hopping function enabled by controlling it via SPI interface.
- 3. Set the spectrum analyzer as follows:

Span = the frequency band of operation

 $RBW \ge 1\%$ of the span

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

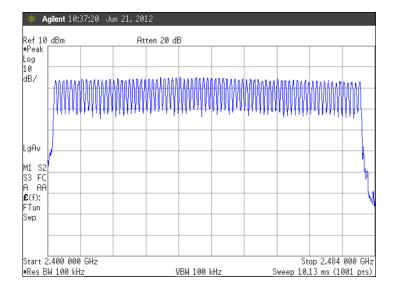
Trace = max hold

4. Record the number of hopping channels.

5.4.3 Test Results:

PASS

Table 3: Measured values of the Number of Hopping Channels						
Modulation Operating Frequency Number of hopping channels LIMIT						
Basic (GFSK)	2402 - 2480 MHz	79	≥ 15			


SKTRFC-120709-015 FCC ID: CR4-TZC-BH02

SK TECH CO., LTD.

Page 15 of 31

Figure 4. Plot of the Number of Hopping Channels

Page 16 of 31

5.5 TIME OF OCCUPANCY (DWELL TIME)

5.5.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.5.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 2. Turn on the EUT and set it to any one measured frequency within its operating range by controlling it via SPI interface.
- 3. Set the spectrum analyzer as follows:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

- 4. Measure the dwell time using the marker-delta function.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. Repeat this test for different modes of operation (e.g., data rate, modulation format, etc.), if applicable.

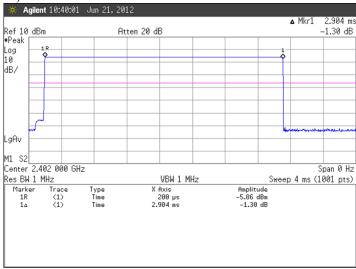
PASS

5.5.3 Test Results:

Table 4: Measured values of the Time of Occupancy									
Modulation	Operating Frequency	Reading (ms)	Hopping rate (hops/s)	Number of Channels	Actual (seconds)	LIMIT (seconds)			
Basic (GFSK)	2402 MHz	2.904	266.667	79	0.31	0.4			
	2441 MHz	2.904	266.667	79	0.31	0.4			
	2480 MHz	2.904	266.667	79	0.31	0.4			

 $Actual = Reading \times (Hopping \ rate \ / \ Number \ of \ channels) \times Test \ period$

Test period = 0.4 [seconds / channel] \times 79 [channel] = 31.6 [seconds]


NOTE: The EUT makes worst case 1600 hops per second or 1 time slot has a length of 625µs with 79 channels. The DH5 Packet (GFSK) needs 5 time slot for transmitting and 1 time slot for receiving. Then the EUT makes worst case 266.667 hops per second with 79 channels.

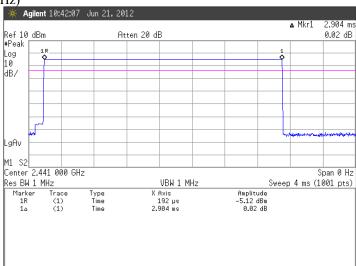
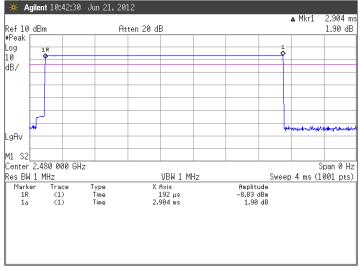

Page 17 of 31

Figure 5. Plot of the Time of Occupancy


Lowest Channel (2402 MHz)

Middle Channel (2441 MHz)

Highest Channel (2480 MHz)

Page 18 of 31

5.6 SPURIOUS EMISSIONS, BAND EDGE, AND RESTRICTED BANDS

5.6.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Field strength (µV/m @ 3m)	Field strength (dBμV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

According to §15.109(a), for an unintentional device, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the above table.

5.6.2 Test Procedure

- 1) Band-edge Compliance of RF Conducted Emissions
- 1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation

 $RBW \ge 1\%$ of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

- 2. Allow the trace to stabilize. Set the marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is greater than that at the band-edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 3. Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

^{**} The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1000 MHz are based on the average value of measured emissions.

SKTRFC-120709-015 FCC ID: CR4-TZC-BH02

SK TECH CO., LTD.

Page 19 of 31

2) Spurious RF Conducted Emissions:

1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

3) Spurious Radiated Emissions:

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters for above 30 MHz, and at 1 meter / 3 meter distance for below 30 MHz.
- 2. The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, from 30 to 1000 MHz using the Trilog broadband antenna, and from 1 GHz to tenth harmonic of the highest fundamental frequency using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4×4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The EUT is situated in three orthogonal planes (if appropriate)
- 7. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.
- 8. If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-delta" method may be employed.

4) Marker-Delta Method at the edge of the authorized band of operation:

- 1. Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function as the above Spurious Radiated Emissions test procedure.
- 2. Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to 1% of the total span (but never less than 30 kHz) with a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission (i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not a field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band-edge relative to the highest fundamental emission level.
- 3. Subtract the delta measured in step (2) from the field strengths measured in step (1). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance as required by Section 15.205.
- 4. The above "delta" measurement technique may be used for measuring emissions that are up to two "standard" bandwidths away from the band-edge, where a "standard" bandwidth is the bandwidth specified by C63.4 for the frequency being measured. For example, for band-edge measurements in the restricted band that begins at 2483.5 MHz, C63.4 specifies a measurement bandwidth of at least 1 MHz. Therefore you may use the "delta" technique for measuring emissions up to 2 MHz removed from the band-edge. Radiated emissions that are removed by more than two "standard" bandwidths must be measured as the above Spurious Radiated Emissions test procedure.

Page 20 of 31

5.6.3 Test Results:

PASS

Band-edge compliance of RF conducted/radiated emissions was shown in the Figure 6 and 7. Spurious RF conducted emissions were shown in the Figure 8.

Emission plot for the preliminary radiated measurements were shown in the Figure 9.

NOTE 1: for conducted measurement, we took the insertion loss of the cable loss into consideration within the measuring instrument. And for radiated measurement, the results were calibrated to the field strength within the measuring instrument.

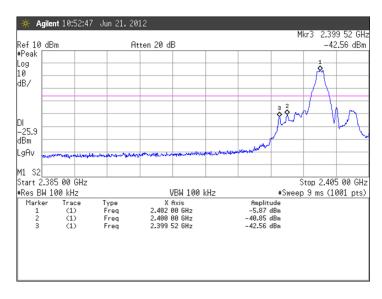
NOTE 2: The preliminary radiated measurements were performed in the anechoic chamber in order to find the frequency, which falls in the restricted bands as defined in Section 15.205, and the results for the final measurements were indicated in the Table 5.

Table 5:	Results f	or the	e final ra	diated	measure	ments	of the	field s	trengt	h of spuri	ious emiss	sion
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	[m]	[degree]	$[dB(\mu V)]$	[dB]	[dB]	dB(1/m)	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]
Average/Pe	Average/Peak/Quasi-peak data, emissions (9 kHz ~ 30 MHz)											
			1	No Spur	ious Radia	ited Em	issions	Found				
										<u> </u>		
Quasi-peal	Quasi-peak data, emissions (30 MHz ~ 1000 MHz)											
			_	7 6						``		
			Ι	vo Spur	ious Radia	ted Em	issions	Found				
										, 		
AVERAGE	E data, emis	ssions	above 100	0 MHz								
2400.0	1000	V	1.02	322	1	48.18	10.29	28.30	6.50	41.46	54.00	12.54
2400.0	1000	Н	1.23	177	•	48.18	10.29	28.30	6.50	47.91	54.00	6.09
2483.4	1000	V	1.00	99	-	48.20	10.28	28.52	6.62	35.86	54.00	18.14
2483.8	1000	Н	1.19	191	-	48.20	10.28	28.53	6.62	37.22	54.00	16.78
4804.0	1000	V	1.32	291	52.36	48.28	0.77	33.30	9.68	47.83	54.00	6.17
4804.0	1000	Н	1.34	159	53.84	48.28	0.77	33.30	9.68	49.31	54.00	4.69
4882.0	1000	V	1.24	288	50.24	48.29	0.70	33.36	9.76	45.77	54.00	8.23
4882.0	1000	Н	1.26	60	55.39	48.29	0.70	33.36	9.76	50.92	54.00	3.08**
4960.0	1000	V	1.10	351	43.78	48.30	0.63	33.42	9.83	39.36	54.00	14.64
4960.0	1000	Н	1.19	4	42.76	48.30	0.63	33.42	9.83	38.34	54.00	15.66
PEAK data	a, emissions	s above	e 1000 MF	Iz								
2400.0	1000	V	1.02	322	-	48.18	10.29	28.30	6.50	52.55	74.00	21.45
2400.0	1000	Н	1.23	177	-	48.18	10.29	28.30	6.50	58.68	74.00	15.32
2490.6	1000	V	1.00	99	-	48.20	10.28	28.54	6.63	49.36	74.00	24.64
2483.8	1000	Н	1.19	191	-	48.20	10.28	28.53	6.62	50.21	74.00	23.79
4804.0	1000	V	1.32	291	58.78	48.28	0.77	33.30	9.68	54.25	74.00	19.75
4804.0	1000	Н	1.34	159	60.24	48.28	0.77	33.30	9.68	55.71	74.00	18.29
4882.0	1000	V	1.24	288	56.11	48.29	0.70	33.36	9.76	51.64	74.00	22.36
4882.0	1000	Н	1.26	60	61.88	48.29	0.70	33.36	9.76	57.41	74.00	16.59
4960.0	1000	V	1.10	351	51.66	48.30	0.63	33.42	9.83	47.24	74.00	26.76
4960.0	1000	Н	1.19	4	54.31	48.30	0.63	33.42	9.83	49.89	74.00	24.11

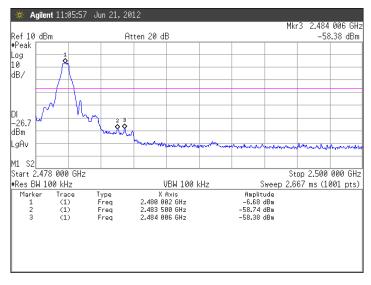
Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + ATT + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- 2. ATT = Attenuation (10dB pad and/or Insertion Loss of HPF)
- 3. AF = Antenna Factor, CL = Cable Loss


Remark: "-" in the Reading means that the correction already made as the band-edge compliance measurements.

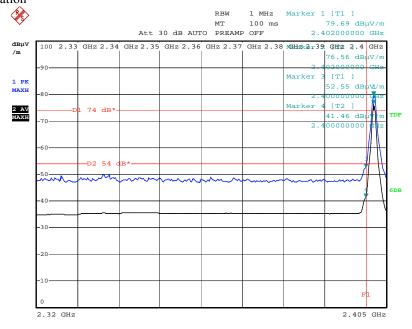
** The measured result is within the test standard limit by a margin less than the measurement uncertainty; it is therefore not possible to state compliance based on the 95 % level of confidence. However, the result indicates that compliance is more probable than non-compliance.



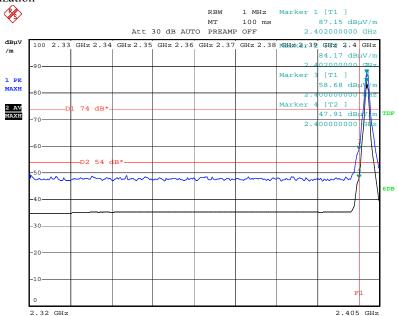
Page 21 of 31

Figure 6. Plot of the Band Edge (Conducted) Lower band-edge

Upper band-edge



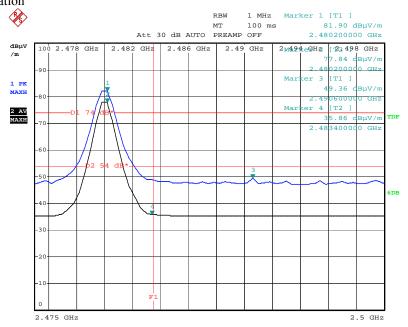
Page 22 of 31


Figure 7. Plot of the Band Edge (Radiated)

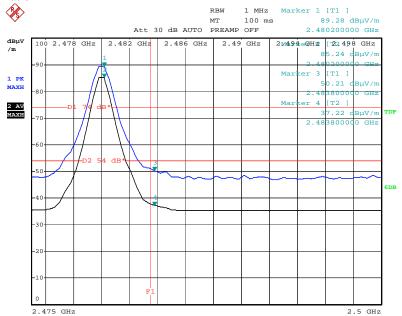
Lowest Channel (operating at 2402 MHz) Vertical polarization

Date: 29.JUN.2012 13:58:51

Lowest Channel (operating at 2402 MHz) Horizontal polarization


Date: 29.JUN.2012 14:21:34

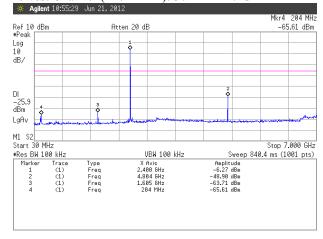
Page 23 of 31


Plot of the Band Edge (Radiated)

Highest Channel (operating at 2480 MHz) Vertical polarization

Date: 29.JUN.2012 14:09:27

Highest Channel (operating at 2480 MHz) Horizontal polarization


Date: 29.JUN.2012 14:14:03

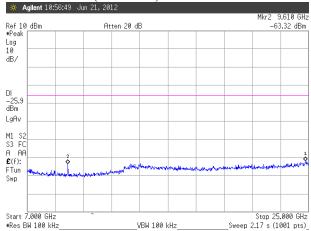
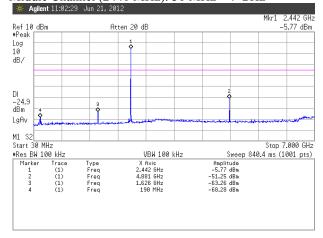
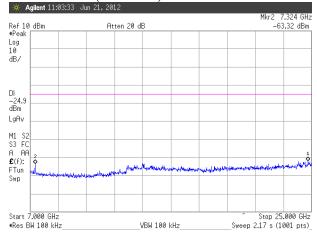
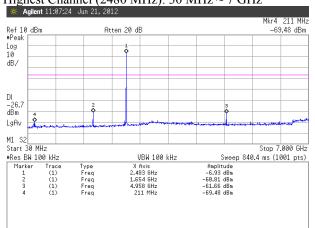
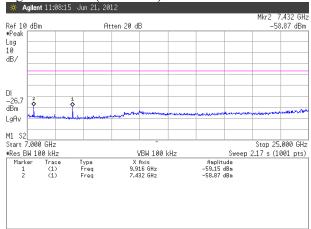

Page 24 of 31

Figure 8. Spurious RF conducted emissions Basic (GFSK)


Lowest Channel (2402 MHz): 30 MHz ~ 7 GHz

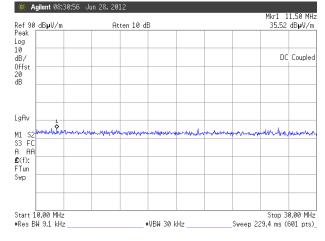

Lowest Channel (2402 MHz): 7 GHz ~ 25 GHz


Middle Channel (2441 MHz): 30 MHz ~ 7 GHz


Middle Channel (2441 MHz): 7 GHz ~ 25 GHz

Highest Channel (2480 MHz): 30 MHz ~ 7 GHz

Highest Channel (2480 MHz): 7 GHz ~ 25 GHz



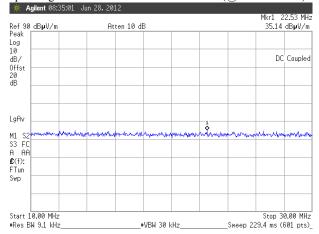
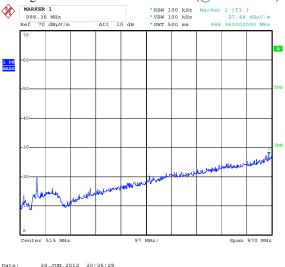
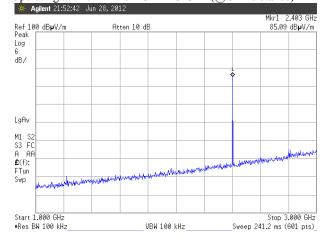
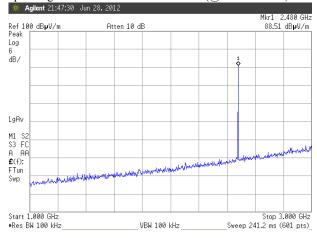

Page 25 of 31

Figure 9. Emission plot for the preliminary radiated measurements


Operating at 2402 MHz: 10 MHz ~ 30 MHz (@ 3-m distance)

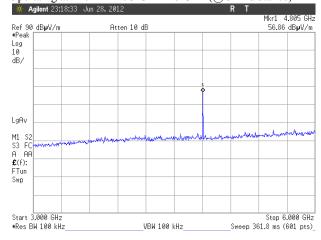

Operating at 2480 MHz: 10 MHz ~ 30 MHz (@ 3-m distance)

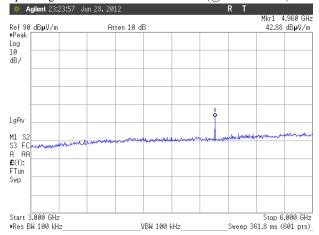

Operating at 2402 MHz: 30 MHz ~ 1 GHz (@ 3-m distance)


Operating at 2480 MHz: 30 MHz ~ 1 GHz (@ 3-m distance)

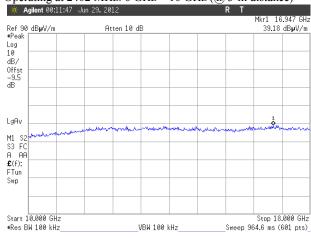
Operating at 2402 MHz: 1 GHz ~ 3 GHz (@ 3-m distance)

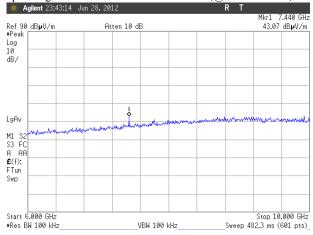
Operating at 2480 MHz: 1 GHz ~ 3 GHz (@ 3-m distance)

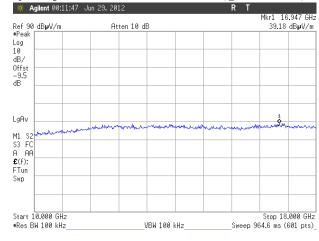


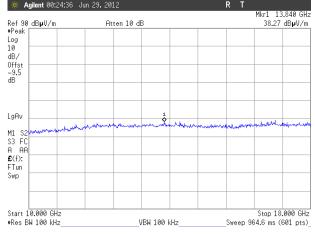

Page 26 of 31

Emission plot for the preliminary radiated measurements (continued)


Operating at 2402 MHz: 3 GHz ~ 6 GHz (@ 3-m distance)

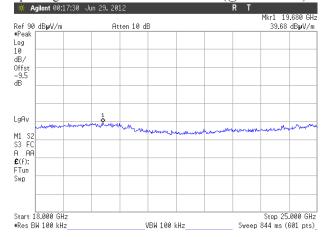

Operating at 2480 MHz: 3 GHz ~ 6 GHz (@ 3-m distance)

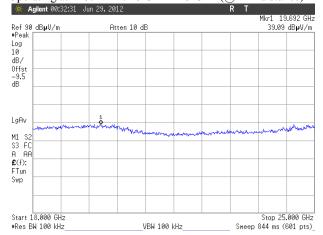

Operating at 2402 MHz: 6 GHz ~ 10 GHz (@ 3-m distance)


Operating at 2480 MHz: 6 GHz ~ 10 GHz (@ 3-m distance)

Operating at 2402 MHz: 10 GHz ~ 18 GHz (@ 1-m distance)

Operating at 2480 MHz: 10 GHz ~ 18 GHz (@ 1-m distance)




Page 27 of 31

Emission plot for the preliminary radiated measurements (continued)

Operating at 2402 MHz: 18 GHz ~ 25 GHz (@ 1-m distance)

Operating at 2480 MHz: 18 GHz ~ 25 GHz (@ 1-m distance)

SKTRFC-120709-015 FCC ID: CR4-TZC-BH02

SK TECH CO., LTD.

Page 28 of 31

5.7 AC POWER LINE CONDUCTED EMISSIONS

5.7.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dBμV)				
rrequency of emission (writz)	Qausi-peak	Average			
0.15 – 0.5	66 to 56 *	56 to 46 *			
0.5 – 5	56	46			
5 – 30	60	50			

^{*} Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

5.7.2 Test Procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

Page 29 of 31

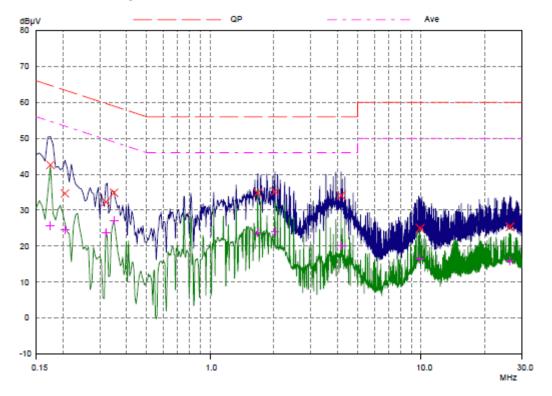
5.7.3 Test Results: PASS

Table 6: Me	easured values	of the	Conducte	d Emission	ns		
Frequency [MHz]	Reading [dBµV]	L/N	CF [dB]	CL [dB]	Actual [dΒμV]	Limit [dBµV]	Margin [dB]
			QUA	SI-PEAK	DATA		
0.1500	47.87	N	0.23	0.02	48.12	66.00	17.88
0.1750	42.59	L	0.22	0.02	42.83	64.72	21.89
0.1900	44.89	N	0.23	0.02	45.14	64.04	18.90
0.2300	42.86	N	0.23	0.02	43.11	62.45	19.34
0.2700	37.32	N	0.22	0.02	37.56	61.12	23.56
0.3450	39.32	N	0.22	0.02	39.56	59.08	19.52
0.3500	34.86	L	0.23	0.02	35.11	58.96	23.85
1.6800	34.82	L	0.26	0.08	35.16	56.00	20.84
2.0300	35.18	L	0.27	0.09	35.54	56.00	20.46
4.1800	34.06	L	0.35	0.17	34.58	56.00	21.42
			AVI	ERAGE D	ATA		
0.1500	34.71	N	0.23	0.02	34.96	56.00	21.04
0.1750	25.65	L	0.22	0.02	25.89	54.72	28.83
0.1900	33.29	N	0.23	0.02	33.54	54.04	20.50
0.2300	31.95	N	0.23	0.02	32.20	52.45	20.25
0.2700	27.25	N	0.22	0.02	27.49	51.12	23.63
0.3450	30.71	N	0.22	0.02	30.95	49.08	18.13
0.3500	26.98	L	0.23	0.02	27.23	48.96	21.73
1.6800	23.64	L	0.26	0.08	23.98	46.00	22.02
2.0300	23.94	L	0.27	0.09	24.30	46.00	21.70
4.1800	20.04	L	0.35	0.17	20.56	46.00	25.44
							_

 $\begin{aligned} & Margin \ (dB) = Limit - Actual \\ & [Actual = Reading + CF + CL] \end{aligned}$

L/N = LINE / NEUTRAL

CF/CL = Correction Factor and Cable Loss


NOTE: The frequency range was scanned from 150 kHz to 30 MHz. All emissions not reported were more than 20 dB below the specified limit.

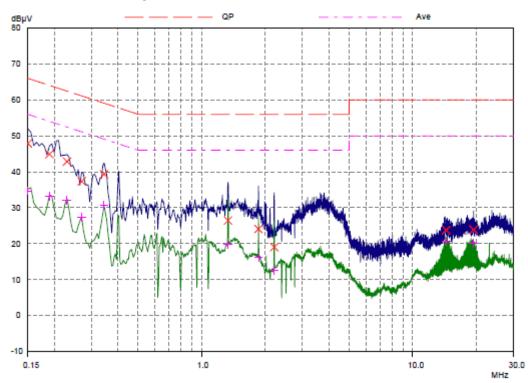

Page 30 of 31

Figure 10. Plot of the AC Power Line Conducted Emissions

Line – PE (Peak and Average detector used)

Neutral – PE (Peak and Average detector used)

Page 31 of 31

5.8 RF Exposure

5.8.1 Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Frequency Range	Electric Field Strength [V/m]	Magnetic Field Strength [A/m]	Power Density [mW/cm ²]	Averaging Time [minute]				
	Limits for General Population/Uncontrolled Exposure							
0.3 ~ 1.34	614	1.63	*(100)	30				
$1.34 \sim 30$ $30 \sim 300$	824/f 27.5	2.19/f 0.073	$*(180/f^2)$ 0.2	30 30				
$300 \sim 1500$ $1500 \sim 15000$	/	/	f/1500 1.0	30 30				

f = frequency in MHz,

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

 $S = power density [mW/cm^2]$

P = power input to antenna [mW]

$$\implies R = \sqrt{PG/4\pi S}$$

G = power gain of the antenna in the direction of interest

relative to an isotropic radiator

R = distance to the center of radiation of the antenna [cm]

EUT: Maximum peak output power=0.33 [mW](= -4.85 dBm)& Antenna gain=1 (= 0 [dBi])					
100 mW, at 20 cm from an antenna 6 [dBi]	$S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$ = 0.0792 [mW/cm2] < 1.0 [mW/cm2]				
0.33 mW, at 20 cm from the antenna 0 [dBi]	$S = PG/4\pi R^2 = 0.0001 \text{ [mW/cm}^2] < 1.0 \text{ [mW/cm}^2]$				

5.8.2 RF Exposure Compliance Issue

July 02 TCB Exclusion List: for portable transmitters,

Low threshold [(60/ $f_{GHZ} \approx 25$) mW, d < 2.5 cm, (120/ $f_{GHZ} \approx 50$) mW, d \geq 2.5 cm], and

High threshold [(900/ $f_{GHZ} \approx 370$) mW, d < 20 cm], where f_{GHz} : 2.44, d: distance to a person's body

The EUT is categorically excluded from routine environmental because it operates at very low power level. The equipment is deemed to comply with the SAR or MPE limits without testing due to this very low power level. SAR data was not submitted because the output power of the EUT was below the low thresholds in the July 02 TCB Exclusion List: for portable transmitters,

^{* =} Plane-wave equivalent power density