

TEST REPORT

OF

FCC Part 15 Subpart C §15.209, §15.231 / IC RSS-210 Issue 8, RSS-Gen
Issue 3

FCC ID/IC Certification: CQOFN00100 / 1551E-FN00100

Equipment Under Test : Smart FOB Key
Model Name : FN00100
Serial No. : N/A
Applicant : DENSO PS Electronics Corp.
Manufacturer : DENSO PS Electronics Corp.
Date of Test(s) : 2013.02.15 ~ 2013.04.12
Date of Issue : 2013.04.12

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Date:

2013.04.12

Harim Lee

Approved By:

Date:

2013.04.12

Hyunchae You

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory)

8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

TABLE OF CONTENTS

	Page
1. General Information -----	3
2. Field Strength of Fundamental -----	6
3. Spurious Emission-----	11
4. Bandwidth of Operation Frequency-----	13
5. Transmission Time-----	15
6. Occupied Bandwidth-----	17
7. Duty Cycle Correction factor-----	19

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

-Wireless Div. 3FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040 (Lab)

-Wireless Div. 1FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040 (Chamber)

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx>.

Telephone : +82 31 428 5700

FAX : +82 31 427 2371

1.2. Details of Applicant

Applicant : DENSO PS Electronics Corp.

Address : 853-11, Oe-Dong, Sungsan-Gu, Changwon City, Kyungnam, Korea

Contact Person : Cho, Dong-Ki

Phone No. : +82 31 340 1938

1.3. Description of EUT

Kind of Product	Smart FOB Key
Model Name	FN00100
Serial Number	N/A
Power Supply	DC 3.0 V (Lithium type of battery)
Frequency Range	Tx: 433.92 MHz, Rx : 134.20 kHz
Modulation Type	FSK
Number of Channels	1
Antenna Type	PCB Antenna

1.4. Details of Modification

- N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Signal Generator	Agilent	E4438C	MY42082477	Mar. 28, 2013	Annual	Mar. 28, 2014
Spectrum Analyzer	R&S	FSV30	100955	Mar. 28, 2013	Annual	Mar. 28, 2014
High Pass Filter	Mini circuits	NHP-400+	V9199000936-1	Mar. 30, 2013	Annual	Mar. 30, 2014
DC Power Supply	Agilent	U8002A	MY50060028	Mar. 28, 2013	Annual	Mar. 28, 2014
Preamplifier	H.P.	8447F	2944A03909	Jul. 04, 2012	Annual	Jul. 03, 2013
Preamplifier	R&S	SCU18	10117	Jan. 14, 2013	Annual	Jan. 14, 2014
Test Receiver	R&S	ESU26	100109	Feb. 28, 2013	Annual	Feb. 28, 2014
Loop Antenna	R&S	HFH2-Z2	100118	Aug. 24, 2011	Biennial	Aug. 24, 2013
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	390	Apr. 19, 2012	Biennial	Apr. 19, 2014
Horn Antenna	R&S	HF907	100208	Aug. 13, 2012	Biennial	Aug. 13, 2014
Antenna Master	INN-CO	MM4000	N/A	N.C.R.	N/A	N.C.R.
Turn Table	INN-CO	DS 1200S	N/A	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L x W x H (9.6 m x 6.4 m x 6.6 m)	N/A	N.C.R.	N/A	N.C.R.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

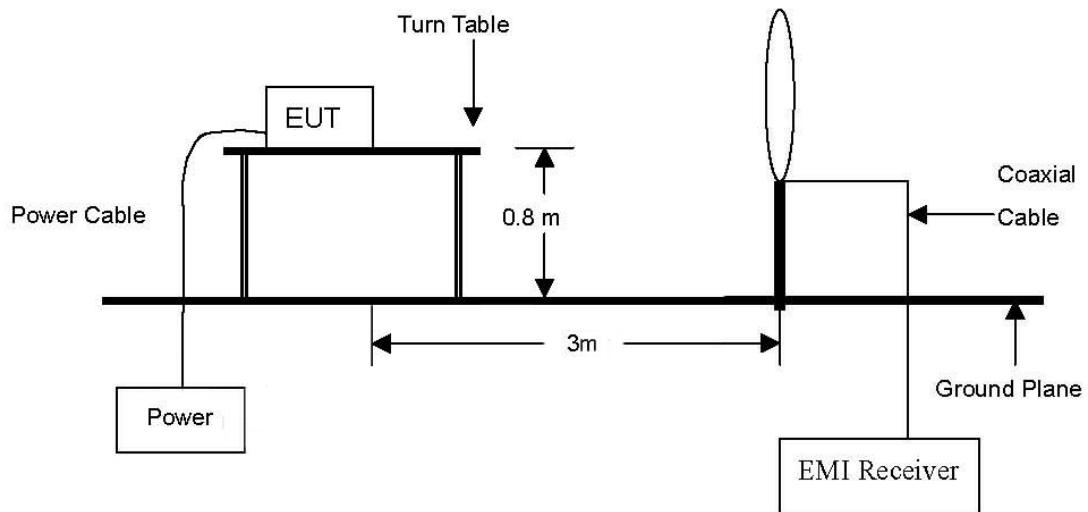
APPLIED STANDARD			
Section in FCC Part 15	Section in RSS-210, RSS-Gen	Test Item	Result
15.209(a) 15.231(b)	RSS-210, Issue 8, A1.1, Table B	Radiated emission, Spurious Emission and Field Strength of Fundamental	Complied
15.231(c)	RSS-210, Issue 8, A1.1.3	Bandwidth of Operation frequency	Complied
15.231(a)	RSS-210, Issue 3, A1.1.1	Transmission Time	Complied
-	RSS-Gen, Issue 3, 4.6.1	Occupied Bandwidth	Complied

1.7. Test Report Revision

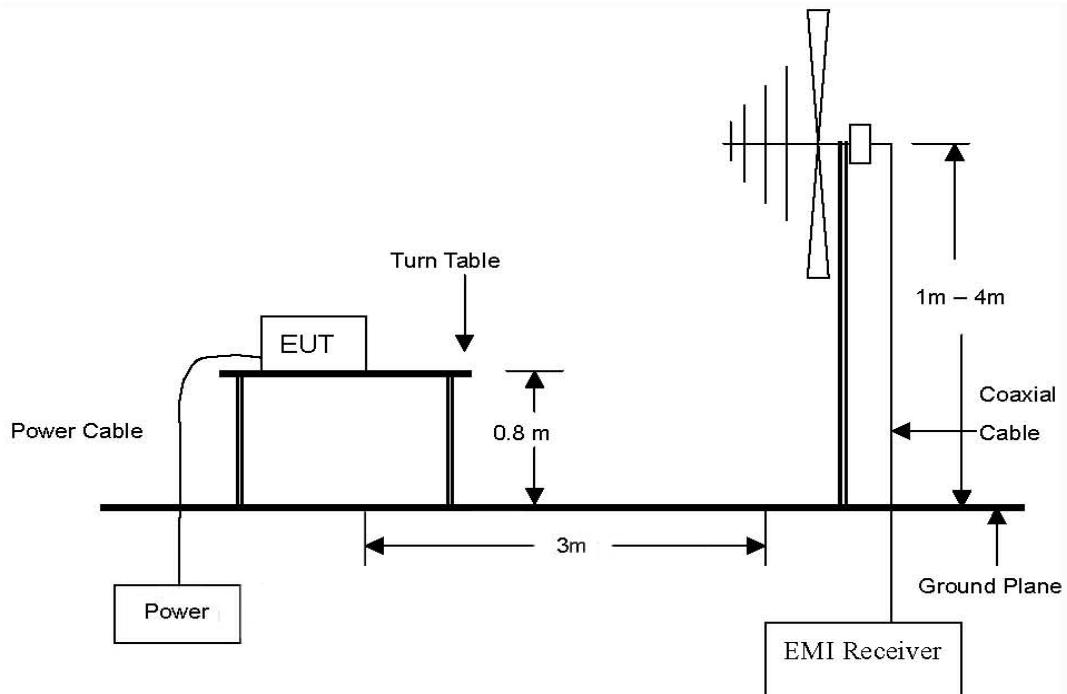
Revision	Report number	Description
0	F690501/RF-RTL006402	Initial

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

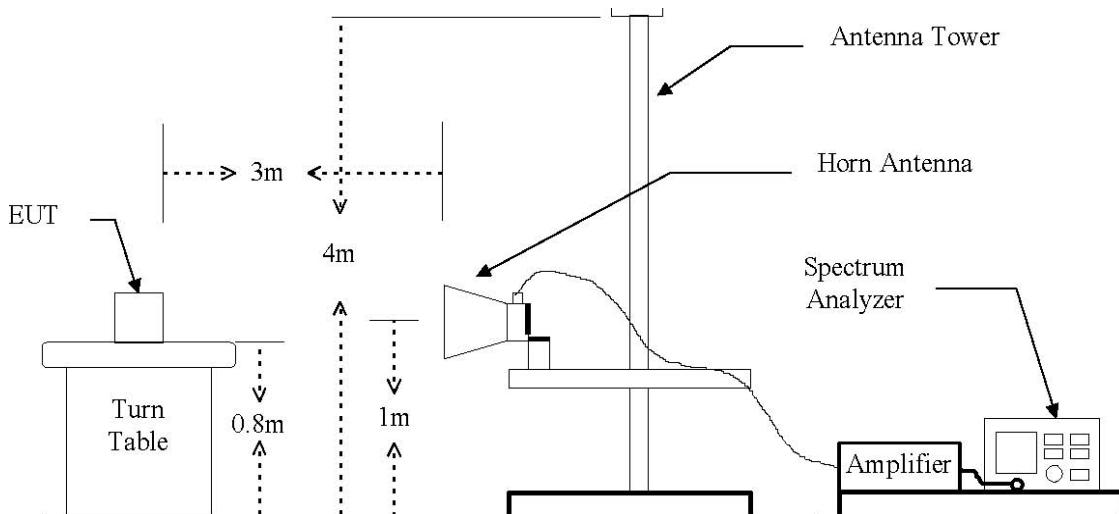

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea


2. Field Strength of Fundamental

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated from 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

2.2. Limit

2.2.1. Radiated emission limits, general requirements

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meter)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 -88	100**	3
88 -216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241

2.2.2. Periodic operation in the band 40.66-40.70 MHz and above 70 MHz

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 – 40.70	2,250	225
70 - 130	1,250	125
130 – 174	1,250 to 3,750 **	125 to 375 **
174 – 260	3,750	375
260 – 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

** linear interpolations

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows : for the band 130-174 MHz, $\mu\text{V}/\text{m}$ at 3 meters = $56.81818(F)-6136.3636$; for the band 260-470 MHz, $\mu\text{V}/\text{m}$ at 3 meters = $41.6667(F)-7083.333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

2.3.1. Test Procedures for emission from 9 kHz to 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from 30 MHz to 1 000 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

2.3.3. Test Procedures for emission above 1 GHz

- a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
- b. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

2.4. Test Result

Ambient temperature : (23 ± 2) °C

Relative humidity : 46 % R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Freq. (MHz)	Ant. Pol	Reading (dB μ V)	Correction Factor (dB/m)	Result (dB μ V/m)	Limit	Margin	Detect Mode
					(dB μ V/m)	Margin (dB)	
AVG	AVG						
433.92	V	46.84	17.13	63.97	100.83	36.86	Peak
433.92	V	46.73	17.13	63.86	80.83	16.97	AVG

Remark:

To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis.

Note:

1. 3 m Limit (dB μ V/m) = $20\log[41.6667(F_{\text{MHz}})-7083.3333] = 80.83$
2. Correction Factor = Antenna Factor + Cable Loss
3. Field Strength of Fundamental test results meet both peak and average limit
4. Result of peak and average is the same due to the duty cycle is 100%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

3. Spurious Emission

3.1. Test Setup

Same as section 2.1. of this report

3.2. Limit

Same as section 2.2. of this report

3.3. Test Procedures

Same as section 2.3. of this report

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

3.4. Test Result

Ambient temperature : (23 ± 2) °C

Relative humidity : 47 % R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Radiated Emissions			Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	Amp Gain +CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
867.78	22.50	Quasi-Peak	V	14.50	-25.30	11.70	46.00	34.30
*1 301.74	45.61	Peak	V	25.20	-38.18	32.63	74.00	41.37
*1 301.74	32.55	Average	V	25.20	-38.18	19.57	54.00	34.43
1 735.47	51.16	Peak	V	27.16	-37.25	41.07	80.83	39.76
1 735.47	46.98	Average	V	27.16	-37.25	36.89	60.83	23.94
2170.16	46.60	Peak	V	27.59	-37.35	36.84	80.83	43.99
2170.16	39.28	Average	V	27.59	-37.35	29.52	60.83	31.31
2603.52	43.21	Peak	V	28.29	-36.55	34.95	80.83	45.88
2603.52	30.15	Average	V	28.29	-36.55	21.89	60.83	38.94
Above 2 700.00	Not Detected	-	-	-	-	-	-	-

Remark:

1. To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis.
2. "*" means the restricted band.
3. Spurious Emission test results meet both peak and average limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

4. Bandwidth of Operation Frequency

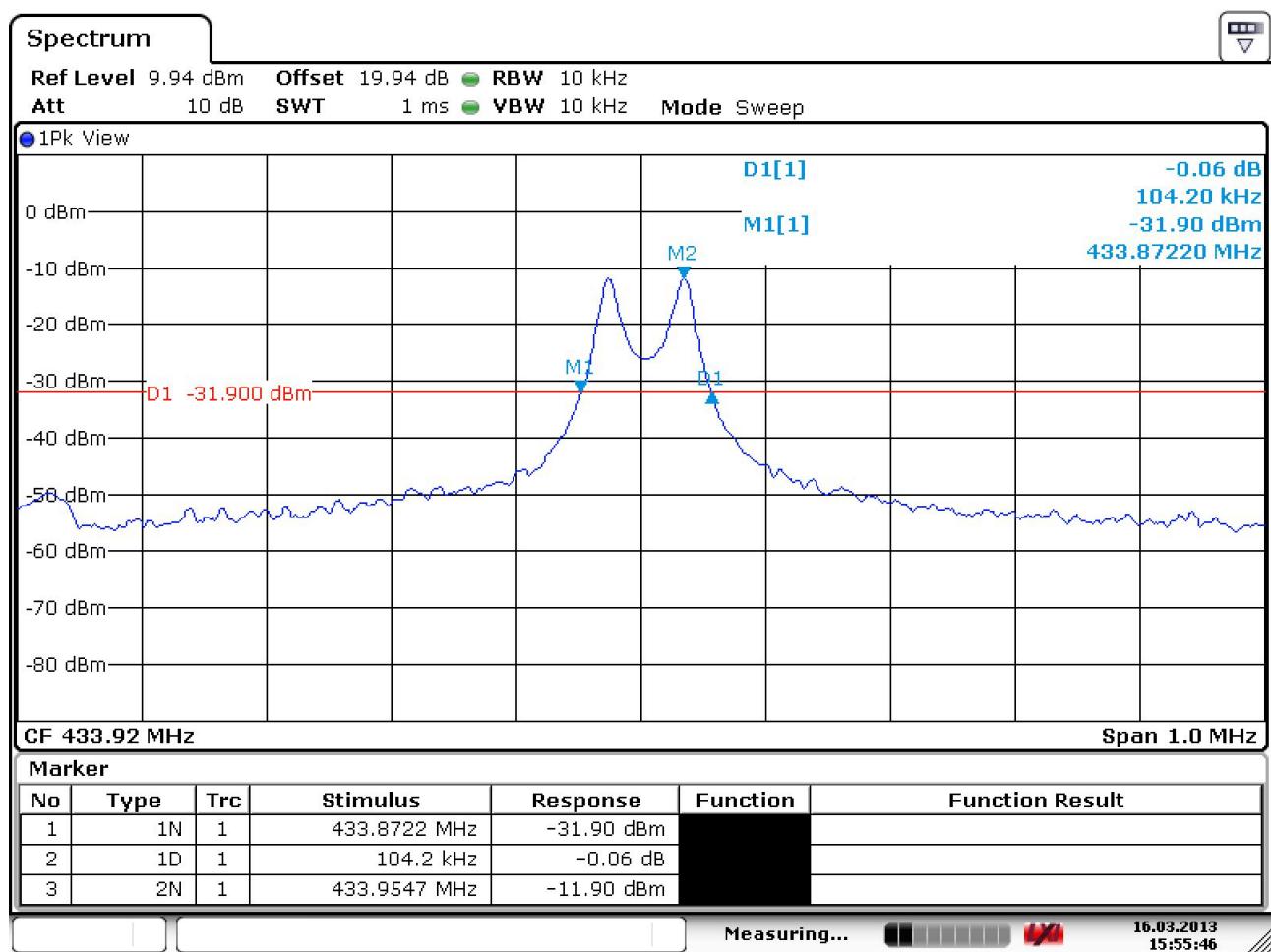
4.1. Test Setup

4.2. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

4.3. Test Procedure

1. The transmitter output is connected to the spectrum analyzer.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=10 kHz, VBW=10 kHz and Span=1 MHz.
3. The bandwidth of fundamental frequency was measured and recorded.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

4.4. Test Result

Ambient temperature : (23 ± 2) °C

Relative humidity : 46 % R.H.

Carrier Frequency (MHz)	Bandwidth of the emission (kHz)	Limit (kHz)	Remark
433.92	104.20	1 084.80	The point 20 dB down from the modulated carrier

Date: 16.MAR.2013 15:55:46

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

5. Transmission Time

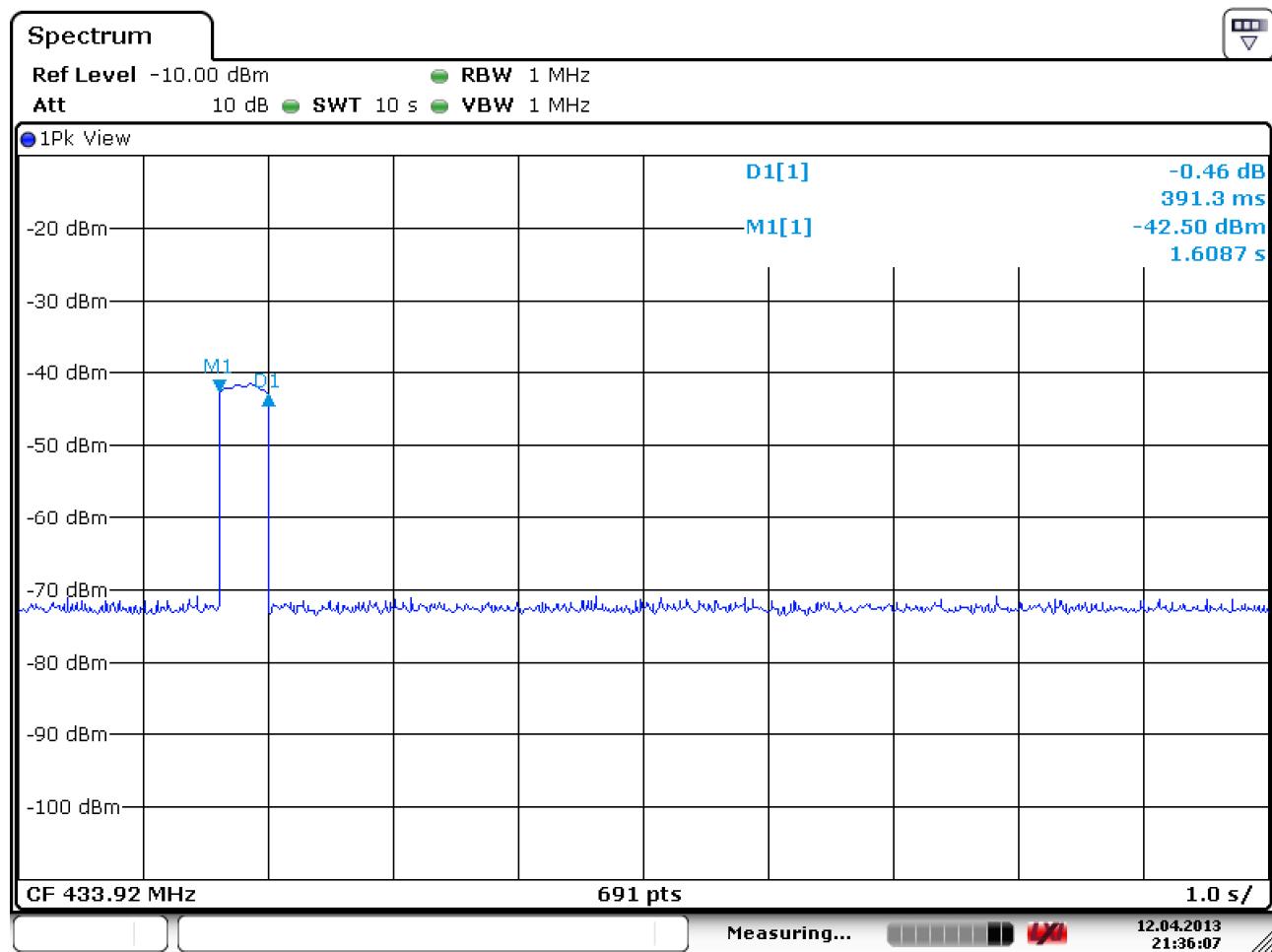
5.1. Test Setup

5.2. Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

5.3. Test Procedure

1. The transmitter output is connected to the spectrum analyzer.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 1 MHz, VBW = 1 MHz, Span= 0 Hz, Sweep Time = 10 sec.
3. The bandwidth of fundamental frequency was measured and recorded.

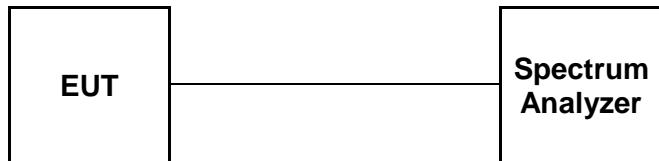


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

5.4. Test Result

Ambient temperature : (23 ± 2) °C
Relative humidity : 46 % R.H.

Carrier Frequency (MHz)	Transmission Time (sec)	Limit (sec)	Remark
433.92	0.391	Same or less than 5 s	Pass



Date: 12.APR.2013 21:36:07

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

6. Occupied Bandwidth

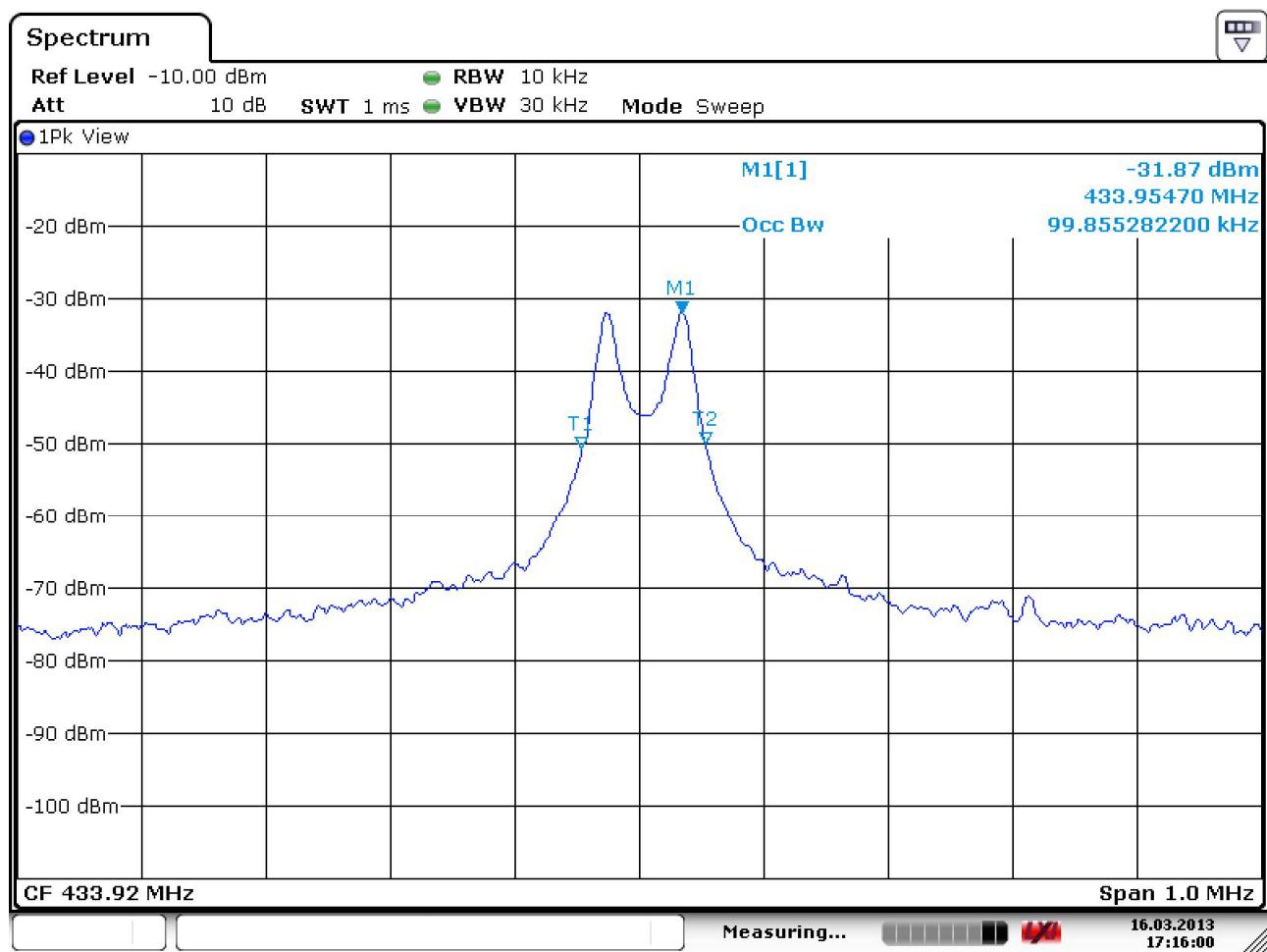
6.1. Test Setup

6.2. Limit

None; for reporting purposes only

6.3. Test Procedure

1. The transmitter output is connected to the spectrum analyzer.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using $RBW \geq 1\% \text{ of Span}$, VBW to 3 times RBW .
3. The bandwidth of fundamental frequency was measured and recorded.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

6.4. Test Result

Ambient temperature : (23 ± 2) °C
Relative humidity : 47 % R.H.

Carrier Frequency (MHz)	Occupied Bandwidth (kHz)	Limit (kHz)	Remark
433.92	99.86	-	99 % Occupied bandwidth

Date: 16.MAR.2013 17:16:00

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

8. Duty cycle correction factor

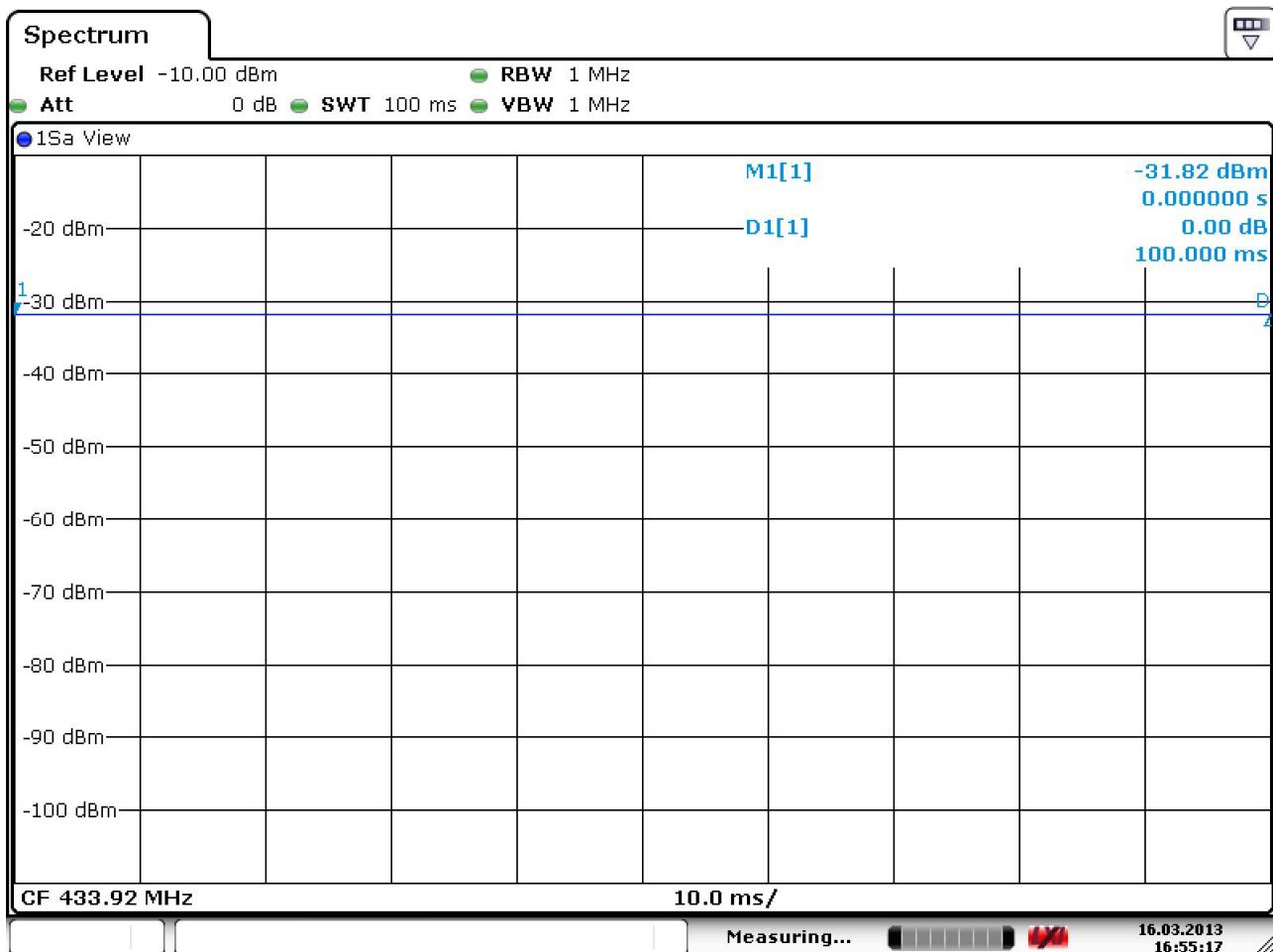
8.1. Test Setup

8.2. Limit

Nil (No dedicated Limit specified in the Rules)

8.3. Test Procedure

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW = 1 MHz , VBW = 1 MHz , Span = 0 Hz, Sweep Time = 100 ms.
5. Repeat above procedures until all frequency measured were complete.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

8.4. Test Result

Ambient temperature : (23 ± 2) °C
Relative humidity : 46 % R.H.

$T_{on+off} = 100 \text{ ms}$
 $T_{on} = 100 \text{ ms} \leq T_{on}$
Duty Cycle Correction Factor = $20\log(T_{on} / T_{on+off}) = 20\log(1) = 0 \text{ dBuV}$

Date: 16.MAR.2013 16:55:18

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea