

TEST REPORT

OF

FCC Part 15 Subpart C §15.209, §15.231
FCC ID : CQOFC00460

Equipment Under Test : Smart Key FOB

Model Name : FC00460

Applicant : DENSO KOREA ELECTRONICS CORPORATION

Manufacturer : DENSO KOREA ELECTRONICS CORPORATION

Date of Receipt : 2017.02.07

Date of Test(s) : 2017.02.17 ~ 2017.02.27

Date of Issue : 2017.03.03

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Date:

2017.03.03

Aileen Jeong

Technical
Manager:

Date:

2017.03.03

Alvin Kim

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

TABLE OF CONTENTS

1. General Information -----	3
2. Field Strength of Fundamental and Spurious Emission-----	6
3. Bandwidth of Operation Frequency-----	18
4. Transmission Time-----	20
5. Duty Cycle Correction Factor-----	22

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <http://www.sgs.com/en/Terms-and-Conditions.aspx>.

Telephone : +82 31 688 0901

FAX : +82 31 688 0921

1.2. Details of applicant

Applicant : DENSO KOREA ELECTRONICS CORPORATION

Address : 3, Chemdansaneop-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do, Korea

Contact Person : Seong, Yun-Su

Phone No. : +82 55 220 9344

1.3. Description of EUT

Kind of Product	Smart Key FOB
Model Name	FC00460
Power Supply	DC 3.0 V (Lithium type of battery)
Frequency Range	Tx: 433.92 MHz, Rx: 134.2 kHz
Modulation Type	FSK
Number of Channel	1
Antenna Type	PCB Antenna

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

1.4. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMBV100A	255834	Jun. 20, 2016	Annual	Jun. 20, 2017
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 23, 2016	Annual	Sep. 23, 2017
Spectrum Analyzer	R&S	FSW43	100637	Jul. 13, 2016	Annual	Jul. 13, 2017
Test Receiver	R&S	ESU26	100109	Feb. 17, 2017	Annual	Feb. 17, 2018
Preamplifier	H.P.	8447F	2944A03909	Aug. 11, 2016	Annual	Aug. 11, 2017
Preamplifier	R&S	SCU-18	10117	Apr. 07, 2016	Annual	Apr. 07, 2017
High Pass Filter	Wainwright Instrument GmbH	WHKX10-900-1000-18 000-40SS	7	Apr. 06, 2016	Annual	Apr. 06, 2017
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-0399	Aug. 19, 2015	Biennial	Aug. 19, 2017
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB9163	396	Jun. 18, 2015	Biennial	Jun. 18, 2017
Horn Antenna	R&S	HF906	100326	Feb. 01, 2016	Biennial	Feb. 01, 2018
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Antenna Master	Innco systems GmbH	MA4640-XP-ET	MA4640/536/3 8330516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L x W x H (9.6 m x 6.4 m x 6.6 m)	N/A	N.C.R.	N/A	N.C.R.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

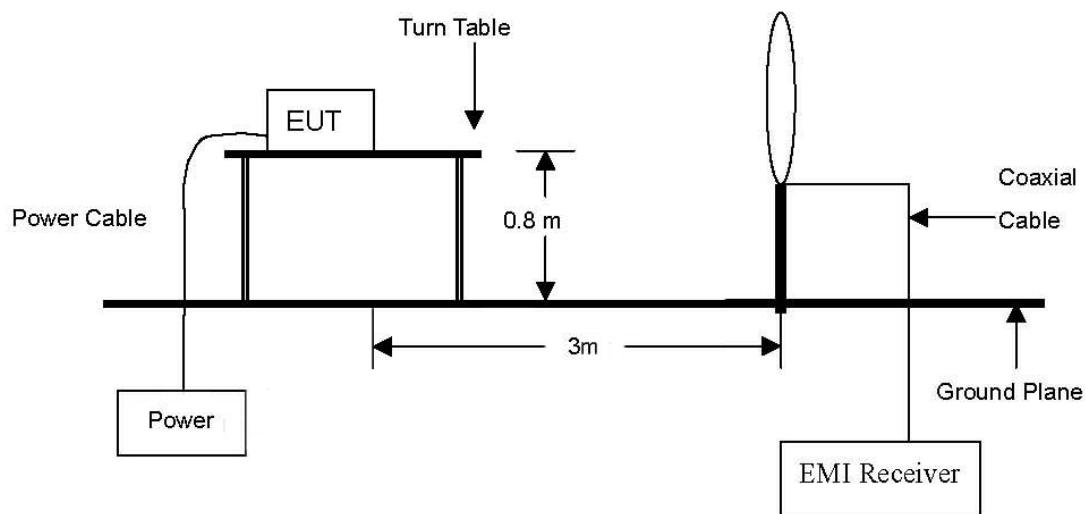
1.5. Summary of Test Results

The EUT has been tested according to the following specifications:

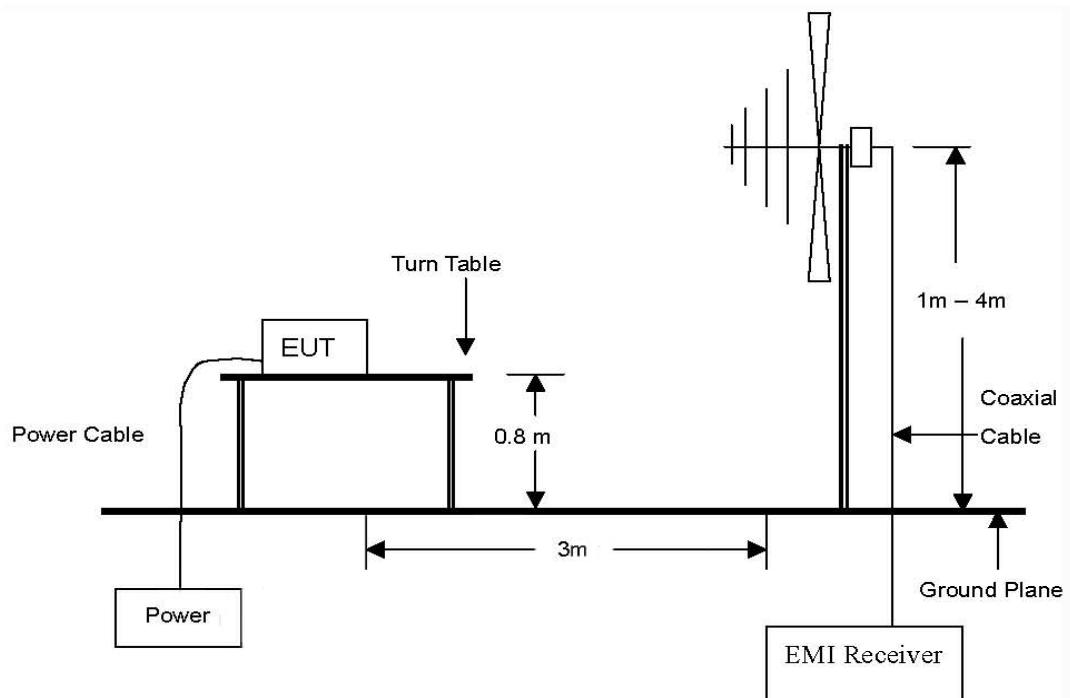
APPLIED STANDARD		
Section in FCC Part 15	Test Item	Result
15.209(a) 15.231(b)	Radiated emission, Spurious Emission and Field Strength of Fundamental	Complied
15.231(c)	Bandwidth of Operation Frequency	Complied
15.231(a)	Transmission Time	Complied

1.6. Test Report Revision

Revision	Report number	Date of issue	Description
0	F690501/RF-RTL010882	2017.03.03	Initial

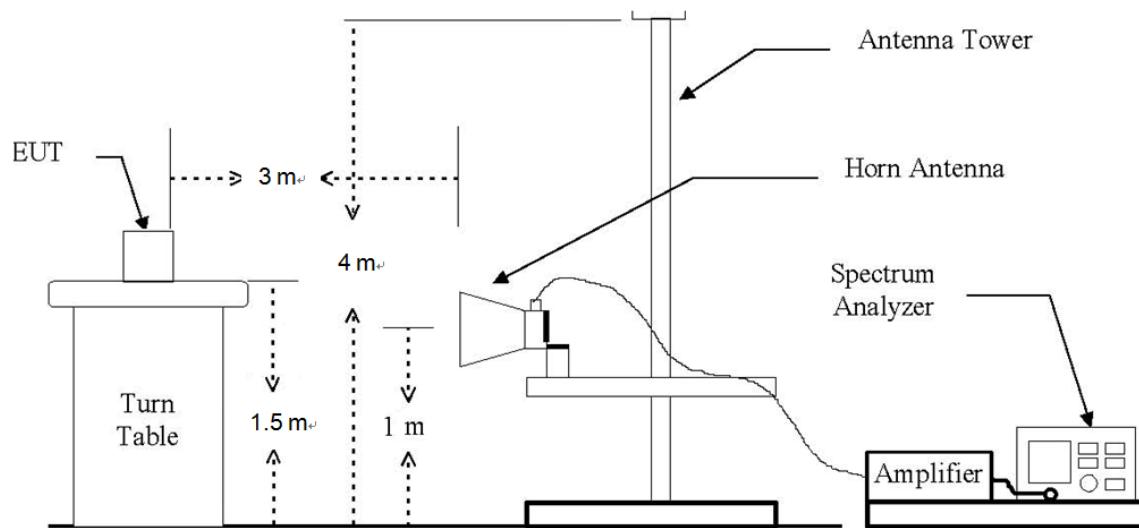

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>
RTT5041-20(2015.10.01)(3) Tel. +82 31 428 5700 / Fax. +82 31 427 2370 A4(210 mm x 297 mm)


2. Field Strength of Fundamental and Spurious Emission

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission below 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated from 1 GHz to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

2.2. Limit

2.2.1. Radiated emission limits; general requirements.

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meter)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., § 15.231 and § 15.241.

2.2.2. Periodic operation in the band 40.66-40.70 MHz and above 70 MHz

According to § 15.231(b), in addition to the provisions of Section § 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750 **	¹ 125 to 375 **
174-260	3,750	375
260-470	¹ 3,750 to 12,500 **	¹ 375 to 1,250 **
Above 470	12,500	1,250

¹linear interpolations

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, $\mu\text{V}/\text{m}$ at 3 meters = $56.81818(F) - 6136.3636$; for the band 260-470 MHz, $\mu\text{V}/\text{m}$ at 3 meters = $41.6667(F) - 7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10:2013

2.3.1. Test Procedures for emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from 30 MHz to 1 000 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

2.3.3. Test Procedures for emission above 1 GHz

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1 GHz.
- c. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

2.4. Test Result

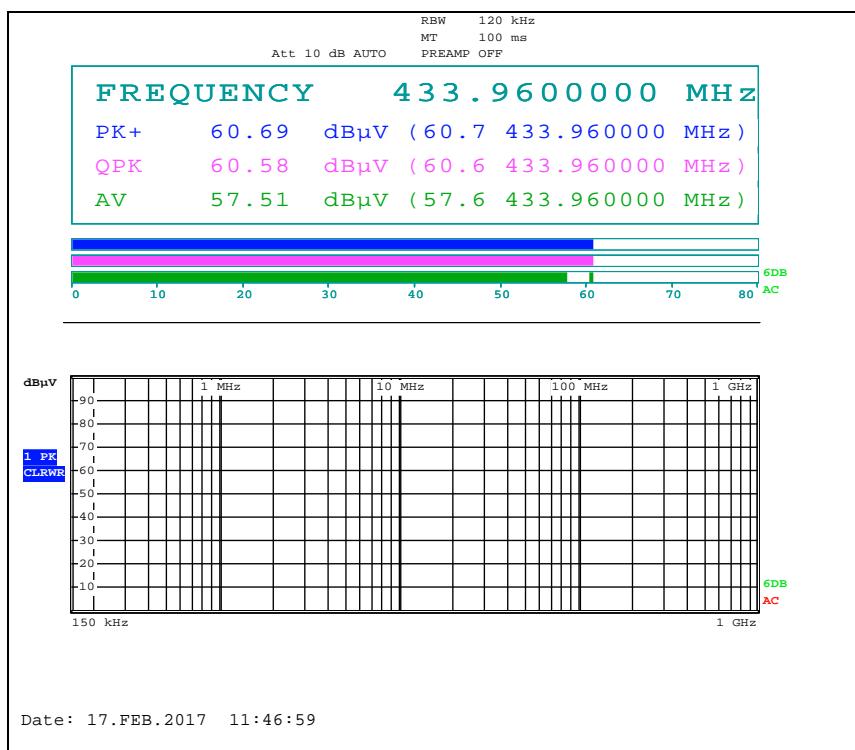
Ambient temperature : $(23 \pm 1)^\circ\text{C}$

Relative humidity : 47 % R.H.

2.4.1. Field Strength of Fundamental

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

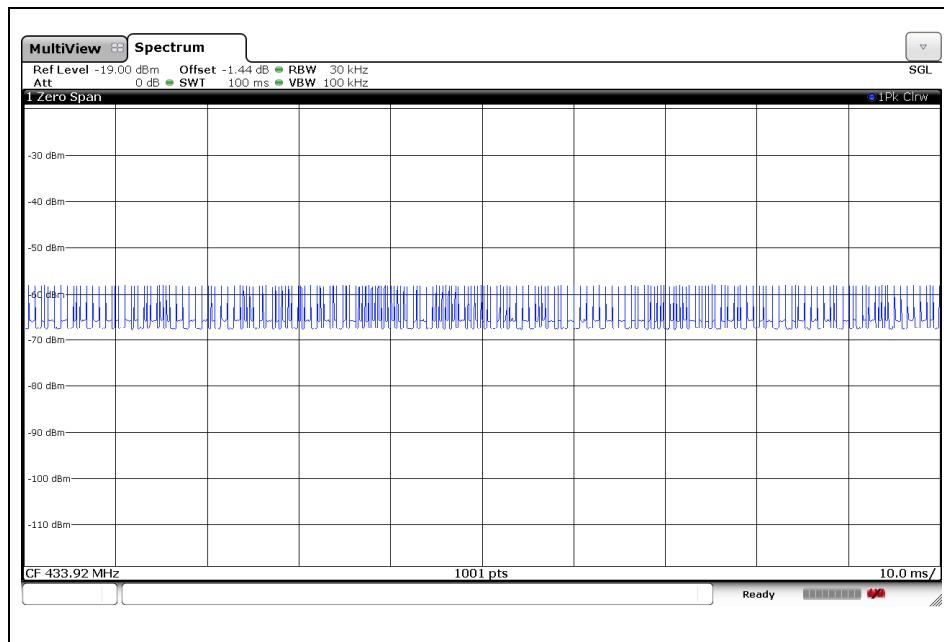
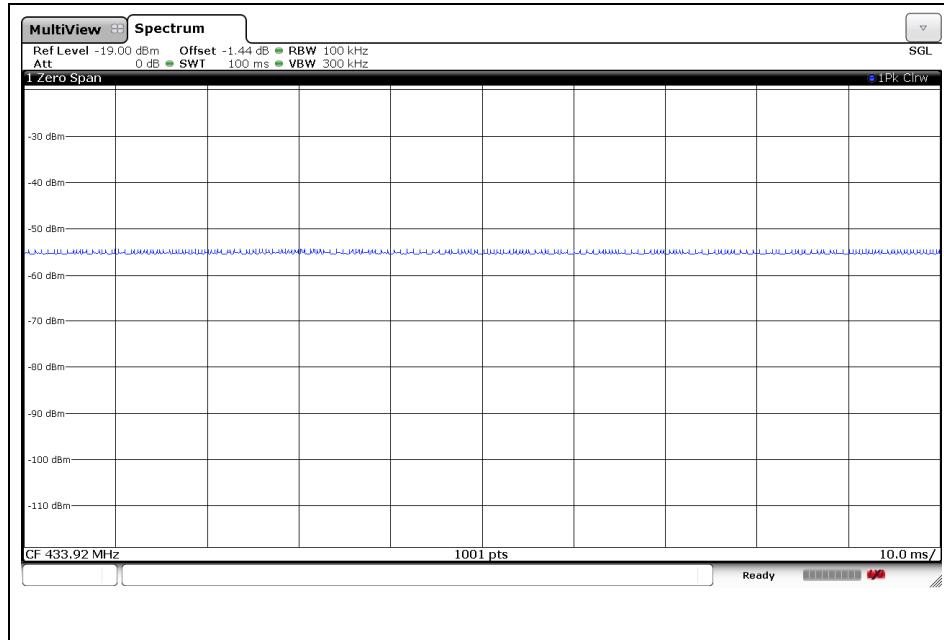
Freq. (MHz)	Detector	Ant. Pol.	Reading (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
433.96	Peak	V	60.70	17.12	2.58	80.40	100.83	20.43
433.96	Average	V	57.60	17.12	2.58	77.30	80.83	3.53


Remark:

To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is Z-axis.

Definition of DUT for three orthogonal planes is described in the test setup photos.

Note:



- 3 m Limit (dB μ V/m) = $20\log[41.67(F_{\text{MHz}}) - 7083] = 80.83$
- Result = Reading + Antenna Factor + Cable Loss
- Average Result = The average result was investigated due to Pulse train over 100 ms.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

Remark:

-Although duty cycle is 100 %, there is 3.10 dB difference between peak and average because of ripple signal.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

2.4.2. Spurious Emission

The following table shows the highest levels of radiated emissions on polarizations of horizontal.

The frequency spectrum from 9 kHz to 4 500 MHz was investigated.

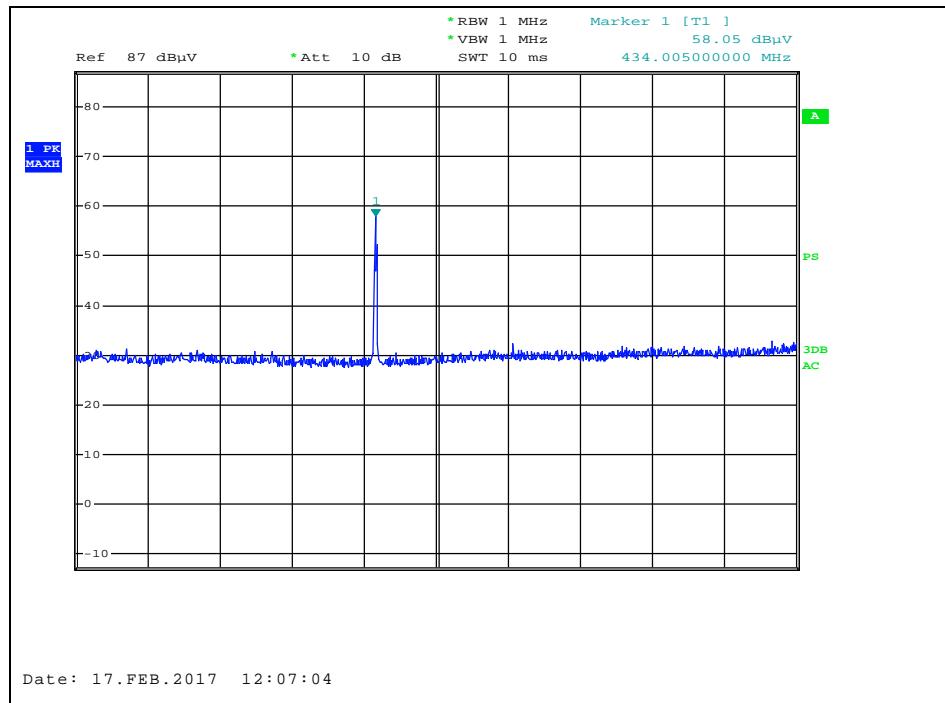
Radiated Emissions			Ant.	Correction Factors		Total	Limit	
Frequency (MHz)	Reading (dB μ V)	Detect Mode	Pol.	AF (dB/m)	Amp Gain + CL (dB)	Actual (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
3 471.57	47.62	Peak	H	30.98	-30.31	48.29	80.83	32.54
3 471.38	44.31	Average	H	30.98	-30.31	44.98	60.83	15.85
*3 905.18	48.42	Peak	H	31.91	-29.82	50.51	74.00	23.49
*3 905.27	45.42	Average	H	31.91	-29.82	47.51	54.00	6.49
*4 339.07	42.41	Peak	H	31.93	-31.01	43.33	74.00	30.67
*4 339.18	36.58	Average	H	31.93	-31.01	37.50	54.00	16.50

Remark:

1. To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst Case is Z-axis.
Definition of DUT for three orthogonal planes is described in the test setup photos.
2. 3 m Limit (dB μ V/m) = $20\log[41.67(F_{\text{MHz}}) - 7083] - 20$ dB μ V/m = 60.83 dB μ V/m
3. Correction Factors = AF + Amp Gain + CL
4. Actual = Reading + AF + Amp Gain + CL
5. ** means the restricted band.
6. Spurious Emission test results meet both peak and average limit.
7. According to § 15.31(o), Emission levels are not reported much lower than the limits by over 20 dB.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

The Plots of Spurious Emission


Scanning plots below 30 MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>
RTT5041-20(2015.10.01)(3) Tel. +82 31 428 5700 / Fax. +82 31 427 2370 A4(210 mm x 297 mm)

Scanning plots from 30 MHz to 1 000 MHz

Scanning plots from 1 000 MHz to 4 500 MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

8th Harmonic (Peak)8th Harmonic (Peak)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

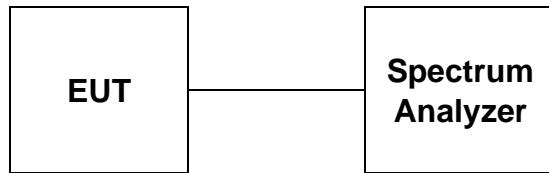
9th Harmonic (Peak)9th Harmonic (Peak)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370


A4(210 mm x 297 mm)

10th Harmonic (Peak)10th Harmonic (Peak)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

3. Bandwidth of Operation Frequency

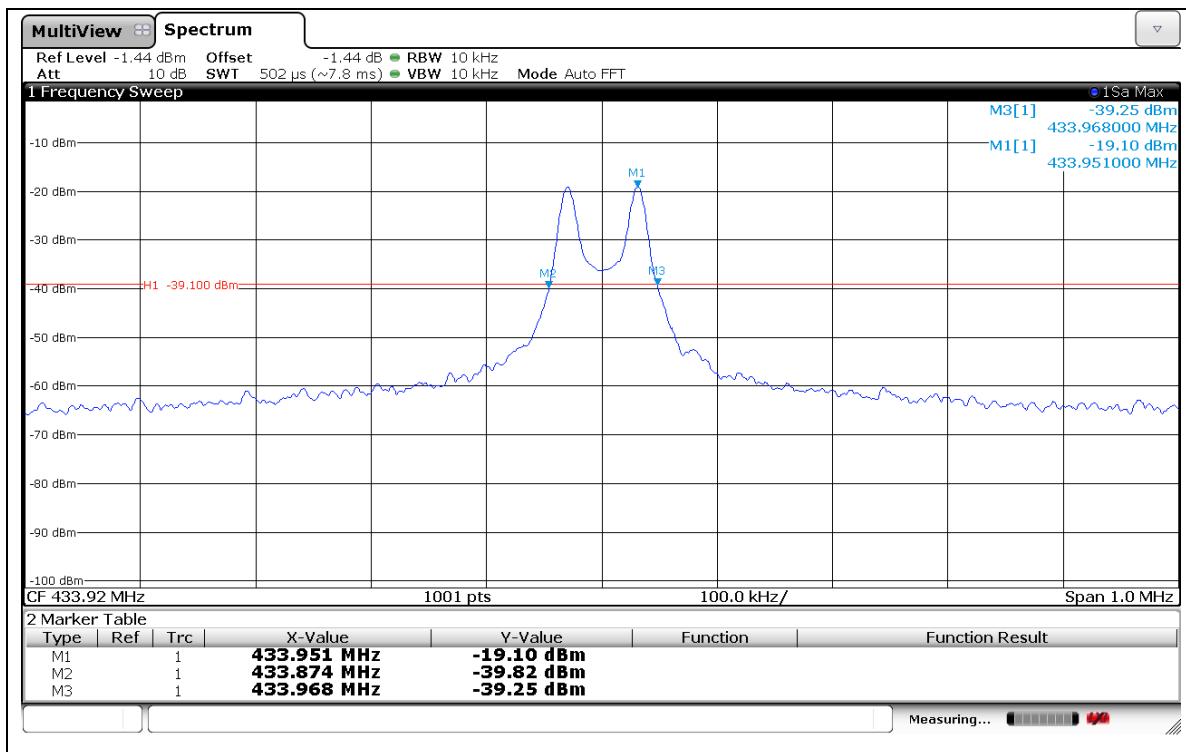
3.1. Test Setup

3.2. Limit

According to § 15.231(c), the bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

3.3. Test Procedure

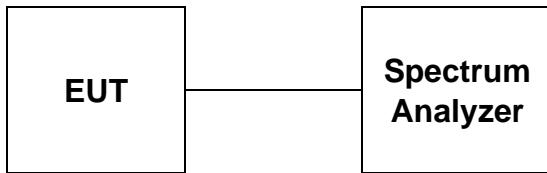
1. The transmitter output is connected to the spectrum analyzer.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW = 10 kHz, VBW = 10 kHz and Span = 1 MHz.
3. The bandwidth of fundamental frequency was measured and recorded.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

3.4. Test Result

Ambient temperature : (23 ± 1) °C
Relative humidity : 47 % R.H.


Carrier Frequency (MHz)	Bandwidth of Operation Frequency (kHz)	Limit (kHz)	Remark
433.92	94	1 084.80	The point 20 dB down from the modulated carrier

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

4. Transmission Time

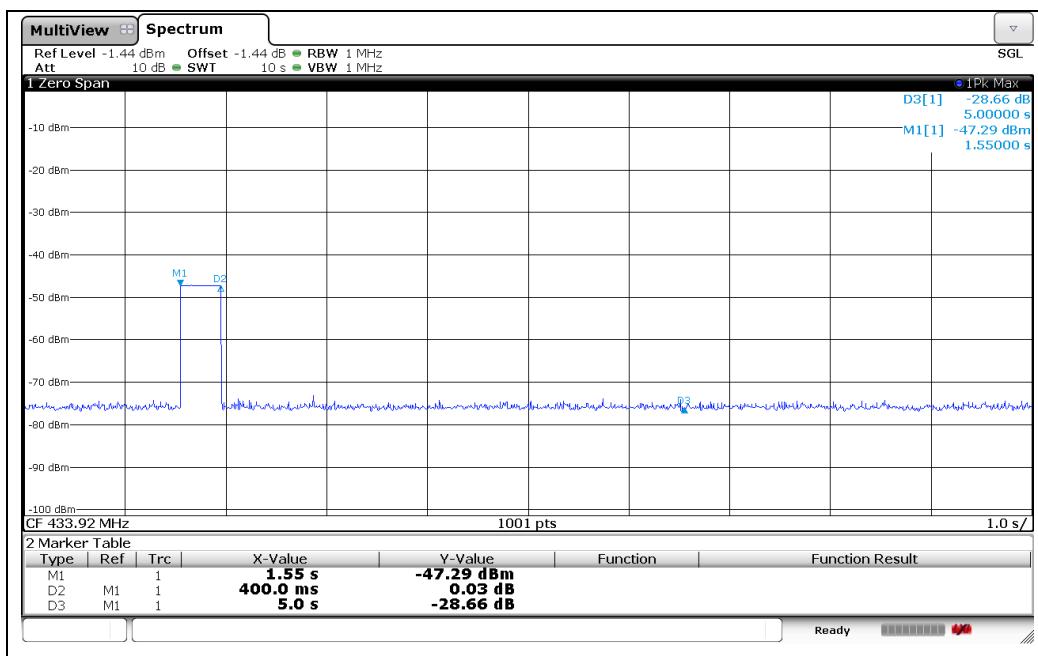
5.1. Test Setup

4.2. Limit

According to § 15.231(a)(1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

4.3. Test Procedure

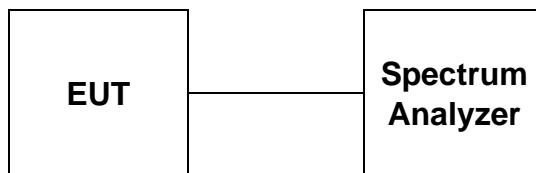
1. The transmitter output is connected to the spectrum analyzer.
2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using $\text{RBW} = 1 \text{ MHz}$, $\text{VBW} = 1 \text{ MHz}$, $\text{Span} = 0 \text{ Hz}$, Sweep Time = 10 sec.
3. The bandwidth of fundamental frequency was measured and recorded.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

4.4. Test Result

Ambient temperature : (23 ± 1) °C
Relative humidity : 47 % R.H.


Carrier Frequency (MHz)	Transmission Time (sec)	Limit (sec)	Remark
433.92	0.40	Same or less than 5	Pass

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

5. Duty Cycle Correction Factor

5.1. Test Setup

5.2. Limit

None (No dedicated Limit specified in the Rules)

5.3. Test Procedure

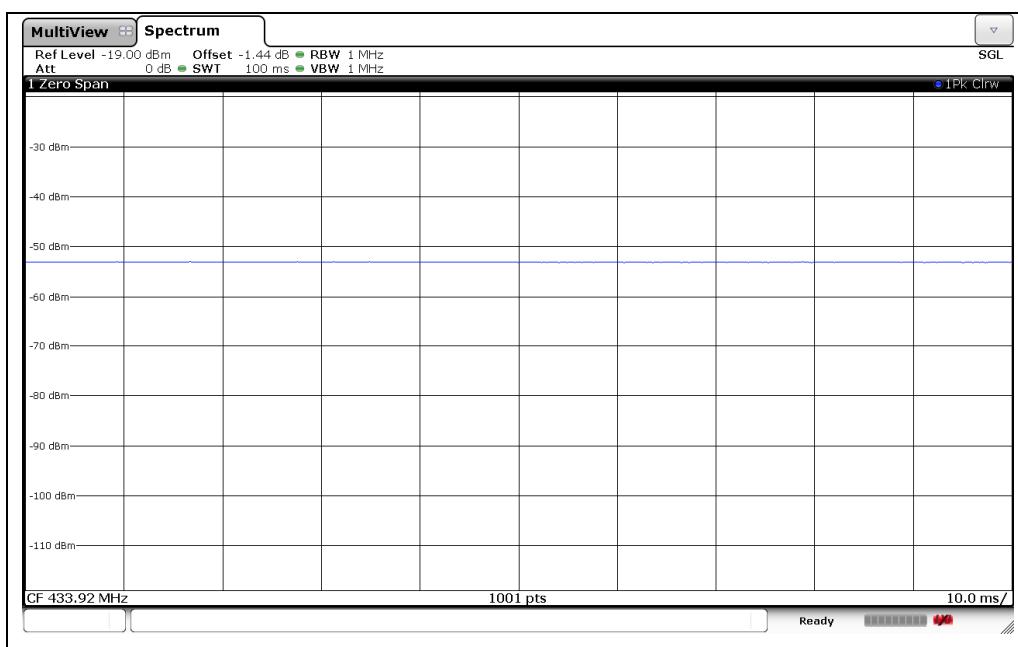
1. The transmitter output is connected to the spectrum analyzer.
2. Set center frequency of spectrum analyzer = operating frequency.
3. Set the spectrum analyzer as RBW = 1 MHz, VBW = 1 MHz, Span = 0 Hz, Sweep Time = 100 ms.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

5.4. Test Result

Ambient temperature : $(23 \pm 1)^\circ\text{C}$

Relative humidity : 47 % R.H.


Remark:

$T_{\text{on+off}} > 100 \text{ ms}$. Use 100 ms for calculation

$T_{\text{on}} > 100 \text{ ms}$. Use 100 ms for calculation

Duty Cycle Correction Factor = $20\log(T_{\text{on}} / T_{\text{on+off}}) = 20\log(1) = 0$

Test Plot

- End of the Test Report -

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <http://www.sgsgroup.kr>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)