

RF TEST REPORT

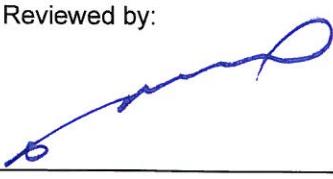
Test item : 4G LTE CPE
Model No. : C773
Order No. : DEMC1306-02017
Date of receipt : 2013-06-26
Test duration : 2013-08-26 ~ 2013-09-09
Date of issue : 2013-09-13
Use of report : FCCOriginal Grant

Applicant : BIT & PULSE CO., LTD
2F Baegang B/D, 666-14 Sinsa-dong, Gangnam-gu, Seoul 135-897, Korea

Test laboratory : Digital EMC Co., Ltd.
683-3, Yubang-Dong, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, 449-080, Korea

Test specification : §22(H), §24(E)
Test environment : See appended test report
Test result : Pass Fail

The test results presented in this test report are limited only to the sample supplied by applicant and
the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full,
without the written approval of DIGITAL EMC CO., LTD.


Tested by:

Engineer
HyunSu Son

Witnessed by:

N/A

Reviewed by:

Deputy General Manager
WonJung Lee

Test Report Version

Test Report No.	Date	Description
DRTFCC1309-0874	Sep. 13, 2013	Initial issue

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
2.1. EUT DESCRIPTION.....	5
2.2. MEASURING INSTRUMENT CALIBRATION	5
2.3. TEST FACILITY	5
3. DESCRIPTION OF TESTS.....	6
3.1 ERP&EIRP	6
3.2 PEAK TO AVERAGE RATIO	7
3.3 OCCUPIED BANDWIDTH.....	8
3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.....	9
3.5 RADIATED SPURIOUS EMISSIONS	10
3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	11
4. LIST OF TEST EQUIPMENT.....	12
5. SUMMARY OF TEST RESULTS.....	13
6. SAMPLE CALCULATION	14
7. TEST DATA	15
7.1 CONDUCTED OUTPUT POWER	15
7.2 PEAKTOAVERAGE RATIO	16
7.3 OCCUPIED BANDWIDTH	16
7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.....	16
7.5BAND EDGE.....	16
7.6 EFFECTIVE RADIATED POWER.....	17
7.7 EQUIVALENT ISOTROPIC RADIATED POWER.....	18
7.8 RADIATED SPURIOUS EMISSIONS	19
7.8.1 RADIATED SPURIOUS EMISSIONS (Cellular CDMA)	19
7.8.2 RADIATED SPURIOUS EMISSIONS (WCDMA850)	20
7.8.3 RADIATED SPURIOUS EMISSIONS (Cellular CDMA)	21
7.8.4 RADIATED SPURIOUS EMISSIONS (PCS CDMA EVDO)	22
7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	23
7.9.1 FREQUENCY STABILITY (Cellular CDMA).....	23
7.9.2 FREQUENCY STABILITY (WCDMA850)	24
7.9.3 FREQUENCY STABILITY (Cellular CDMA).....	25
7.9.4 FREQUENCY STABILITY (PCS CDMA EVDO)	26
8. TEST PLOTS.....	27
8.1 Peak to Average Ratio	27
8.2 Occupied Bandwidth 99 % Bandwidth	28
8.3 Spurious Emissions at Antenna Terminal	36
8.4 Band Edge	48

1. GENERAL INFORMATION

Applicant Name: BIT & PULSE CO., LTD

Address: 2F Baegang B/D, 666-14 Sinsa-dong, Gangnam-gu, Seoul 135-897, Korea

FCC ID : CO3BPLC773

FCC Classification : Licensed Non-Broadcast Station Transmitter (TNB)

EUT Type : 4G LTE CPE

Model Name : C773

Add Model Name : N/A

Supplying power : Switching Adaptor
- MODEL: FJ-SW1202000U
- INPUT : 100-240V 50/60Hz 0.6Amax
- OUTPUT : 12V & 2000mA

Antenna Information : Cellular & PCS band for CDMA 1x : Internal Antenna
Cellular & PCS band for CDMA 1x EVDO(Rev. A) : External Antenna

Tx Frequency : Cellular band CDMA 1x 824.70MHz ~ 848.31 MHz
Cellular band CDMA 1x EVDO(Rev. A): 824.70 MHz ~ 848.31 MHz
PCS band CDMA 1x 1851.25 MHz ~ 1908.75 MHz
PCS band CDMA 1x EVDO(Rev. A): 1851.25 MHz ~ 1908.75 MHz

Rx Frequency : Cellular band CDMA 1x 869.70 ~ 893.31 MHz
Cellular band CDMA 1x EVDO(Rev. A): 869.70 ~ 893.31 MHz
PCS band CDMA 1x 1931.25 MHz ~ 1988.75 MHz
PCS band CDMA 1x EVDO(Rev. A): 1931.25 MHz ~ 1988.75 MHz

Max. RF Output Power : Cellular band CDMA 1x 0.292 W ERP(24.66 dBm)
Cellular band CDMA 1x EVDO(Rev. A): 0.221 W ERP(23.44 dBm)
PCS band CDMA 1x 0.327 W EIRP(25.15 dBm)
PCS band CDMA 1x EVDO(Rev. A): 0.226 W EIRP(23.54 dBm)

Emission Designator(s) : Cellular band CDMA 1x 1M28F9W
Cellular band CDMA 1x EVDO(Rev. A): 1M28F9W
PCS band CDMA 1x 1M28F9W
PCS band CDMA 1x EVDO(Rev. A): 1M29F9W

2. INTRODUCTION

2.1. EUT DESCRIPTION

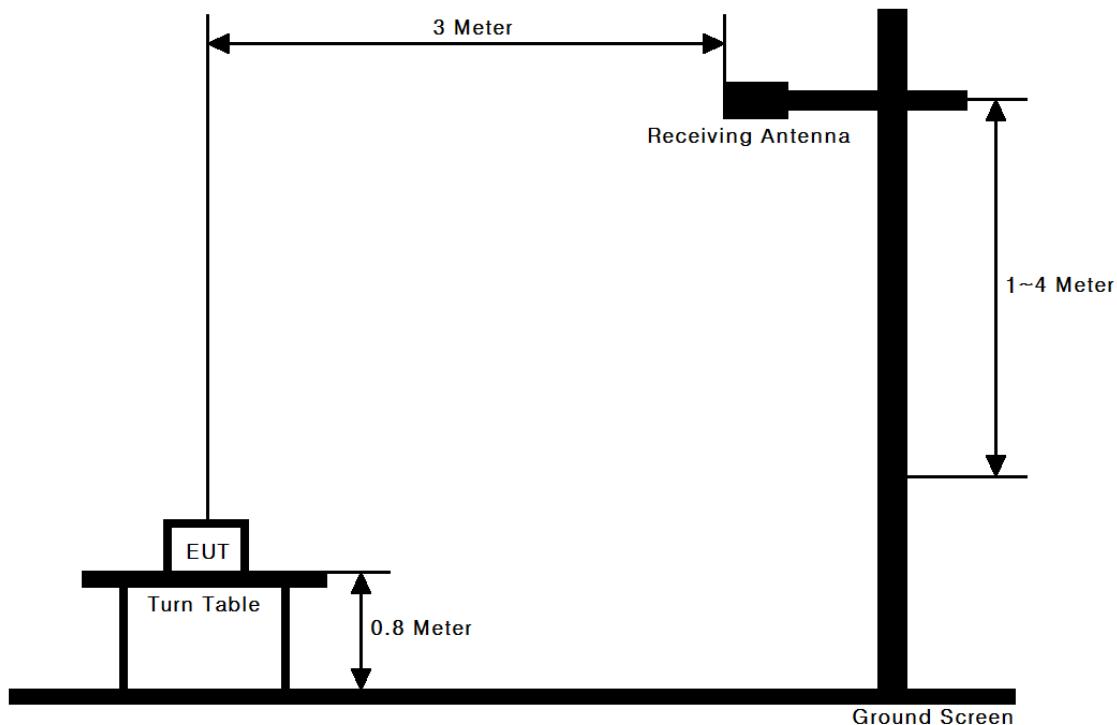
The Equipment Under Test(EUT) supports CDMA and EVDO(Rev. A) of Cellular/PCS bands and LTE(Band 4, 13, 25) with 2.4GHz WLAN. The EUT has below 3 transceivers.

1. CDMA 1x
2. LTE/CDMA 1x EVDO(Rev. A)
3. 2.4GHz WLAN

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY


The 3&10M test site and conducted measurement facility used to collect the radiated data are located at the 683-3, Yubang-Dong, Yongin-Si, Gyunggi-Do, 449-080, South Korea. The site is constructed in conformance with the requirements.

- 3 & 10M test site registration Number: 678747

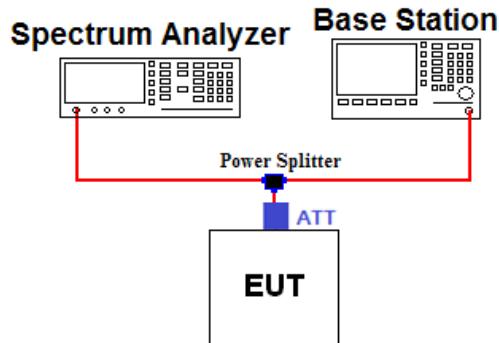
3. DESCRIPTION OF TESTS

3.1 ERP&EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power)

Test Set-up

Test Procedure

These measurements were performed at 3 & 10m test site. The equipment under test is placed on a wooden turntable 0.8 meters above the ground plane and 3-meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.


A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured. The ERP/EIRP is calculated using the following formula,

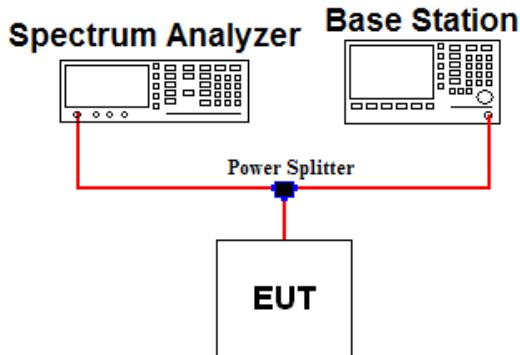
ERP/EIRP = The conducted power at the substitute antenna's terminal + substitute antenna gain

For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

3.2 PEAK TO AVERAGE RATIO

Test set-up

Test Procedure


A peak to average ratio measurement is performed at the conducted port of the EUT.

The spectrum analyzers Complementary Cumulative Distribution Function(CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The present of time the signal spends at or above the level defines the probability for that particular power level.

1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth
2. Set the number of counts to a value that stabilizes the measured CCDF curve
3. Set the measurement interval as follows:
 - 1) For continuous transmissions, set to 1 ms
 - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
4. Record the maximum PAPR level associated with a probability of 0.1%

3.3 OCCUPIED BANDWIDTH.

Test set-up

Offset value information

CDMA 1x

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.70	6.92	1851.25	7.35
836.52	7.01	1880.00	7.39
848.31	7.05	1908.75	7.43

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

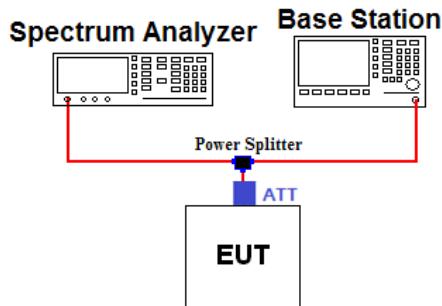
Offset value = Splitter + Cables

CDMA 1x EVDO(Rev. A)

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
824.70	6.22	1851.25	6.65
836.52	6.31	1880.00	6.69
848.31	6.35	1908.75	6.73

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Offset value = Splitter + Cables


Test Procedure

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission.

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 ~ 5% of the expected OBW & VBW \geq 3 X RBW
3. Detector = Peak
4. Trace mode = Max hold
5. Sweep = Auto couple
6. The trace was allowed to stabilize
7. If necessary, step 2 ~ 7 were repeated after changing the RBW such that it would be within 1 ~ 5% of the 99% occupied bandwidth observed in step 7.

3.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test set-up

Offset value information

CDMA 1x

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
823.0	6.90	1849.0	7.34	5000.0	8.11
850.0	7.06	1911.0	7.55	20000.0	9.42

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Offset value = Cable A + Splitter + Cable B + Cable C

CDMA 1x EVDO(Rev. A)

Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)	Frequency (MHz)	Offset Value (dB)
823.0	6.20	1849.0	6.64	5000.0	7.41
850.0	6.36	1911.0	6.85	20000.0	8.72

Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test.

Offset value = Cable A + Splitter + Cable B

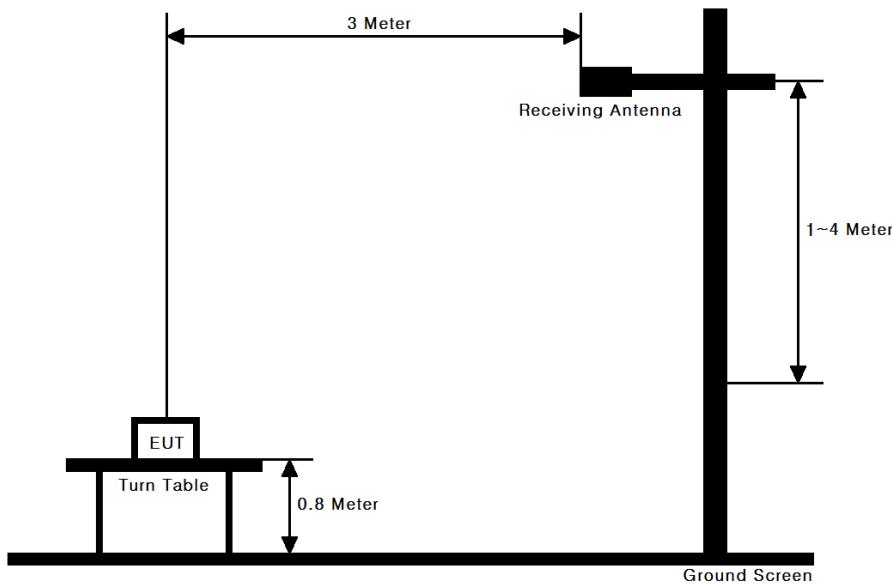
Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

The EUT was setup to maximum output power at its lowest channel. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

1. RBW = 1MHz & VBW \geq 3MHz
2. Detector = Positive peak
3. Trace mode = Max hold
4. Sweep time = Auto
5. The trace was allowed to stabilize

The highest, lowest and a middle channel were tested for out of band measurements.


The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{\text{[Watts]}})$, where P is the transmitter power in Watts.

Note 1: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter was employed to measure the out of band Emissions.

Note 2: Compliance with the applicable limits is based on the use of measurement instrumentation employing a RBW of 100 KHz or greater for Part 22 and 1 MHz or greater for Part24.

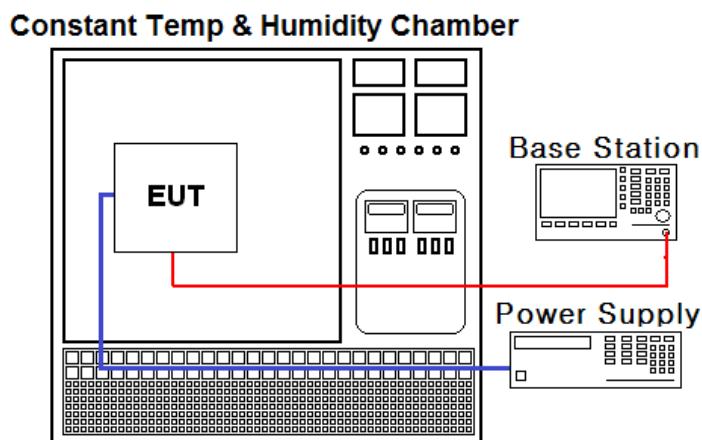
3.5 RADIATED SPURIOUS EMISSIONS

Test Set-up

Test Procedure

This measurement was performed at 3 meter test range. The equipment under test is placed on a wooden turntable 0.8-meters above the ground plane and 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer.


For radiated power measurements below 1GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading.

For radiated power measurements above 1GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration.

This measurement was performed with the EUT oriented in 3 orthogonal axis.

3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from - 30 °C to + 50 °C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from battery end point to 115 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification - the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.000\ 25\% (\pm 2.5\ ppm)$ of the center frequency.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature. (25°C to provide a reference).
2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

4. LIST OF TEST EQUIPMENT

Type	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Multimeter	HP	34401A	13/02/27	14/02/27	3146A13475
DC Power Supply	H.P	6622A	13/02/27	14/02/27	3448A03760
Power Splitter	Anritsu	K241B	12/09/17	13/09/17	020611
Attenuator	Aeroflex/Weinschel	56-3	12/09/17	13/09/17	Y2342
Attenuator	WEINSCHEL	23-10-34	12/09/17	13/09/17	BP4386
Thermohygrometer	BODYCOM	BJ5478	13/01/14	14/01/14	090205-4
Constant Temp & Humidity Chamber	JISICO	KR-100/J-RHC2	12/09/17	13/09/17	30604493/021031
Dipole Antenna	Schwarzbeck	VHA9103	12/03/12	14/03/12	2116
Dipole Antenna	Schwarzbeck	VHA9103	12/03/22	14/03/22	2117
Dipole Antenna	Schwarzbeck	UHA9105	12/03/12	14/03/12	2261
Dipole Antenna	Schwarzbeck	UHA9105	12/03/22	14/03/22	2262
Bilog Antenna	SCHAFFNER	CBL6112B	12/11/06	14/11/06	2737
HORN ANT	ETS	3115	12/02/20	14/02/20	6419
HORN ANT	ETS	3115	13/02/28	15/02/28	00021097
HORN ANT	A.H.Systems	SAS-574	13/03/20	15/03/20	154
HORN ANT	A.H.Systems	SAS-574	13/05/27	15/05/27	155
Amplifier	Agilent	8447E	13/01/08	14/01/08	2945A02865
Amplifier	Agilent	8449B	13/02/27	14/02/27	3008A00370
High-pass filter	Wainwright Instruments	WHKX1.0	12/09/17	13/09/17	9
High-Pass Filter	Wainwright	WHNX2.1	12/09/17	13/09/17	1
8960 Series 10 Wireless Comms Test Set	Agilent	E5515C	13/02/28	14/02/28	GB43461134
Universal Radio Communication Tester	Rohde Schwarz	CMU200	13/02/28	14/02/28	106760
Vector Signal Generator	Rohde Schwarz	SMJ100A	13/01/08	14/01/08	100148
Signal Generator	Rohde Schwarz	SMF100A	13/07/22	14/07/22	102341
Amplifier	EMPOWER	BBS3Q7ELU	12/09/18	13/09/18	1020
MXA Signal Analyzer	Agilent	N9020A	13/01/08	14/01/08	MY49100833
Spectrum Analyzer	Agilent	E4440A	12/10/22	13/10/22	US45303051

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS Section(s)	Parameter	Status Note 1
2.1046	RSS-132 (4.4) RSS-133 (4.1)	Conducted Output Power	C
22.913(a) 24.232(c)	RSS-132 (4.4) [SRSP-503(5.1.3)] RSS-133 (6.4) [SRSP-510(5.1.2)]	Effective Radiated Power Equivalent Isotropic Radiated Power	C
22.917(a) 24.238(a) 2.1049	RSS-Gen (4.6.1) RSS-133 (2.3)	Occupied Bandwidth	C
22.917(a) 24.238(a) 2.1051	RSS-132 (4.5.1) RSS-133 (6.5.1)	Band Edge Spurious and Harmonic Emissions at Antenna Terminal	C
24.232(d)	RSS-133 (6.4)	Peak to Average Ratio	C
22.917(a) 24.238(a) 2.1053	RSS-132 (4.5.1) RSS-133 (6.5.1)	Radiated Spurious and Harmonic Emissions	C
22.355 24.235 2.1055	RSS-132 (4.3) RSS-133 (6.3)	Frequency Stability	C
<p>Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable</p> <p>Note 2: This test report is for CDMA 1x and CDMA 1x EVDO(Rev. A) functions.</p>			

The sample was tested according to the following specification:

ANSI/TIA/EIA-603-C-2004 and KDB 971168 D01 v02r01

6. SAMPLE CALCULATION

A. Emission Designator

Cellular CDMA1x

Emission Designator = **1M28F9W**

CDMAOBW = 1.2758 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

Cellular CDMA 1x EVDO(Rev. A)

Emission Designator = **1M28F9W**

CDMAOBW = 1.2771 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

PCS CDMA1x

Emission Designator = **1M28F9W**

CDMAOBW = 1.2807 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation

9 = Composite Digital Information

W = Combination (Audio/Data)

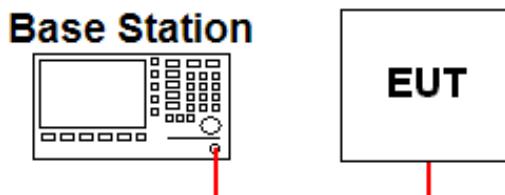
PCS CDMA 1x EVDO(Rev. A)

Emission Designator = **1M29F9W**

CDMAOBW = 1.2928 MHz

(Measured at the 99.75% power bandwidth)

F = Frequency Modulation


9 = Composite Digital Information

W = Combination (Audio/Data)

7. TEST DATA

7.1 CONDUCTED OUTPUT POWER

A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below.

- CDMA 1x

Band	CH.	CDMA 1x						EVDO			
		RC1		RC3		F+SCH	FCH	Rev.0		Rev.A	
		SO 2	SO55	SO 2	SO55	SO32	SO32	FTAP	RTAP	FETAP	RETAP
Cellular	1013	23.44	23.41	23.52	23.57	23.55	23.56	N/A	N/A	N/A	N/A
	384	23.80	23.78	23.79	23.82	23.78	23.81	N/A	N/A	N/A	N/A
	777	23.14	23.11	23.12	23.31	23.23	23.30	N/A	N/A	N/A	N/A
PCS	25	23.80	23.81	23.78	23.85	23.74	23.75	N/A	N/A	N/A	N/A
	600	23.83	23.85	23.87	23.89	23.79	23.82	N/A	N/A	N/A	N/A
	1175	23.90	23.89	23.92	23.93	23.88	23.89	N/A	N/A	N/A	N/A

The output power was measured using the Agilent E5515C

- CDMA 1x EVDO(Rev. A)

Band	CH.	CDMA 1x						EVDO			
		RC1		RC3		F+SCH	FCH	Rev.0		Rev.A	
		SO 2	SO55	SO 2	SO55	SO32	SO32	FTAP	RTAP	FETAP	RETAP
Cellular	1013	23.13	23.17	23.09	23.21	23.17	23.20	23.20	23.18	23.25	23.19
	384	23.02	23.11	23.03	23.17	23.18	23.15	23.17	23.14	23.19	23.15
	777	23.20	23.15	23.23	23.21	23.16	23.13	23.11	23.10	23.11	23.07
PCS	25	22.05	22.09	22.08	22.22	22.14	22.09	22.20	22.19	22.26	22.16
	600	21.68	21.58	21.62	21.70	21.70	21.81	21.82	21.78	21.82	21.80
	1175	20.02	20.03	20.06	20.10	20.12	20.15	20.17	20.16	20.20	20.09

The output power was measured using the Agilent E5515C

7.2 PEAKTOAVERAGERATIO

- Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1

7.3 OCCUPIED BANDWIDTH

Band	Mode	Channel	Test Result(KHz)
Cellular	CDMA 1x	1013	1269.30
		384	1275.30
		777	1275.80
	CDMA 1x EVDO	1013	1266.50
		384	1277.10
		777	1272.00
PCS	CDMA 1x	25	1279.70
		600	1273.10
		1175	1280.70
	CDMA 1x EVDO	25	1292.80
		600	1277.20
		1175	1280.10

- Plots of the EUT's Occupied Bandwidth are shown in Clause 8.2

7.4 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

- Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3

7.5BAND EDGE

- Plots of the EUT's Band Edge are shown in Clause 8.4

7.6 EFFECTIVE RADIATED POWER

- CDMA1x

CH.	EUT Position (Axis)	TEST CONDITIONS						
		Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Power Supply
1013	Y	- 12.68	V	22.78	1.20	23.98	0.250	DC 12 V
384	Y	- 12.13	V	22.55	1.15	23.70	0.234	DC 12 V
777	X	- 12.56	V	23.61	1.05	24.66	0.292	DC 12 V

- CDMA 1x EVDO(Rev. A)

CH.	EUT Position (Axis)	TEST CONDITIONS						
		Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	ERP (dBm)	ERP (W)	Power Supply
1013	Y	- 13.28	V	22.18	1.20	23.38	0.218	DC 12 V
384	Z	-11.72	H	22.28	1.15	23.43	0.220	DC 12 V
777	Y	- 13.78	V	22.39	1.05	23.44	0.221	DC 12 V

NOTES:

Effective Radiated Power Output Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5MHz. For AMPS, GSM, and TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz.

A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a signal generator and the level of the signal generator is adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band.

We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.7 EQUIVALENT ISOTROPIC RADIATED POWER

- CDMA 1x

CH.	EUT Position (Axis)	TEST CONDITIONS						
		Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Power Supply
25	X	-11.11	H	16.84	8.06	24.90	0.309	DC 12 V
600	X	-11.56	H	17.03	8.12	25.15	0.327	DC 12 V
1175	X	-11.65	H	16.77	8.18	24.95	0.313	DC 12 V

- CDMA 1x EVDO(Rev. A)

CH.	EUT Position (Axis)	TEST CONDITIONS						
		Reading Value (dBm)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBi)	EIRP (dBm)	EIRP (W)	Power Supply
25	Y	-14.44	V	15.35	8.06	23.41	0.219	DC 12 V
600	X	-13.17	H	15.42	8.12	23.54	0.226	DC 12 V
1175	X	-14.88	H	13.54	8.18	21.72	0.149	DC 12 V

NOTES:

Effective Radiated Power Output Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, a peak detector is used, with RBW = VBW = 3 MHz. For WCDMA signals, a peak detector is used, with RBW = VBW = 5MHz. For AMPS, GSM, and TDMA signals, a peak detector is used, with RBW = VBW = 1 MHz.

A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a signal generator and the level of the signal generator is adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.8 RADIATED SPURIOUS EMISSIONS

7.8.1 RADIATED SPURIOUS EMISSIONS- CDMA 1x

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
1013 (0.250 W)	1649.86	Y	H	-62.18	5.89	-56.29	80.27	36.98
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
384 (0.234 W)	1673.42	Y	H	-59.95	5.96	-53.99	77.69	36.70
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
777 (0.292 W)	1696.72	Y	H	-60.55	6.02	-54.53	79.19	37.66
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation= $43 + 10 \log_{10}(\text{ERP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.8.2 RADIATED SPURIOUS EMISSIONS - CDMA 1x EVDO(Rev. A)

Channel (ERP)	Freq. (MHz)	EUT Position (Axis)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBd)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
1013 (0.218 W)	1648.57	Y	H	-62.67	5.88	-56.79	80.17	36.38
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
384 (0.220 W)	1673.28	Y	H	-60.93	5.96	-54.97	78.40	36.43
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
777 (0.221 W)	1696.85	Y	H	-61.80	6.02	-55.78	79.22	36.44
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation = $43 + 10 \log_{10}(\text{ERP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. We have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.8.3 RADIATED SPURIOUS EMISSIONS(PCS CDMA)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
25 (0.309W)	3701.86	X	H	-46.68	9.90	-36.78	61.68	37.90
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
600 (0.327W)	3759.82	X	H	-46.63	9.90	-36.73	61.87	38.15
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
1175 (0.313W)	3817.44	X	H	-44.71	9.91	-34.80	59.75	37.95
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation = $43 + 10 \log_{10}(\text{EIRP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

NOTES:

Effective Radiated Power Output Measurements by Substitution Method
according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.

The worst case data is reported.

7.8.4 RADIATED SPURIOUS EMISSIONS (PCS CDMA EVDO)

Channel (EIRP)	Freq. (MHz)	EUT Position (Axis)	Pol. (H/V)	Level at Substitute Antenna Terminal (dBm)	Substitute Antenna Gain (dBi)	Correct Generator Level (dBm)	Result (dBc)	Limit (dBc)
25 (0.219 W)	3702.14	X	H	-45.85	9.90	-35.95	59.36	36.41
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
600 (0.226 W)	3760.90	X	H	-45.51	9.90	-35.61	59.14	36.54
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	
1175 (0.149 W)	3817.30	X	H	-44.02	9.91	-34.11	55.83	34.72
	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	

- Limit Calculation = $43 + 10 \log_{10}(\text{ERP [W]})$ [dBc]

- No other spurious and harmonic emissions were reported greater than listed emissions above table.

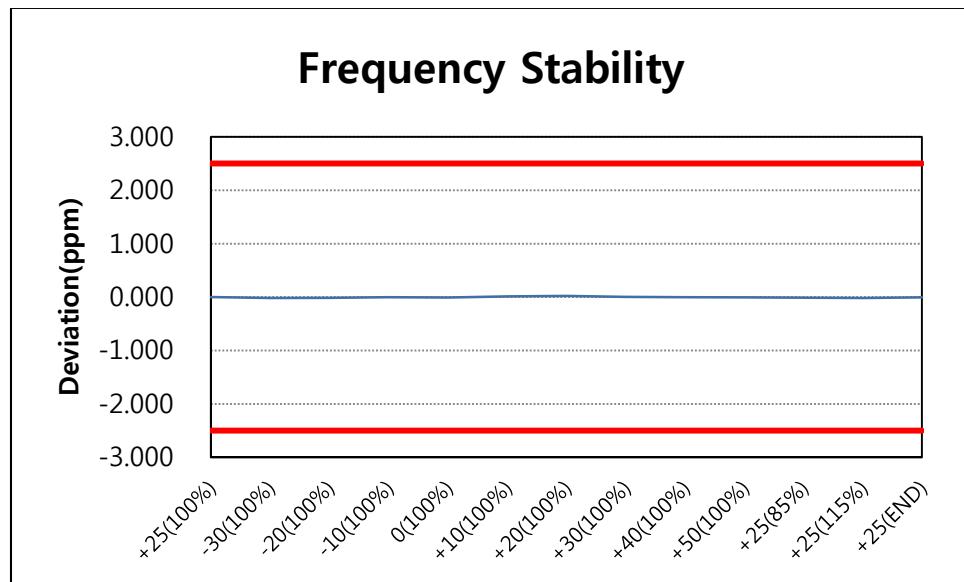
NOTES:Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT is placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation is adjusted for the highest reading on the receive spectrum analyzer.

A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

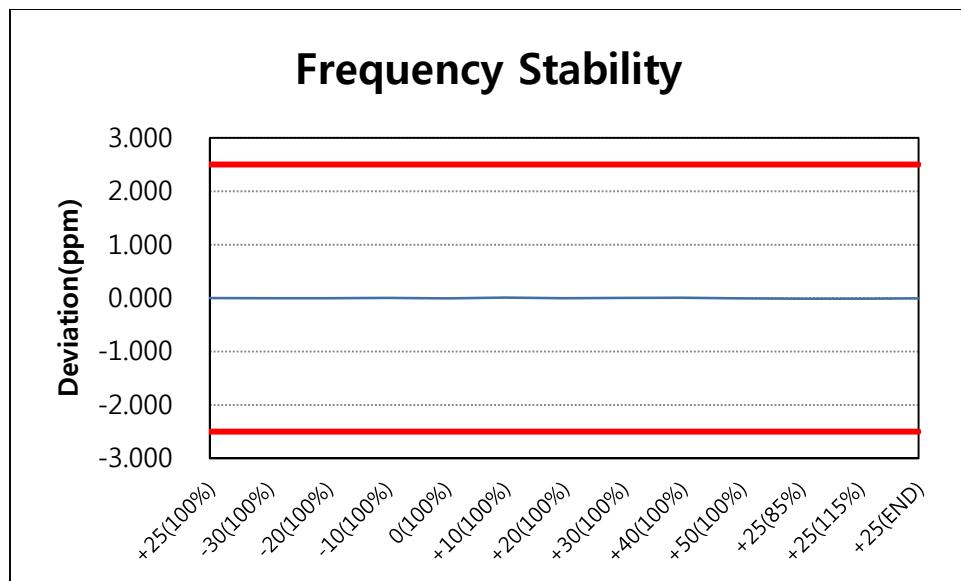
This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna.


The worst case data is reported.

7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

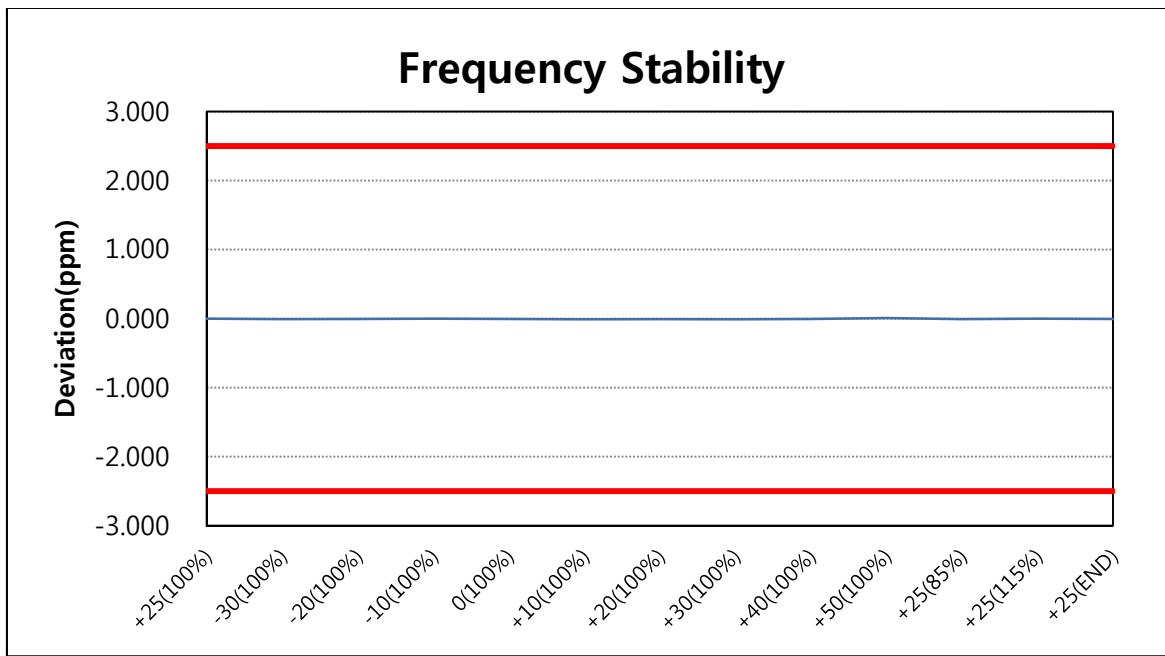
7.9.1 FREQUENCY STABILITY (Cellular CDMA)

OPERATING FREQUENCY : 836,519,993Hz
 CHANNEL : 384(Mid)
 REFERENCE VOLTAGE : 12.00V DC
 DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm


VOLTAGE (%)	POWER (V DC)	TEMP (°C)	FREQ (Hz)	Deviation	
				(ppm)	(%)
100%	12.00	+25(Ref)	836,519,993	0.000	0.00000000
100%		-30	836,519,978	-0.018	-0.00000179
100%		-20	836,519,982	-0.013	-0.00000131
100%		-10	836,519,992	-0.001	-0.00000012
100%		0	836,519,986	-0.008	-0.00000084
100%		+10	836,520,005	0.014	0.00000143
100%		+20	836,520,011	0.022	0.00000215
100%		+30	836,519,997	0.005	0.00000048
100%		+40	836,519,992	-0.001	-0.00000012
100%		+50	836,519,989	-0.005	-0.00000048
85 %	10.20	+25	836,519,983	-0.012	-0.00000120
115%	13.80	+25	836,519,980	-0.016	-0.00000155
BATT.ENDPOINT	-	-	-	-	-

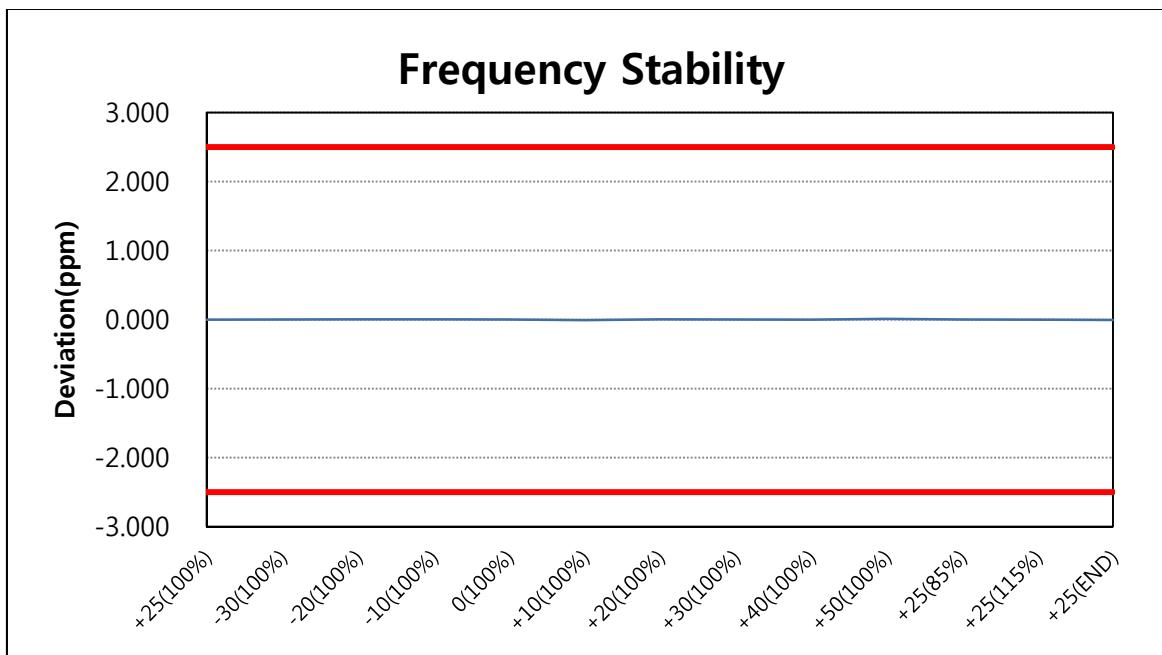
7.9.2 FREQUENCY STABILITY (Cellular CDMA EVDO)

OPERATING FREQUENCY : 836,519,987Hz
 CHANNEL : 384(Mid)
 REFERENCE VOLTAGE : 12.00V DC
 DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm


VOLTAGE (%)	POWER (V DC)	TEMP (°C)	FREQ (Hz)	Deviation	
				(ppm)	(%)
100%	12.00	+25(Ref)	836,519,987	0.000	0.000000000
100%		-30	836,519,986	-0.001	-0.00000012
100%		-20	836,519,985	-0.002	-0.00000024
100%		-10	836,519,990	0.004	0.00000036
100%		0	836,519,982	-0.006	-0.00000060
100%		+10	836,519,996	0.011	0.00000108
100%		+20	836,519,986	-0.001	-0.00000012
100%		+30	836,519,991	0.005	0.00000048
100%		+40	836,519,994	0.008	0.00000084
100%		+50	836,519,983	-0.005	-0.00000048
85 %	10.20	+25	836,519,978	-0.011	-0.00000108
115%	13.80	+25	836,519,977	-0.012	-0.00000120
BATT.ENDPOINT	-	-	-	-	-

7.9.3 FREQUENCY STABILITY (PCS CDMA)

OPERATING FREQUENCY : 1,879,999,990Hz
 CHANNEL : 600(Mid)
 REFERENCE VOLTAGE : 12.00V DC
 DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm


VOLTAGE (%)	POWER (V DC)	TEMP (°C)	FREQ (Hz)	Deviation	
				(ppm)	(%)
100%	12.00	+25(Ref)	1,879,999,990	0.000	0.000000000
100%		-30	1,879,999,976	-0.007	-0.000000074
100%		-20	1,879,999,981	-0.005	-0.000000048
100%		-10	1,879,999,988	-0.001	-0.000000011
100%		0	1,879,999,980	-0.005	-0.000000053
100%		+10	1,879,999,973	-0.009	-0.000000090
100%		+20	1,879,999,976	-0.007	-0.000000074
100%		+30	1,879,999,970	-0.011	-0.000000106
100%		+40	1,879,999,978	-0.006	-0.000000064
100%		+50	1,880,000,007	0.009	0.000000090
85 %	10.20	+25	1,879,999,977	-0.007	-0.000000069
115%	13.80	+25	1,879,999,989	-0.001	-0.000000005
BATT.ENDPOINT	5.20	+25	1,879,999,978	-0.006	-0.000000064

7.9.4 FREQUENCY STABILITY (PCS CDMA EVDO)

OPERATING FREQUENCY : 1,879,999,982Hz
 CHANNEL : 600(Mid)
 REFERENCE VOLTAGE : 12.00V DC
 DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (V DC)	TEMP (°C)	FREQ (Hz)	Deviation	
				(ppm)	(%)
100%	12.00	+25(Ref)	1,879,999,982	0.000	0.000000000
100%		-30	1,879,999,985	0.002	0.00000016
100%		-20	1,879,999,991	0.005	0.00000048
100%		-10	1,879,999,989	0.004	0.00000037
100%		0	1,879,999,986	0.002	0.00000021
100%		+10	1,879,999,967	-0.008	-0.00000080
100%		+20	1,879,999,988	0.003	0.00000032
100%		+30	1,879,999,984	0.001	0.00000011
100%		+40	1,879,999,982	0.000	0.000000000
100%		+50	1,880,000,003	0.011	0.00000112
85 %	10.20	+25	1,879,999,985	0.002	0.00000016
115%	13.80	+25	1,879,999,979	-0.002	-0.00000016
BATT.ENDPOINT	5.20	+25	1,879,999,973	-0.005	-0.00000048

