

ENGINEERING TEST REPORT

NOIRE510
Model: NOIRE510C
FCC ID: COL-NOIRE510C

Applicant:

NBS Payment Solutions Inc.
703 Evans Ave., Suite 400
Toronto, Ontario
Canada M9C 5E9

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C
Unlicensed Low Power Transmitter Operating in the Band 13.110-14.010 MHz

UltraTech's File No.: MIS-103F15C225

This Test report is Issued under the Authority of
Tri M. Luu
Vice President of Engineering
UltraTech Group of Labs

Date: November 1, 2013

Report Prepared by: Dan Huynh

Tested by: Hung Trinh

Issued Date: November 1, 2013

Test Dates: August 9 -13, 2013

- *The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.*
- *This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.*

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

FCC

91038

1309

46390-2049

NVLAP LAB CODE 200093-0

SL2-IN-E-1119R

Korea KCC-RRL
CA2049

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION.....	1
1.1. SCOPE	1
1.2. RELATED SUBMITTAL(S)/GRANT(S)	1
1.3. NORMATIVE REFERENCES	1
EXHIBIT 2. PERFORMANCE ASSESSMENT.....	2
2.1. CLIENT INFORMATION	2
2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION	2
2.3. EUT'S TECHNICAL SPECIFICATIONS.....	3
2.4. LIST OF EUT'S PORTS.....	3
2.5. ANCILLARY EQUIPMENT.....	3
2.6. TEST SETUP.....	4
EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS.....	5
3.1. CLIMATE TEST CONDITIONS.....	5
3.2. OPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS.....	5
EXHIBIT 4. SUMMARY OF TEST RESULTS.....	6
4.1. LOCATION OF TESTS	6
4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	6
4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES.....	6
EXHIBIT 5. TEST DATA.....	7
5.1. EMISSION BANDWIDTH [§15.215(c)].....	7
5.2. FIELD STRENGTH OF EMISSIONS WITHIN & OUTSIDE THE PERMITTED BAND 13.110-14.010 MHz [47 CFR 15.225 (a) to (d)].....	10
5.3. FREQUENCY STABILITY [47 CFR 15.225(e)].....	12
5.4. POWER LINE CONDUCTED EMISSIONS [47 CFR 15.107(a) & 15.207].....	13
EXHIBIT 6. TEST EQUIPMENT LIST.....	15
EXHIBIT 7. MEASUREMENT UNCERTAINTY.....	16
7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	16
7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY	16

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.225 - Operation within the band 13.110 - 14.010 MHz.
Title:	Code of Federal Regulations (CFR), Title 47 Telecommunication, Part 15, Subpart C - Intentional Radiators
Purpose of Test:	Equipment Certification for Devices in Section 15.225 - Operation within the Band 13.110 - 14.010 MHz.
Test Procedures:	American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
Environmental Classification:	Commercial, industrial or business environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2013	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT	
Name:	NBS Payment Solutions Inc.
Address:	703 Evans Ave., Suite 400 Toronto, ON Canada M9C 5E9
Contact Person:	Mr. Eric Babbit Phone #: 416-621-7410 x567 Fax #: 416-621-2450 Email Address: ebabbitt@nbsps.com

MANUFACTURER	
Name:	NBS Payment Solutions Inc.
Address:	703 Evans Ave., Suite 400 Toronto, ON Canada M9C 5E9
Contact Person:	Mr. Eric Babbit Phone #: 416-621-7410 x567 Fax #: 416-621-2450 Email Address: ebabbitt@nbsps.com

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	NBS Payment Solutions Inc.
Product Name:	NOIRE510
Model Name or Number:	NOIRE510C
Serial Number:	Test sample
Type of Equipment:	Low Power Communication Device Transmitter
Input Power Supply Type:	9 VDC from AC/DC adapter
Primary User Functions of EUT:	Point of Sale credit/debit financial transactions

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: MIS-103F15C225

November 1, 2013

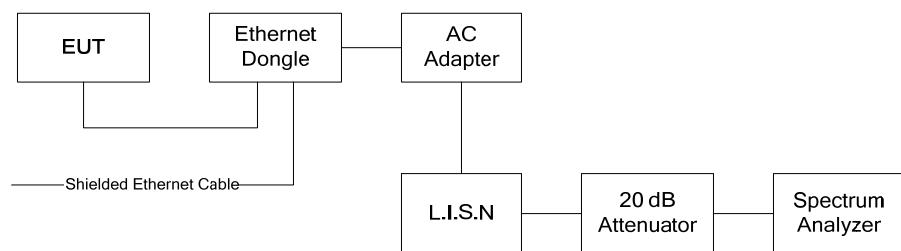
2.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter	
Equipment Type:	Portable
Intended Operating Environment:	Commercial, light industry & heavy industry
Power Supply Requirement:	9VDC/5A
Field Strength:	57.14 dB μ V/m at 10 m
Operating Frequency Range:	13.56 MHz
RF Output Impedance:	50 Ω
20 dB Bandwidth:	1.35 kHz
Modulation Type:	ASK
Oscillator Frequencies:	27.12 MHz
Antenna Connector Type:	Integral

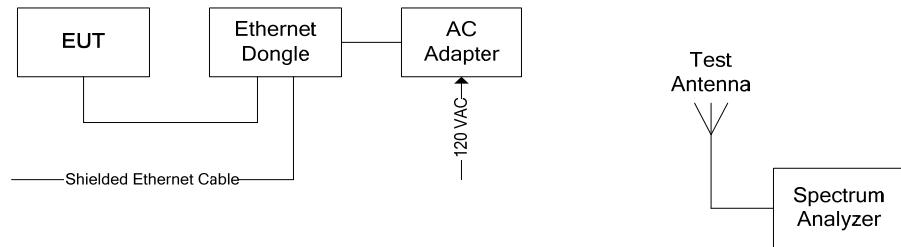
2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	USB	1	PCB	Shielded

2.5. ANCILLARY EQUIPMENT


The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Description:	AC/DC Power Adapter
Brand name:	FSP Group Inc.
Model Name or Number:	FSP040-DGAA2
Connected to EUT's Port:	Dongle Power Port


Ancillary Equipment # 2	
Description:	1-Port Ethernet Dongle (NBS)
Brand name:	NBS Payment Solutions Inc.
Model Name or Number:	NOIRE020E
Connected to EUT's Port:	USB port

2.6. TEST SETUP

Power Line Conducted Emission

Radiated Emission

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	9 VDC from AC adapter

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

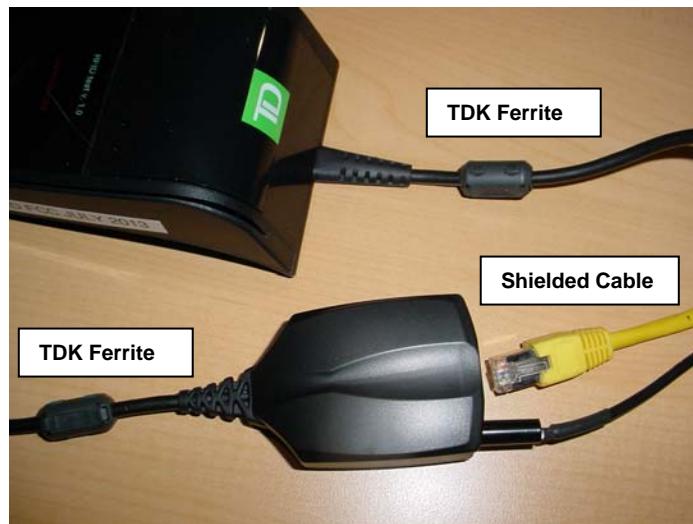
Operating Modes:	The EUT was configured for continuous transmission for the duration of testing.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT was tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.

Transmitter Test Signals:	
Frequency:	13.56 MHz
Transmitter Wanted Output Test Signals:	
▪ RF Power Output (measured maximum output power):	57.14 dB μ V/m at 10 m
▪ Normal Test Modulation:	ASK
▪ Modulating signal source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.


- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Regulations	Test Requirements	Compliance (Yes/No)
15.203 & 15.204	The transmitter shall use a transmitting antenna that is an integral part of the device	Yes
15.215(c)	Emission Bandwidth	Yes
15.225(a) – (d)	Field Strength of Emissions Inside and Outside the Permitted Band 13.110 - 14.010 MHz	Yes
15.225(e)	Frequency Stability	Yes
15.107 & 15.207	Class B - Power Line Conducted Emissions	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

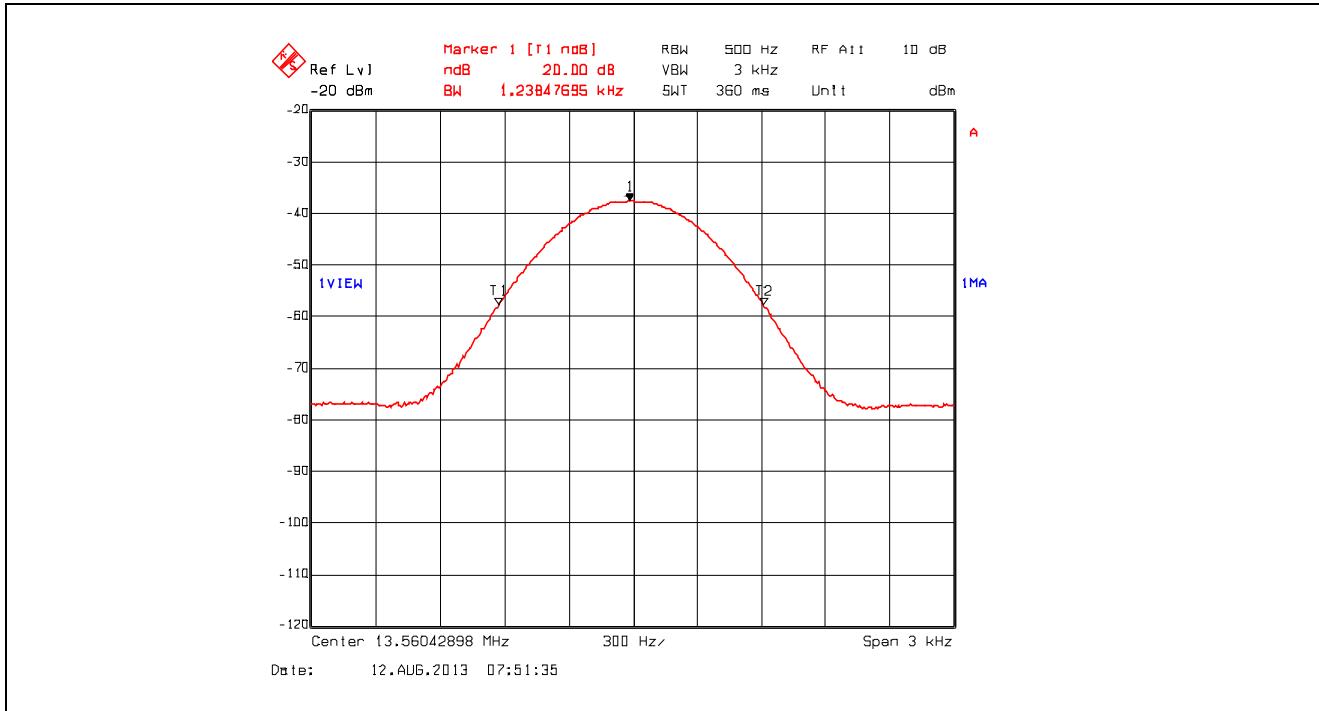
- 1) TDK Ferrite Part number ZCAT13250530 shall be clamped on dongle cable at both ends.
- 2) Shielded Ethernet cable shall be used.

EXHIBIT 5. TEST DATA

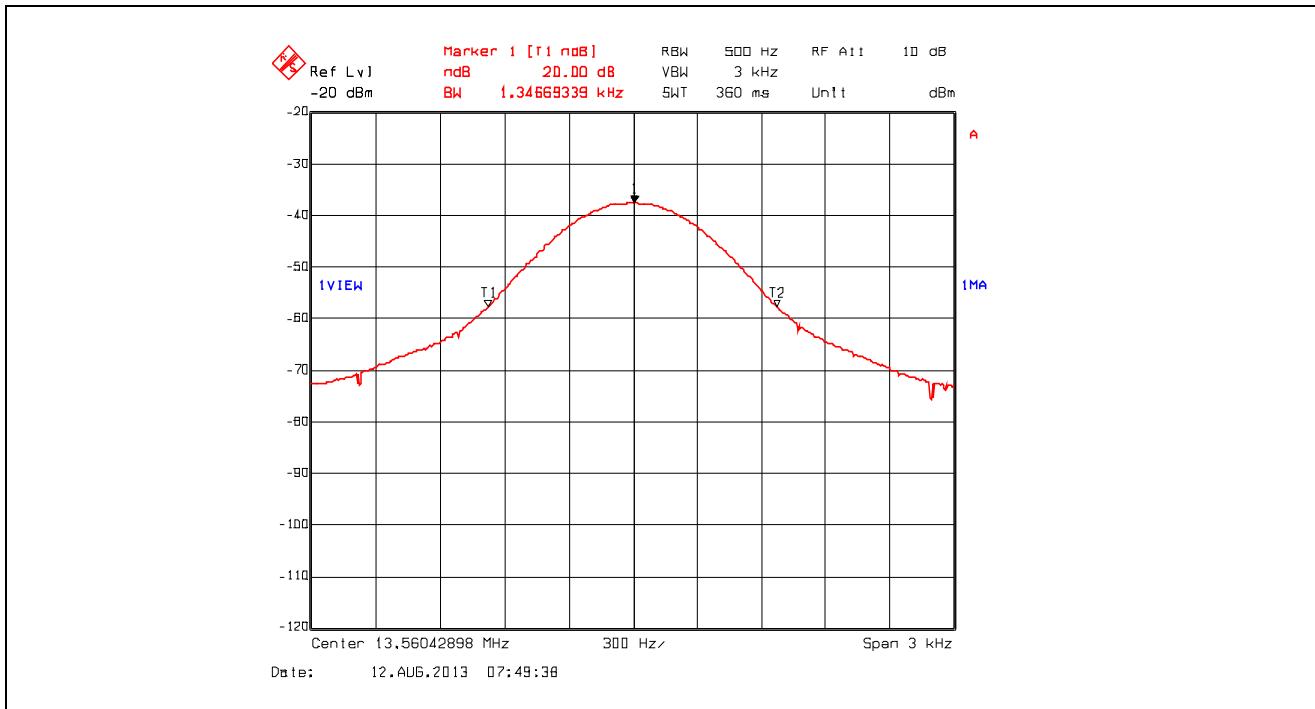
5.1. EMISSION BANDWIDTH [§15.215(c)]

5.1.1. Limits

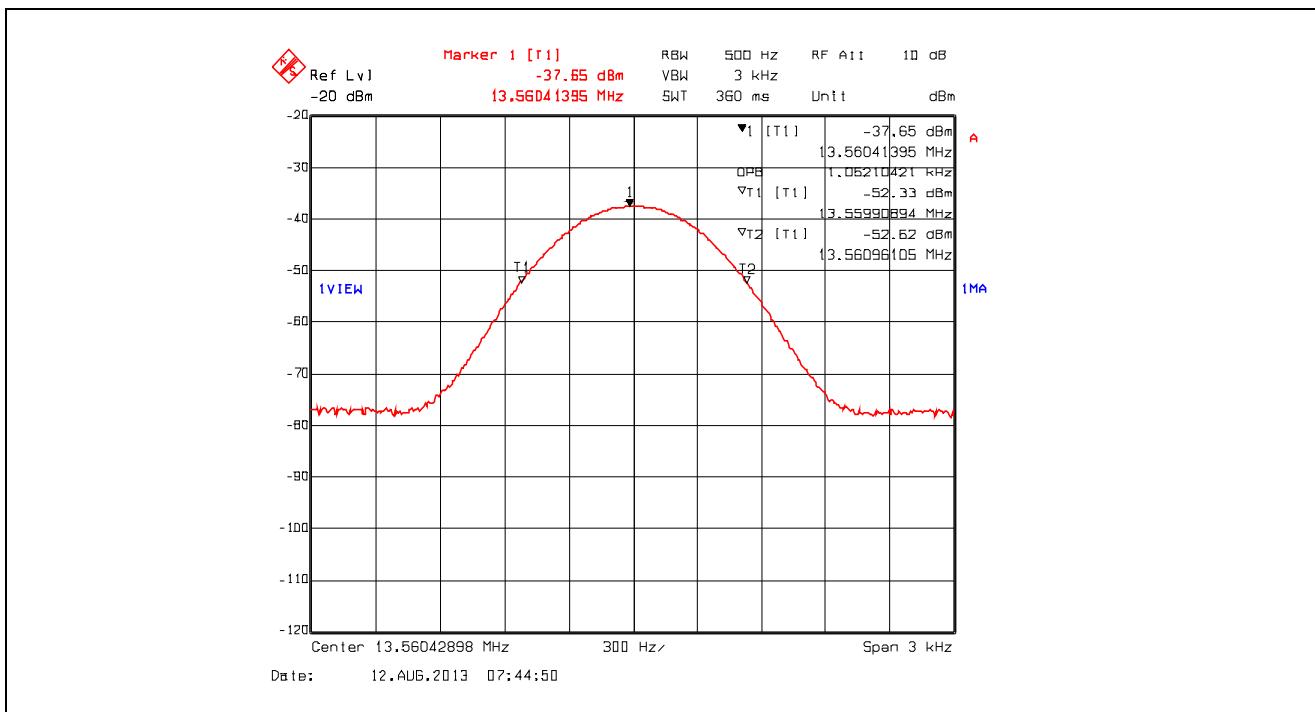
The 20 dB bandwidth of the emission shall be contained within the band 13.110–14.010 MHz.

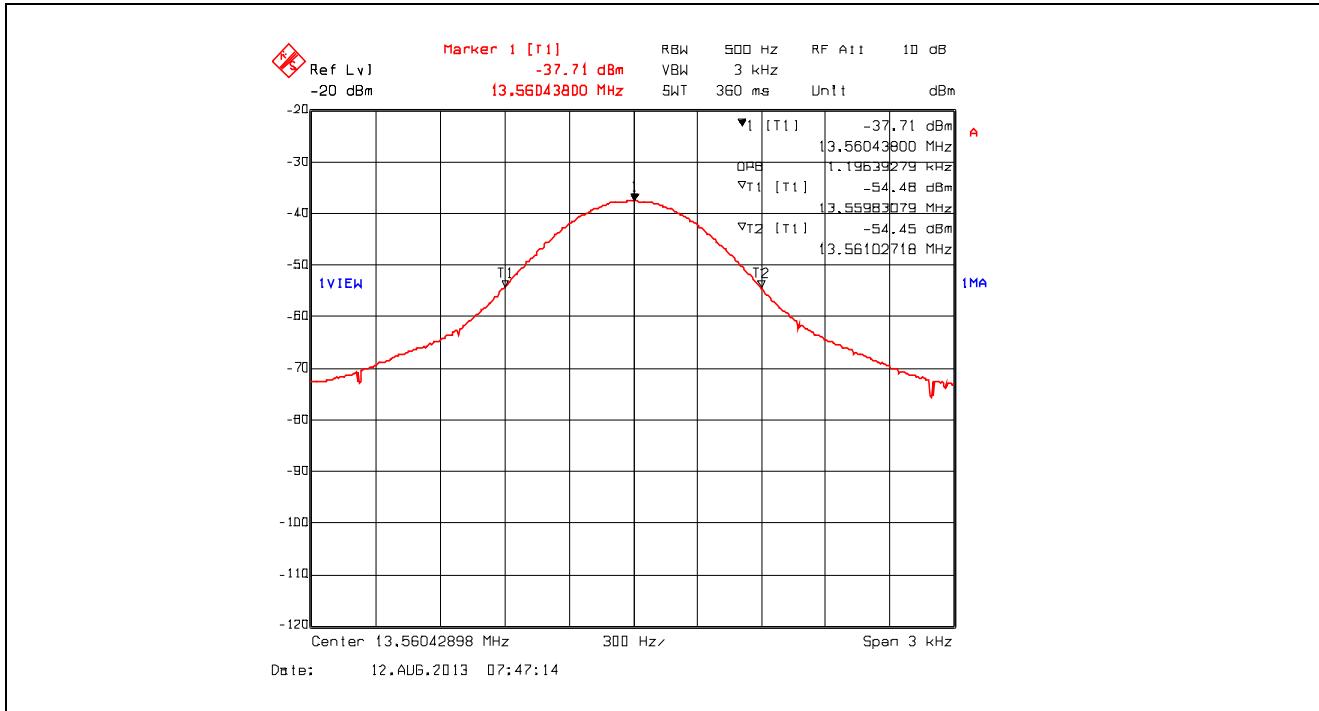

5.1.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001 and ANSI C63.4 for measurement methods


5.1.3. Test Data

Test Frequency (MHz)	Modulation Type	Occupied Bandwidth (kHz)	
		20 dB BW	99 % BW
13.56	ISO14443A (AM, 100%)	1.24	1.05
13.56	ISO14443B (AM, 10%)	1.35	1.20


Plot 5.1.3.1. 20 dB Emission Bandwidth, 13.56 MHz, Modulation: ISO14443A (AM, 100%)


Plot 5.1.3.2. 20 dB Emission Bandwidth, 13.56 MHz, Modulation: ISO14443B (AM, 10%)

Plot 5.1.3.3. 99% Occupied Bandwidth, 13.56 MHz, Modulation: ISO14443A (AM, 100%)

Plot 5.1.3.4. 99% Occupied Bandwidth, 13.56 MHz, Modulation: ISO14443B (AM, 10%)

**5.2. FIELD STRENGTH OF EMISSIONS WITHIN & OUTSIDE THE PERMITTED BAND 13.110-14.010 MHz
[47 CFR 15.225 (a) to (d)]**

5.2.1. Limits

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 – 14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

47 CFR 15.209(a) – Radiated Emission Limits; general requirements

Frequency (MHz)	Field Strength Limits (microvolts/m)	Distance (Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

5.2.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001 and ANSI C63.4 for measurement methods

5.2.3. Test Data

Remarks:

- Radiated spurious emissions measurements were performed at a measuring distance of 10 m (for frequencies below 30 MHz) and 3 m (for frequencies at or above 30 MHz), from 10 kHz – 10th harmonic of the fundamental or the range applicable to the digital device, whichever is the higher frequency range and all spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- For frequencies below 30 MHz, the results measured at 10 m distance shall be extrapolated to the specified distance using an extrapolation factor of 40 dB/decade for determining compliance.

5.2.3.1. Field Strength of Emissions Within the Permitted Band at 10 m

Frequency (MHz)	Measured Field Strength @ 10 m (dB μ V/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength Extrapolated Value (dB μ V/m)	§ 15.225 Field Strength Limits (dB μ V/m)	Margin (dB)
13.56	57.14	Peak	V	38.1	84.0	-45.9
13.56	51.24	Peak	H	32.2	84.0	-51.8

5.2.3.2. Field Strength of Emissions Outside the Permitted Band Below 30 MHz at 10 m

Frequency (MHz)	Measured Field Strength @ 10 m (dB μ V/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	Field Strength Extrapolated Value (dB μ V/m)	§ 15.209 Field Strength Limits (dB μ V/m)	Margin (dB)
All spurious emissions are more than 20 dB below the specified limit.						

5.2.3.3. Field Strength of Emissions Outside the Permitted Band at or Above 30 MHz at 3 m

Frequency (MHz)	Measured Field Strength @ 3 m (dB μ V/m)	Detector Used (Peak/QP)	Antenna Plane (H/V)	§ 15.209 Field Strength Limits (dB μ V/m)	Margin (dB)
40.68	36.03	Peak	V	40.0	-4.0
40.68	25.88	Peak	H	40.0	-14.1
54.24	29.48	Peak	V	40.0	-10.5
67.80	28.20	Peak	V	40.0	-11.8
67.80	20.16	Peak	H	40.0	-19.8
108.48	33.22	Peak	V	43.5	-10.3
135.60	32.28	Peak	V	43.5	-11.2
135.60	30.02	Peak	H	43.5	-13.5

5.3. FREQUENCY STABILITY [47 CFR 15.225(e)]

5.3.1. Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.3.2. Method of Measurements

ANSI C63.4.

5.3.3. Test Data

Frequency Band:	13.56 MHz
Center Frequency:	13.56 MHz
Frequency Tolerance Limit:	$\pm 0.01\% (\pm 1356 \text{ Hz})$
Max. Frequency Tolerance Measured:	-110 Hz
Input Voltage Rating:	120 VAC

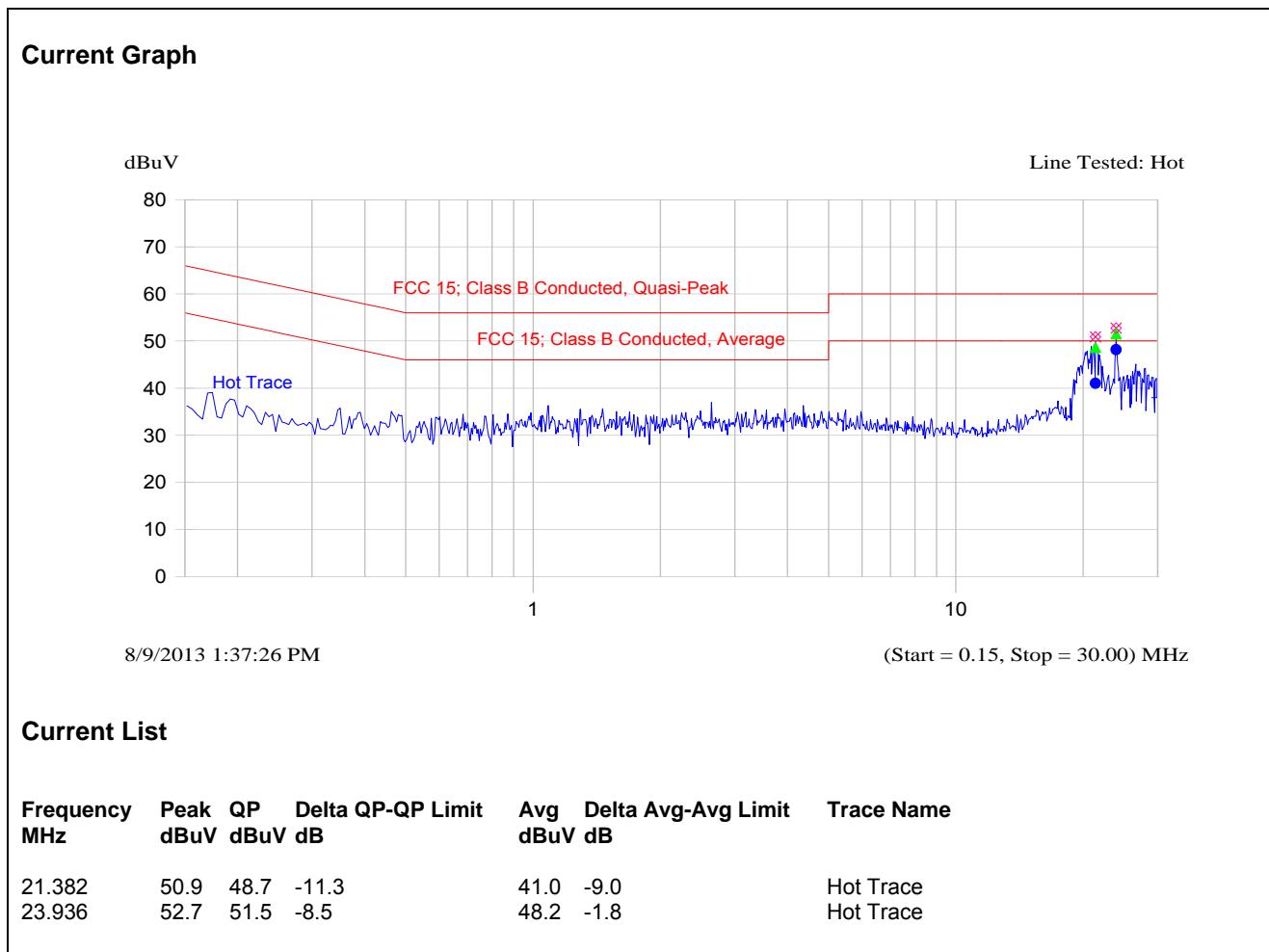
Ambient Temperature (°C)	Frequency Drift (Hz)		
	Supply Voltage 120 VAC	Supply Voltage 100 VAC	Supply Voltage 240 VAC
-30	-50	N/A	N/A
-20	-10	N/A	N/A
-10	10	N/A	N/A
0	20	N/A	N/A
10	-10	N/A	N/A
20	0	0	-30
30	-50	N/A	N/A
40	-110	N/A	N/A
50	-110	N/A	N/A

5.4. POWER LINE CONDUCTED EMISSIONS [47 CFR 15.107(a) & 15.207]

5.4.1. Limits

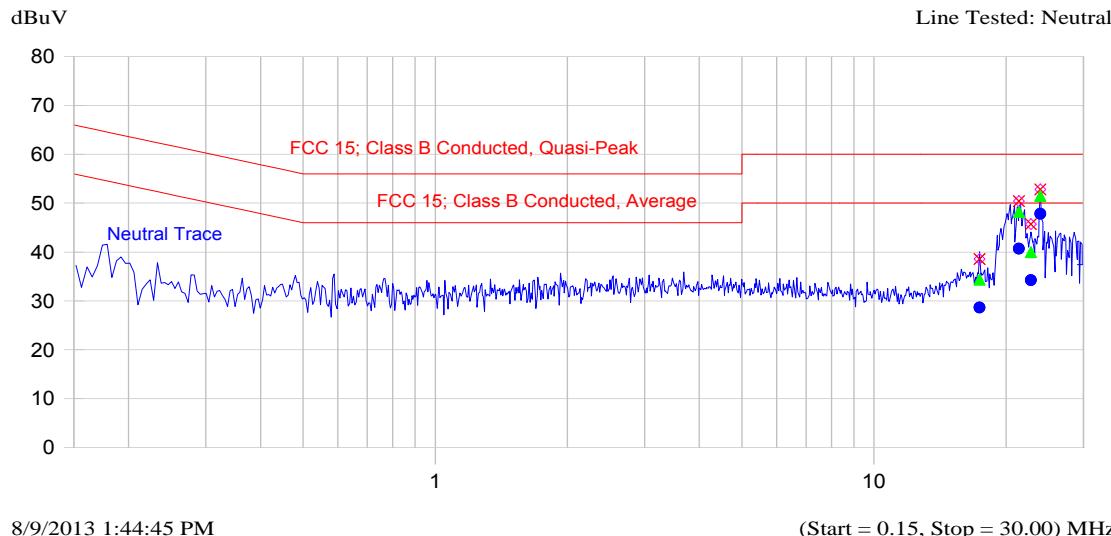
The equipment shall meet the limits of the following table:

Frequency of emission (MHz)	Class B Conducted Limits (dB μ V)	
	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50


* Decreases linearly with logarithm of the frequency

5.4.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001 and ANSI C63.4 for measurement methods


5.4.3. Test Data

Plot 5.4.3.1. Power Line Conducted Emissions, Voltage: 120 VAC, Line Tested: Hot

Plot 5.4.3.2. Power Line Conducted Emissions, Voltage: 120 VAC, Line Tested: Neutral

Current Graph

Current List

Frequency MHz	Peak dBuV	QP dBuV	Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
23.937	52.8	51.5	-8.5	47.8	-2.2	Neutral Trace
22.769	45.7	40.0	-20.0	34.2	-15.8	Neutral Trace
17.398	38.6	34.4	-25.6	28.6	-21.4	Neutral Trace
21.384	50.4	48.2	-11.8	40.7	-9.3	Neutral Trace

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz	02 Nov 2013
Loop Antenna	EMCO	6502	9104-2611	10 kHz – 30 MHz	26 Aug 2013
EMC Analyzer	Agilent	E7401A	US40240432	9KHz-1.5GHz	19 Jun 2014
Antenna	EMCO	6502	9104-2611	10KHz-30MHz	26 Aug 2013
Spectrum Analyzer	Rohde & Schwarz	ESU40	100037	20 Hz – 40 GHz	07 Mar 2014
RF Amplifier	AH System	PAM-0118	225	20 MHz – 18 GHz	25 Mar 2014
Biconi-Log Antenna	ETS Lindgren	3142C	00034792	26 – 3000 MHz	26 Jun 2014
Horn Antenna	ETS Lindgren	3155	5955	1 – 18 GHz	07 Mar 2014
Environmental Chamber	Envirotronics	SSH32C	11994847-S-11059	-60 to 177 °C	16 Apr 2014
Spectrum Analyzer	Hewlett Packard	HP 8593EM	3412A00103	9 kHz – 26.5 GHz	06 Feb 2014
Transient Limiter	Pasternack	PE7010-20	N/A	DC - 2 GHz	11 Jan 2014
LISN	EMCO	3825/2	8907-1531	10 kHz – 100 MHz	14 May 2014

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: <http://www.ultratech-labs.com>

File #: MIS-103F15C225

November 1, 2013

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 1.44	± 1.8
U	Expanded uncertainty U: $U = 2u_c(y)$	± 2.89	± 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 2.39	± 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	± 4.79	± 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 2.39	± 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	± 4.78	± 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u_c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)}$	± 1.87	Under consideration
U	Expanded uncertainty U: $U = 2u_c(y)$	± 3.75	Under consideration