TEST REPORT

Dt&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRRFCC2509-0044

2. Customer

· Name: Williams Sound, LLC

· Address (FCC): 10300 Valley View Road, Eden Prairie, Minnesota, United States, 55344

3. Use of Report: FCC Original Certification

4. Product Name / Model Name : Digi-Wave Microphone Transceiver / DW T410

FCC ID: CNMDWT410

5. FCC Regulation(s): CFR 47 Part 2 subpart 2.1093

Test Method Used: IEEE 1528-2013, IEC/IEEE 62209-1528:2020,

IEC 62209-2 2010, IEC 62209-2 2010/AMD1:2019

FCC SAR KDB Publications (Details in test report)

6. Date of Test: 2025.08.18

7. Location of Test : ☐ Permanent Testing Lab ☐ On Site Testing

8. Testing Environment: Refer to appended test report.

9. Test Result: Refer to attached test report.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

Affirmation Tested by Name : SeungMin Lim Reviewed by Name : HakMin Kim

2025.09.08.

Dt&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Tested by	Reviewed by
DRRFCC2509-0044	Sep. 08, 2025	Initial issue	SeungMin Lim	HakMin Kim

Table of Contents

Report No.: DRRFCC2509-0044

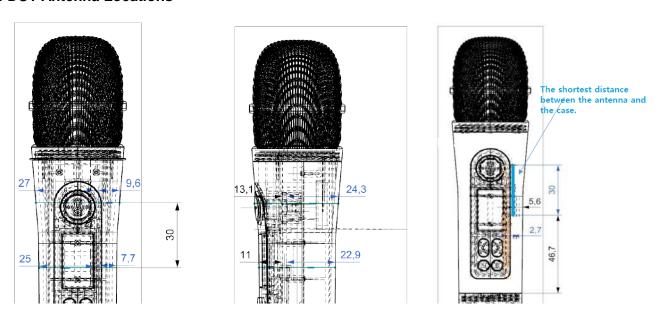
1. DESCRIPTION OF DEVICE	4
1.1 General Information 1.2 Power Reduction for SAR 1.3 Nominal and Maximum Output Power Specifications 1.4 DUT Antenna Locations 1.5 Guidance Applied 1.6 Device Serial Numbers 2. INTROCUCTION	
3. DOSIMETRIC ASSESSMENT	7
3.1 Measurement Procedure	
4.1 Device Holder	12 12 13
6. FCC MEASUREMENT PROCEDURES	
6.1 Measured and Reported SAR	14
7.1 2.4GHz ISM Band Conducted Powers	
8.1 Tissue Verification	16
9.1 Body SAR Results	18
10.1 Measurement Variability	19
12. MEASUREMENT UNCERTAINTIES	21
13. CONCLUSION	22
14. REFERENCES	23
APPENDIX A. – Probe Calibration Data	
APPENDIX B. – Dipole Calibration Data	
APPENDIX C. – SAR Tissue Specifications	
APPENDIX D. – SAR SYSTEM VALIDATION	
APPENDIX F Description of Test Equipment	58

1. DESCRIPTION OF DEVICE

1.1 General Information

EUT type	Digi-Wave Microphone Transceiver								
FCC ID	CNMDWT410								
Equipment model name(s)	DW T410								
HVIN(Hardware Version Identification Number)	DW T410								
PMN(Product Marketing Name)	DW T410								
Equipment serial no.	Identical prototype								
FVIN (Firmware Version Identification Number)	N/A								
FCC & ISED MRA Designation No.	KR0034								
ISED#	5740A								
Mode(s) of Operation	FSK								
TX Frequency Range	Band	Mode	Operating Modes	Frequency					
1X Frequency Kange	2.4GHz ISM FSK Data 2 402 ~ 2								
F to			Reported SAR						
Equipment Class	Band		1g SAR (W/kg)						
Class			Body						
DSS	2.4GHz ISM		0.99						
FCC Equipment Class	Part 15 Spread Spectrum Transmitte	r (DSS)							
Date(s) of Tests	2025.08.18								
Antenna Type	Internal Antenna								
Functions									
Note	The test method for this prod	luct is referenced to (DW T410)_TCB inqu	uiry.						

Report No.: DRRFCC2509-0044


1.2 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.3 Nominal and Maximum Output Power Specifications

The Nominal and Maximum Output Power Specifications are in section 7 of this test report.

1.4 DUT Antenna Locations

Mada		Device Sides for	or SAR Testing	
Mode	#1 (0°)	#2 (90°)	#3 (180°)	#4 (270°)
FSK	0	0	0	0

Note 1: O - Test / X - Not test.

1.5 Guidance Applied

- IEEE 1528-2013
- IEC 62209-2 2010
- IEC 62209-2 2010/AMD1:2019
- IEC/IEEE 62209-1528:2020
- FCC KDB Publication 447498 D01v06 (General RF Exposure Guidance)
- FCC KDB Publication 648474 D04v01r03 (Handset SAR)
- FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants)
- FCC KDB Publication 865664 D01v01r04 (SAR Measurement 100 MHz to 6 GHz)
- FCC KDB Publication 865664 D02v01r02 (RF Exposure Reporting)
- October 2016 TCB Workshop Notes (DUT Holder Perturbations)
- April 2019 TCB Workshop Notes (Tissue Simulating Liquids)

1.6 Device Serial Numbers

The serial numbers used for each test are indicated alongside the results in Section 9.

FCC ID: CNMDWT410

2. INTROCUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p) It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 2.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Fig. 2.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

FCC ID: CNMDWT410

3. DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4.1).
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

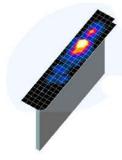


Figure 3.1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4.1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

Report No.: DRRFCC2509-0044

- a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4.1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

			≤ 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of p		measurement point rs) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the r			30°±1°	20° ± 1°	
			$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$3 - 4 \text{ GHz} : \le 12 \text{ mm}$ $4 - 6 \text{ GHz} : \le 10 \text{ mm}$	
Maximum area scan s	patial resol	ution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device wit at least one measurement point on the test device.		
Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 3 - 4 GHz: $\leq 5 \text{ mm}^*$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$ 4 - 6 GHz: $\leq 4 \text{ mm}^*$		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	$\Delta z_{Zoom}(1)$: between 1^{st} two points closes to phantom surface		≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Table 3.1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Replaced paragraph 6.3.1 d) of IEC 62209-2 2010 with the following:

Measure the three-dimensional SAR distribution at each of the local maxima locations identified in step c) (zoom scan procedure).

For frequencies at or below 3 GHz, the following procedure shall be applied (see Table 4.2):

The horizontal grid step shall be 8 mm or less. The grid step in the vertical direction shall be 5 mm or less if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell (M1 and M2, see Figure 4.2) shall be 4 mm or less and the spacing between farther points shall increase by a factor of 1.5 or less. The minimum size of the zoom scan volume shall be 30 mm by 30 mm. For other parameters, see Table 3.2 and Figure 4.2.

For frequencies above 3 GHz, the minimum size of the zoom scan volume may be reduced to 22 mm by 22 mm. The horizontal grid step shall be (24/f [GHz]) mm or less. If uniform spacing in the vertical direction is used, the grid step in the vertical direction shall be (10/(f [GHz] – 1)) mm or less. If variable spacing is used in the vertical direction, the maximum spacing between the two measured points closest to the phantom shell shall be (12/f [GHz]) mm or less and the spacing between further points shall increase by a factor of 1.5 or less. For other parameters, see Table 4.2 and Figure 4.2.

When the highest 1 g or 10 g cube is touching the boundary of a zoom-scan volume, the entire zoom scan shall be repeated with the new centre located at the maximum psSAR location indicated by the preceding zoom scan measurement.

If the zoom scan measured as defined above complies with both of the following criteria, or if the peak spatial-average SAR is below 0.1 W/kg, no additional measurements are needed:

- 1) the smallest horizontal distance from the local SAR peaks to all points 3 dB below the SAR peak shall be larger than the horizontal grid steps in both x and y directions (Δx, Δy). This shall be checked for the measured zoom scan plane conformal to the phantom at the distance z_{M1}. The minimum distance shall be recorded in the SAR test report;
- 2) the ratio of the SAR at the second measured point (M2) to the SAR at the closest measured point (M1) at the x-y location of the measured maximum SAR value shall be at least 30 % (see Figure 4.2). This ratio (in %) shall be recorded in the SAR test report.

TRF-RF-601(03)161101 Pages: 9 /64

Report No.: DRRFCC2509-0044

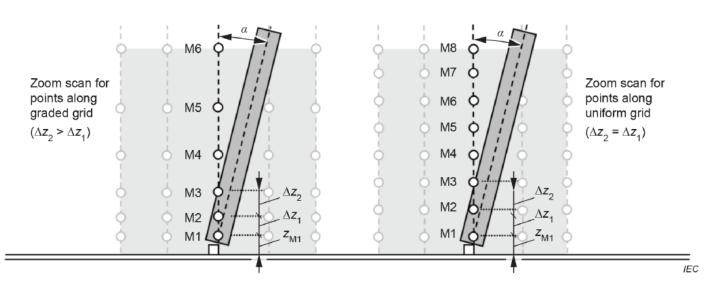


Figure 3.2 Orientation of the probe with respect to the line normal to the phantom surface, shown at two different locations Note(s):

- 1. M1 to M8 are example measurement points used for extrapolation to the surface. The maximum of the angle α between the evaluation axis and the surface normal line is given in Table 4.2. The distance z_{M1} is from the phantom shell to the first measurement point M1, and its maximum value is given in Table 3.2. The distances Δz_i (i = 1, 2, 3, ...) are the distances from measurement points M_i to M_i -1. For uniform grids, Δz_i are equal. For graded grids, $\Delta z_{i+1} > \Delta z_i$. $R_z = \Delta z_{i+1}/\Delta z_i$ is a ratio with a maximum value given in Table 4.2. The z direction corresponds to the vertical direction, the x direction is horizontal and the y direction is horizontal into the page.
- 2. The evaluation of the zoom scan is typically done by the post-processor by interpolation and extrapolation and without reconstruction of the field. More focused induced SAR distributions (e.g., for more localized sources such as capacitively coupled sources) require a more dense grid such that the same integration and extrapolation algorithms can be used for the same assessment uncertainty.
- 3. The minimum ratio of 30 % is derived from the plane wave penetration depth at 6 GHz.

If one or both of the above criteria are not met, the zoom scan measurement shall be repeated using a finer resolution while keeping the other zoom scan parameters compatible with Table 4.2. New horizontal and vertical grid steps shall be determined from the measured SAR distribution so that the above criteria are met. Compliance with the above two criteria shall be demonstrated for the new measured zoom scan. The size of the higher resolution zoom scan and other parameters of Table 4.2 shall apply. The closest point to the phantom shell shall be 2 mm or less for graded grids and the grading factor shall be 1.5 or less.

Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved if the distance between the phantom surface and physical tip of the probe is larger than the probe tip diameter. Other methods may utilize correction procedures to compensate for boundary effects that enable high precision measurements closer than half the probe tip diameter. For all measurement points, the angle of the probe normal to the flat phantom surface shall be less than 5°. If this cannot be achieved, an additional uncertainty evaluation according to 7.2.2.6 of IEC 62209-2 2010/AMD1 2019 is required.

Parameter	DUT transmit fre	quency being tested
	f≤3 GHz	3 GHz < f ≤ 6 GHz
Maximum distance between the closest measured points and the phantom surface (z _{M1} in Figure 14 and Table 2, in mm)	5	δ In(2)/2 ^a
Maximum angle between the probe axis and the flat phantom surface normal (α in Figure 14)	5°	5°
Maximum spacing between measured points in the x- and y-directions (Δx and Δy , in mm)	8	24/f ^{b,c}
For uniform grids:	5	10/(f - 1)
Maximum spacing between measured points in the direction normal to the phantom shell $(\Delta z_1$ in Figure 14, in mm)		
For graded grids:	4	12/f
Maximum spacing between the two closest measured points in the direction normal to the phantom shell (Δz_1 in Figure 14, in mm)		
For graded grids:	1,5	1,5
Maximum incremental increase in the spacing between measured points in the direction normal to the phantom shell $(R_z = \Delta z_2/\Delta z_1)$ in Figure 14)		
Minimum edge length of the zoom scan volume in the x- and y-directions (L_z in 7.2.5.3, in mm)	30	22
Minimum edge length of the zoom scan volume in the direction normal to the phantom shell ($L_{\rm h}$ in 7.2.5.3, in mm)	30	22
Tolerance in the probe angle	1°	1°

 $^{^{\}mathrm{a}}$ δ is the penetration depth for a plane-wave incident normally on a planar half-space.

Table 3.2 Zoom Scan Resolutions per IEC 62209-2 2010/AMD1 2019

b This is the maximum spacing allowed, which may not work for all circumstances.

c f is the frequency in GHz.

4. TEST CONFIGURATION POSITIONS

4.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

4.2 Generic device

The SAR evaluation shall be performed for all surfaces of the DUT that are accessible during intended use, as indicated in Figure 5.1. The separation distance in testing shall correspond to the intended use distance as specified in the user instructions provided by the manufacturer. If the intended use is not specified, all surfaces of the DUT shall be tested directly against the flat phantom.

The surface of the generic device (or the surface of the carry accessory holding the DUT) pointing towards the flat phantom shall be parallel to the surface of the phantom.

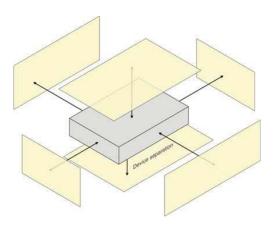


Figure 4.1 Test positions for a generic device

Note:

1. The microphone test method was consulted with the TCB and referenced to their response, and the TCB inquiry (June 10, 2025) can be found in (DW T410)_TCB inquiry.

TRF-RF-601(03)161101 Pages: 12 /64

FCC ID: CNMDWT410 Report No.: DRRFCC2509-0044

5. RF EXPOSURE LIMITS

Uncontrolled Environment:

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment:

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5.1.SAR Human Exposure Specified in ANSI/IEEE C95.1-1992

	HUMAN EXPO	SURE LIMITS
	General Public Exposure (W/kg) or (mW/g)	Occupational Exposure (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Brain)	1.60	8.00
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.40
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.00	20.0

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation).

TRF-RF-601(03)161101 Pages: 13 /64

6. FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

6.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

6.2 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

TRF-RF-601(03)161101 Pages: 14 /64

FCC ID: CNMDWT410

7. RF CONDUCTED POWERS

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

7.1 2.4GHz ISM Band Conducted Powers

Channel	Frequency	Burst AVG Output Power (2Mbps)	Frame AVG Output Power (2Mbps)	
	(MHz)	(dBm)	(dBm)	
Low	2 402	15.50	7.00	
Mid	2 440	16.00	7.50	
High	2 476	15.50	7.00	

Table 7.1.1 Nominal and Maximum Output Power Spec (Burst/Frame)

Channel	Frequency	Burst AVG Output Power (2Mbps)	Frame AVG Output Power (2Mbps)
	(MHz)	(dBm)	(dBm)
Low	2402	15.39	6.96
Mid	2440	15.62	7.19
High	2476	15.31	6.88

Table 7.1.2 2.4GHz ISM Band Burst and Frame Average RF Power

• 2.4GHz ISM Conducted Powers procedures

- 1. 2.4GHz ISM Band (FSK)
 - 1) Instruments and EUT were connected like Figure 7.1.1.
 - 2) Power levels were measured by a Power Meter.

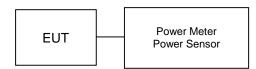


Figure 7.1.1 Average Power Measurement Setup

2.4GHz ISM Band Transmission Plot

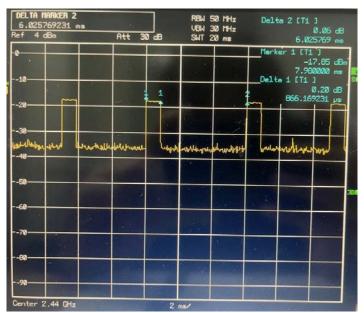


Figure 7.1.2 2.4GHz ISM Band Transmission Plot

• 2.4GHz ISM Band Duty Cycle Calculation

Duty Cycle = Pulse/Period * 100% = (0.866/6.026) * 100 = 14.4%

FCC ID: CNMDWT410 Report No.: DRRFCC2509-0044

8. SYSTEM VERIFICATION

8.1 Tissue Verification

	MEASURED TISSUE PARAMETERS												
Date(s)	s) Tissue Ambient Liquid Temp.[°C] Temp.[°C]				Target Dielectric Constant, εr	Target Conductivity, σ (S/m)	Measured Dielectric Constant, εr	Measured Conductivity, σ (S/m)	Er Deviation [%]	σ Deviation [%]			
	2 450 Head			2 450.0	39.200	1.800	38.057	1.786	-2.92	-0.78			
Aug. 18. 2025		2 450	2 450	22.2	22.1	2 402.0	39.282	1.757	38.111	1.757	-2.98	-0.03	
Aug. 18. 2025		22.2	22.1	2 440.0	39.217	1.791	38.068	1.779	-2.93	-0.68			
				2 476.0	39.165	1.828	38.033	1.804	-2.89	-1.30			

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB 865664 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

Measurement Procedure for Tissue verification:.

- The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight
- The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity, for example from the below equation (Pournaropoulos and

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

8.2 Test System Verification

Prior to assessment, the system is verified to the ± 10 % of the specifications at using the SAR Dipole kit(s). (Graphic Plots Attached)

Table 8.2.1 System Verification Results (1g)

Ī		SYSTEM DIPOLE VERIFICATION TARGET & MEASURED											
	SAR System #	Freq. [MHz]	SAR Dipole kits	Date(s)	Tissue Type	Ambient Temp. [°C]	Liquid Temp. [°C]	Probe S/N	Input Power (mW)	1 W Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation [%]
Ī	D	2 450 (FSK)	D2450V2, SN: 726	Aug. 18. 2025	Head	22.2	22.1	3327	100	52.2	5.36	53.6	2.68

- Note(s):

 1. System Verification was measured with input 100 mW and normalized to 1W.

 2. Full system validation status and results can be found in Appendix D.

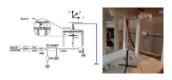


Figure 8.1 Dipole Verification Test Setup Diagram & Photo

FCC ID: CNMDWT410

9. SAR TEST RESULTS

9.1 Body SAR Results

Table 9.1.1 2.4GHz ISM Band Body SAR (Non Clip)

	MEASUREMENT RESULTS													
FREQUE	NCY		Maximum Allowed	Conducted	Drift	Phantom	Device	Rate	Duty	1g	Caslina	Scaling	1g Seeled	Plots
MHz	Ch	Mode	Power [dBm]	Power [dBm]	Power [dB]	Position	Serial Number	[Mbps]	Cycle (%)	SAR (W/kg)	Scaling Factor	Factor (Duty Cycle)	Scaled SAR (W/kg)	#
2402.0	1	FSK	15.50	15.39	0.100	Condition (1) #1	FCC #1	2	14.4	0.114	1.026	6.958	0.814	
2440.0	2	FSK	16.00	15.62	-0.090	Condition (1) #1	FCC #1	2	14.4	0.131	1.091	6.958	0.994	A1
2476.0	3	FSK	15.50	15.31	-0.180	Condition (1) #1	FCC #1	2	14.4	0.117	1.045	6.958	0.851	
2440.0	2	FSK	16.00	15.62	-0.090	Condition (1) #2	FCC #1	2	14.4	0.117	1.091	6.958	0.888	T I
2440.0	2	FSK	16.00	15.62	-0.190	Condition (1) #3	FCC #1	2	14.4	0.007	1.091	6.958	0.053	
2440.0	2	FSK	16.00	15.62	-0.130	Condition (1) #4	FCC #1	2	14.4	0.026	1.091	6.958	0.197	T
2402.0	1	FSK	15.50	15.39	0.150	Condition (2) #1	FCC #1	2	14.4	0.091	1.026	6.958	0.650	
2440.0	2	FSK	16.00	15.62	-0.140	Condition (2) #1	FCC #1	2	14.4	0.109	1.091	6.958	0.827	
2476.0	3	FSK	15.50	15.31	0.190	Condition (2) #1	FCC #1	2	14.4	0.087	1.045	6.958	0.633	
2402.0	1	FSK	15.50	15.39	0.180	Condition (5) #1	FCC #1	2	14.4	0.114	1.026	6.958	0.814	
2440.0	2	FSK	16.00	15.62	-0.130	Condition (5) #1	FCC #1	2	14.4	0.121	1.091	6.958	0.919	
2476.0	3	FSK	15.50	15.31	-0.190	Condition (5) #1	FCC #1	2	14.4	0.106	1.045	6.958	0.771	
2402.0	1	FSK	15.50	15.39	0.170	Condition (6) #1	FCC #1	2	14.4	0.078	1.026	6.958	0.557	
2440.0	2	FSK	16.00	15.62	-0.050	Condition (6) #1	FCC #1	2	14.4	0.099	1.091	6.958	0.752	
2476.0	3	FSK	15.50	15.31	0.180	Condition (6) #1	FCC #1	2	14.4	0.078	1.045	6.958	0.567	
	ANSI / IEEE C95.1-1992 – SAFETY LIMIT Spatial Peak										Head 1.6 W/kg (mW/g)			

- Note(s):

 1. Blue entries represent Condition (2) measurements.

 2. Green entries represent Condition (5) measurements.

 3. Red entries represent Condition (6) measurements.

Table 9.1.2 2.4GHz ISM Band Body SAR (Clip)

	MEASUREMENT RESULTS													
FREQUEN	Ch	Mode	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Drift Power [dB]	Phantom Position	Device Serial Number	Rate [Mbps]	Duty Cycle (%)	1g SAR (W/kg)	Scaling Factor	Scaling Factor (Duty Cycle)	1g Scaled SAR (W/kg)	Plots #
2440.0	2	FSK	16.00	15.62	0.180	Condition (3) #1 Front Clip	FCC #1	2	14.4	0.039	1.091	6.958	0.296	
2402.0	1	FSK	15.50	15.39	-0.160	Condition (3) #1 Rear Clip	FCC #1	2	14.4	0.111	1.026	6.958	0.792	
2440.0	2	FSK	16.00	15.62	-0.050	Condition (3) #1 Rear Clip	FCC #1	2	14.4	0.119	1.091	6.958	0.903	A2
2476.0	3	FSK	15.50	15.31	0.130	Condition (3) #1 Rear Clip	FCC #1	2	14.4	0.089	1.045	6.958	0.647	
2440.0	2	FSK	16.00	15.62	-0.040	Condition (3) #3 Front Clip	FCC #1	2	14.4	0.003	1.091	6.958	0.023	
2440.0	2	FSK	16.00	15.62	0.090	Condition (3) #3 Rear Clip	FCC #1	2	14.4	0.016	1.091	6.958	0.121	
2402.0	1	FSK	15.50	15.39	0.060	Condition (4) #1 Rear Clip	FCC #1	2	14.4	0.083	1.026	6.958	0.593	
2440.0	2	FSK	16.00	15.62	-0.160	Condition (4) #1 Rear Clip	FCC #1	2	14.4	0.096	1.091	6.958	0.729	
2476.0	3	FSK	15.50	15.31	0.090	Condition (4) #1 Rear Clip	FCC #1	2	14.4	0.072	1.045	6.958	0.524	
2402.0	1	FSK	15.50	15.39	-0.170	Condition (7) #1 Rear Clip	FCC #1	2	14.4	0.108	1.026	6.958	0.771	
2440.0	2	FSK	16.00	15.62	-0.000	Condition (7) #1 Rear Clip	FCC #1	2	14.4	0.116	1.091	6.958	0.881	
2476.0	3	FSK	15.50	15.31	0.070	Condition (7) #1 Rear Clip	FCC #1	2	14.4	0.081	1.045	6.958	0.589	
2402.0	1	FSK	15.50	15.39	-0.060	Condition (8) #1 Rear Clip	FCC #1	2	14.4	0.072	1.026	6.958	0.514	
2440.0	2	FSK	16.00	15.62	0.190	Condition (8) #1 Rear Clip	FCC #1	2	14.4	0.093	1.091	6.958	0.706	
2476.0	3	FSK	15.50	15.31	-0.010	Condition (8) #1 Rear Clip	FCC #1	2	14.4	0.068	1.045	6.958	0.494	
				EE C95.1-1992- SAFETY LIMI Spatial Peak posure/General Population E:							Body 1.6 W/kg (mW/g) averaged over 1 gram			

- Note(s):

 1. Blue entries represent Condition (4) measurements.

 2. Green entries represent Condition (7) measurements.

 3. Red entries represent Condition (8) measurements.

TRF-RF-601(03)161101 Pages: 17 /64

9.2 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in FCC KDB Publication 447498
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. SAR measurements were performed using the DASY5 automated system. The procedure for spatial peak SAR evaluation has been implemented according to the IEEE 1528 standard. During a maximum search, global and local maxima searches are automatically performed in 2-D after each area scan measurement. The algorithm will find the global maximum and all local maxima within 2 dB of the global maximum for all SAR distributions. All local maxima within 2 dB of the global maximum were searched and passed for the Zoom Scan measurement.

ISM Notes:

- 1. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. Refer to section 9.5 for the time-domain plot and calculation for the duty factor of the device.
- 2. The test was conducted based on the response received from TCB and was conducted according to each Condition.
 - Condition (1): No microphone head, No metal clip, No ear jack
 - Condition (2): With microphone head, No metal clip, No ear jack
 - Condition (3): No microphone head, With metal clip, No ear jack
 - Condition (4): With microphone head, With metal clip, No ear jack
 - Condition (5): No microphone head, No metal clip, With ear jack
 - Condition (6) : With microphone head, No metal clip, With ear jack
 - Condition (7): No microphone head, With metal clip, With ear jack
 - Condition (8): With microphone head, With metal clip, With ear jack

TRF-RF-601(03)161101 Pages: 18 /64

10. SAR MEASUREMENT VARIABILITY

10.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1. When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2. A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was ≥
 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is >
 1.20.
- 4. Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5. The same procedures should be adapted for measurements according to extremity exposure limits by applying a factor of 2.5 for extremity exposure to the corresponding SAR thresholds.

10.2 Measurement Uncertainty

The measured SAR was < 1.5 W/kg for 1g and < 3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04 was not required.

TRF-RF-601(03)161101 Pages: 19 /64

11. EQUIPMENT LIST

Table 11.1 Test Equipment Calibration

	Туре	Manufacturer	Model	Cal.Date	Next.Cal.Date	S/N
\boxtimes	SEMITEC Engineering	SEMITEC	N/A	N/A	N/A	Shield Room
\boxtimes	Robot	SPEAG	TX90XL	N/A	N/A	F13/5RR2A1/A/01
⊠	Robot Controller	SPEAG	CS8C	N/A	N/A	F13/5RR2A1/C/01
⊠	Joystick	SPEAG	N/A	N/A	N/A	S-13200990
×	Intel Core i7-3 770 3.40 GHz Window 7 Professional	N/A	N/A	N/A	N/A	N/A
⊠	Probe Alignment Unit LB	N/A	N/A	N/A	N/A	SE UKS 030 AA
×	Device Holder	SPEAG	SD000H01KA	N/A	N/A	N/A
\boxtimes	2 mm Oval Phantom ELI5	SPEAG	QDIVA001BB	N/A	N/A	1223
\boxtimes	Data Acquisition Electronics	SPEAG	DAE4V1	2025-05-21	2026-05-21	1396
\boxtimes	Dosimetric E-Field Probe	SPEAG	ES3DV3	2025-01-21	2026-01-21	3327
\boxtimes	2 450MHz SAR Dipole	SPEAG	D2450V2	2025-04-15	2027-04-15	726
\boxtimes	Signal Generator	Agilent	E4438C	2025-05-28	2026-05-28	US41461520
\boxtimes	High Power RF Amplifier	EMPOWER	BBS3Q8CCJ	2025-05-30	2026-05-30	1005
\boxtimes	Power Meter	H/P	EPM-442A	2024-11-26	2025-11-26	GB37170267
\boxtimes	Power Meter	Anritsu	ML2488B	2024-11-27	2025-11-27	0846003
\square	Power Sensor	Anritsu	MA2472D	2024-11-27	2025-11-27	0845419
\boxtimes	Power Sensor	H/P	8481A	2024-11-29	2025-11-29	2702A65976
\boxtimes	Power Sensor	H/P	8481A	2024-11-29	2025-11-29	2702A61707
	Directional Coupler	H/P	772D	2024-11-25	2025-11-25	2839A00902
\boxtimes	Low Pass Filter 3.0 GHz	MICROLAB	LA-30N	2025-05-28	2026-05-28	2
\boxtimes	Attenuators(10 dB)	WEINSCHEL	23-10-34	2024-11-25	2025-11-25	BP4387
\boxtimes	Attenuators	Saluki	3.5TS2-3dB-26.5G	2025-05-29	2026-05-29	21090703
	Dielectric Probe kit	SPEAG	DAK-3.5	2025-07-07	2026-07-07	1046
	DIGIGOLITO FTODE KIL	SPEAG	R140	2025-07-17	2026-07-17	0101213

TRF-RF-601(03)161101

NOTE(S):

1. The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Verification measurement is performed by Dt&C before each test. The brain and muscle simulating material are calibrated by Dt&C using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain and muscle-equivalent material. Each equipment item was used solely within its respective calibration period.

2. CBT(Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, ambiging at each early coupler or filter were connected to a calibrated source (i.e. signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

12. MEASUREMENT UNCERTAINTIES

2 450 MHz

	Uncertainty	Probability		(Ci)	(Ci)	Standard	Standard	Ci x <i>Ui</i>	Ci x <i>Ui</i>	vi 2 or
Error Description	value %	Distribution	Divisor		10 g	1 g (%)	10 g (%)	1 g	10 g	Veff
Measurement System				1 g	- 3	3 (11)	3 (11)	<u> </u>	- 3	
Probe calibration	11.0	Normal	2	1	1	5.50	5.50	5.50	5.50	∞
Probe Calibration Drift	1.7	Rectangular	√3	1	1	1.0	1.0	1.0	1.0	∞
Probe Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	2.7	2.7	∞
Broadband Signal	2.8	Rectangular	√3	1	1	1.6	1.6	1.6	1.6	∞
Probe Isotropy	7.6	Rectangular	√3	1	1	4.4	4.4	4.4	4.4	∞
Other Probe+Electronic	0.8	Normal	1	1	1	0.8	0.8	0.8	0.8	∞
RF Ambient Conditions	1.8	Normal	1	1	1	1.8	1.8	1.8	1.8	∞
Probe Positioning	3.9	Normal	1	0.14	0.14	3.9	3.9	0.5	0.5	∞
Data Processing	1.2	Normal	1	1	1	1.2	1.2	1.2	1.2	∞
Phantom and Device				1		L		.		
Liquid conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	2.89	2.89	1.85	1.24	∞
Liquid conductivity (Meas.)	3.2	Normal	1	0.78	0.71	3.20	3.20	2.50	2.27	∞
Liquid permittivity (Target)	5.0	Rectangular	√3	0.60	0.49	2.89	2.89	1.73	1.41	∞
Liquid permittivity (Meas.)	3.3	Normal	1	0.23	0.26	3.30	3.30	0.76	0.86	8
Temp. unc Conductivity	2.0	Rectangluar	√3	0.78	0.71	1.15	1.15	0.90	0.82	∞
Temp. unc Permittivity	2.0	Rectangluar	√3	0.23	0.26	1.15	1.15	0.27	0.30	∞
Phantom Shell Permitvitty	14.0	Rectangluar	√3	0	0	8.1	8.1	0.0	0.0	∞
Distance DUT-TSL	2.0	Normal	1	2	2	2.0	2.0	4.0	4.0	∞
Device Positioning	2.3	Normal	1	1	1	2.3	2.3	2.3	2.3	∞
Device Holder	2.2	Normal	1	1	1	2.2	2.2	2.2	2.2	∞
DUT Modulation	2.4	Rectangular	√3	1	1	1.4	1.4	1.4	1.4	∞
Time-average SAR	1.7	Rectangular	√3	1	1	1.0	1.0	1.0	1.0	∞
DUT drift	2.5	Normal	1	1	1	2.5	2.5	2.5	2.5	∞
Validation Antenna	0.0	Normal	1	1	1	0.0	0.0	0.0	0.0	∞
Uncertainty in Accepted Power	0.0	Normal	1	1	1	0.0	0.0	0.0	0.0	∞
Correction to the SAR results										
Deviation to target	1.9	Normal	1	1	0.84	1.9	1.9	1.9	1.6	∞
SAR Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	0.0	0.0	∞
Combined Standard Uncertainty						11	11			∞
Expanded Uncertainty (k=2)						22	22			

Report No.: DRRFCC2509-0044

 $U(1 g) = k \cdot u_c$

^{= 2 · 11 %}

^{= 22 % (}The confidence level is about 95 % k = 2)

 $U(10 g) = k \cdot u_c$

^{= 2 · 11 %}

^{= 22 % (}The confidence level is about 95 % k= 2)

13. CONCLUSION

Measurement Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under the worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are every complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role impossible biological effect are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease).

Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

TRF-RF-601(03)161101 Pages: 22 /64

14. REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 -Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct.1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bio electromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

FCC ID: CNMDWT410

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz), Feb. 2005.

[21] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio communication Apparatus (All Frequency Bands) Issue 5, March 2015.

[22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2009

[23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07

[24] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v02

[25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474D02-D04

[26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04

[27] FCC SAR Measurement and Reporting Requirements for 100MHz - 6 GHz, KDB Publications 865664 D01-D02

[28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02

[29] 615223 D01 802 16e WI-Max SAR Guidance v01, Nov. 13, 2009

[30] Anexo à Resolução No. 533, de 10 de September de 2009.

[31] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30 MHz to 6 GHz), Mar. 2010.

TRF-RF-601(03)161101 Pages: 24 /64

APPENDIX A. – Probe Calibration Data

TRF-RF-601(03)161101

Report No.: DRRFCC2509-0044

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Dt&C

Gyeonggi-do, Republic of Korea

Certificate No.

ES-3327 Jan25

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3327

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-23.v6, QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

January 21, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Calibration Date (Certificate No.)	Sched, Cal.
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Short [S6019i] + Attenuator [S6020i]	SN: L1119	26-Mar-24 (No. 217-04048)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016 Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249 Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349 Jan25)	Jan-26
DAE4	SN: 1301	07-Nov-24 (No. DAE4-1301 Nov24)	Nov-25

Secondary Standards	ID	Check Date (in house)	Sched, Check
ACAP 2020 Calibration Box	SN: L1404	30-Sept-24 (No. Report_ACAP2020E-Cave 20240930s)	

Name Function Calibrated by Aidonia Georgiadou Laboratory Technician Approved by Sven Kühn Technical Manager

Issued: January 21, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES-3327_Jan25

Page 1 of 21