

APPENDIX B. – Dipole Calibration Data

Report No.: DRRFCC2509-0044

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Dt&C

Gyeonggi-do, Republic of Korea

Certificate No.

D2450V2-726_Apr25

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 726

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date April 15, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity <70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T SN: 10096		26-Mar-25 (No. 217-04290)	Mar-26
Power Sensor R&S NRP18A	SN: 101859	06-Feb-25 (No. 4030A315009541)	Feb-26
Spectrum Analyzer R&S FSV40 SN: 101832		29-Jan-25 (No. 4030A315009658)	Jan-26
3.5mm mismatch combination SN: 1152		24-Mar-25 (No. 217-04293)	Mar-26
OCP DAK-12 SN: 1016		24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5 SN: 1249		23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4 SN: 7349		10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAF4ip	SN: 1836	28-Oct-24 (No. DAE4ip-1836 Oct24)	Oct-25

Secondary Standards ID		Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

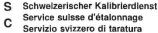
	Name	Function	Signature
Calibrated by	Leif Klysner	Laboratory Technician	Sef Illan
Approved by	Sven Kühn	Technical Manager	820

Issued: April 15, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-726_Apr25

Page 1 of 6


Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

FCC ID: CNMDWT410

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528,"Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-726_Apr25

Page 2 of 6

D2450V2 - SN: 726

April 15, 2025

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 5mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	2450MHz ±1MHz	

HSL parameters at 2450 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal HSL parameters	22.0 °C	39.2	1.80 mho/m	
Measured HSL parameters	(22.0 ±0.2)°C	37.9 ±6%	1.85 mho/m ±6%	
HSL temperature change during test	< 0.5 °C			

SAR result with HSL at 2450 MHz

SAR averaged over 1 cm ³ (1 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	13.1 W/kg
SAR for nominal HSL parameters	normalized to 1W	52.2 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of HSL	Condition	
SAR for nominal HSL parameters	24 dBm input power	6.16 W/kg
SAR for nominal HSL parameters	normalized to 1W	24.5 W/kg ±16.5% (k = 2)

Certificate No: D2450V2-726_Apr25

Page 3 of 6

Report No.: DRRFCC2509-0044

FCC ID: CNMDWT410

D2450V2 - SN: 726

April 15, 2025

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with HSL at 2450 MHz

Impedance	53.9 Ω + 2.3 jΩ		
Return Loss	-27.3 dB		

General Antenna Parameters and Design

Liectrical Delay (Offe direction)	Electrical Delay (one direction)	1.16 ns
-----------------------------------	----------------------------------	---------

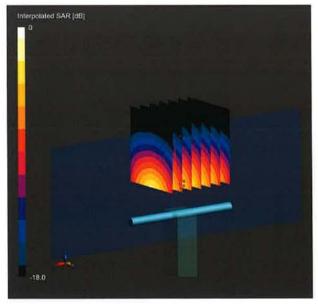
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D2450V2-726_Apr25

Page 4 of 6

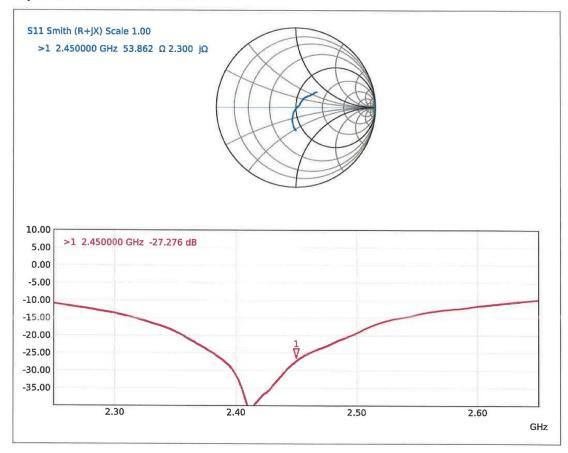

D2450V2 - SN: 726 April 15, 2025

System Performance Check Report

Summary							
Dipole		Fre	quency (MHz)	TSL	Power [d8m]		
D2450V2 - SN726		24	50	HSL	24		
Exposure Condition	s						
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2450, 0	7.06	1.85	37.9
Hardware Setup							
Phantom	TSL, Measured	Date		Probe, Calibration Date	DAE	Calibration Date	
MFP V8.0 Center	HSL, 2025-04-	15	E	X3DV4 - SN7349, 2025-01-10	DAE	4ip Sn1836, 2024-10-28	

cans Setup	
	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	5.0 × 5.0 × 1.5
Sensor Surface [mm]	1.0
Graded Grid	Ye
Grading Ratio	1.0
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measure

	Zoom Scan
Date	2025-04-15
psSAR1g [W/Kg]	13.1
psSAR10g [W/Kg]	6.16
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative


0~dB=26.9~W/Kg

Certificate No: D2450V2-726_Apr25 Page 5 of 6

D2450V2 - SN: 726 April 15, 2025

Impedance Measurement Plot for HSL

Certificate No: D2450V2-726_Apr25

Page 6 of 6

APPENDIX C. – SAR Tissue Specifications

The brain and muscle mixtures consist of a viscous gel using hydrox-ethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Figure 3.9 Simulated Tissue

Table C.1 Composition of the Tissue Equivalent Matter

Report No.: DRRFCC2509-0044

Ingredients	Frequency (MHz)									
(% by weight)	835		19	00	24	50	5200 ~ 5800			
Tissue Type	Head Body		Head Body		Head Body		Head Body			
Water	40.19	50.75	55.24	70.23	71.88	73.40	65.52	80.00		
Salt (NaCl)	1.480	0.940	0.310	0.290	0.160	0.060	-	-		
Sugar	57.90	48.21	-	-	-	-	-	-		
HEC	0.250	-	-	-	-	-	-	-		
Bactericide	0.180	0.100	-	-	-	-	-	-		
Triton X-100	-	-	-	-	19.97	-	17.24	-		
DGBE	-	-	44.45	29.48	7.990	26.54	-	-		
Diethylene glycol hexyl ether	-	-	-	-	-	-	17.24	-		
Polysorbate (Tween) 80	-	-	-	-	-	-		20.00		
Target for Dielectric Constant	41.5	55.2	40.0	53.3	39.2	52.7	-	-		
Target for Conductivity (S/m)	0.90	0.97	1.40	1.52	1.80	1.95	-	-		

Salt: 99 % Pure Sodium Chloride Sugar: 98 % Pure Sucrose

Water: De-ionized, 16M resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether

APPENDIX D. - SAR SYSTEM VALIDATION

FCC ID: CNMDWT410 Report No.: DRRFCC2509-0044

SAR System Validation

Per FCC KDB 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D.1 SAR System Validation Summary

	Freq.	Date	Probe SN	Probe Type	Probe CAL. Point		PERM.	COND.	CW Validation			MOD. Validation		
	[MHz]						(εr)	(σ)	Sensi- tivity	Probe Linearity	Probe Isortopy	MOD. Type	Duty Factor	PAR
D	2 450	2025.02.13	3327	ES3DV3	2 450	Head	39.534	1.819	PASS	PASS	PASS	OFDM/TDD	PASS	PASS

NOTE: While the probes have been calibrated for both a CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

TRF-RF-601(03)161101 Pages: 57 /64

APPENDIX E. – Description of Test Equipment

E.1 SAR Measurement Setup

Measurements are performed using the DASY5 automated dosimetric assessment system. The DASY5 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. E.1.1).

Report No.: DRRFCC2509-0044

A cell controller system contains the power supply, robot controller each pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Intel Core i7-3 770 3.40 GHz desktop computer with Window 7 Professional system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robotis connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

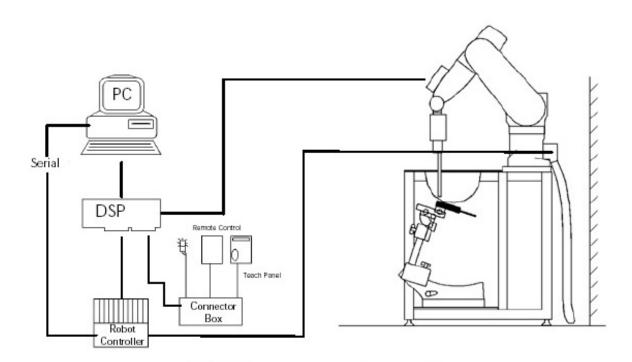


Figure E.1.1 SAR Measurement System Setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail.

TRF-RF-601(03)161101 Pages: 59 /64

E.2 Probe Specification

Frequency 10 MHz – 4 GHz

Linearity ±0.2 dB(30 MHz to 4 GHz)

Dynamic $5 \mu W/g \text{ to > } 100 \text{ mW/g}$

Range Linearity: ±0.2 dB

Dimensions Overall length: 337 mm

Tip length 20 mm

Body diameter 12 mm

Tip diameter 3.9 mm

Distance from probe tip to sensor center 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Report No.: DRRFCC2509-0044

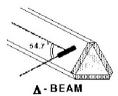


Figure E.2.1 Triangular Probe Configurations

Figure E.2.2 Probe Thick-Film Technique

DAE System

The SAR measurements were conducted with the dosimetric probe ES3DV3 designed in the classical triangular configuration(see E.2.1) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multitier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

E.3 E-Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ± 10 %. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Report No.: DRRFCC2509-0044

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent the remits or based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where: where:

 Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

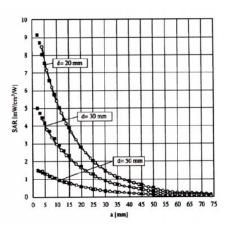


Figure E.3.1 E-Field and Temperature Measurements at 900MHz

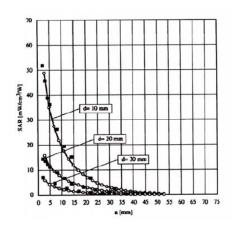


Figure E.3.2 E-Field and Temperature Measurements at 1 800MHz

FCC ID: CNMDWT410

E.4 Data Extrapolation

The DASY5 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below;

with
$$V_i = \text{compensated signal of channel i}$$
 $(i=x,y,z)$

$$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$

$$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$

$$cf = \text{crest factor of exciting field} \qquad (DASY parameter)$$

$$dcp_i = \text{diode compression point} \qquad (DASY parameter)$$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with $SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] $\rho = equivalent tissue density in g/cm^3$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{proc} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

E.5 ELI PHANTOM

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid.

Report No.: DRRFCC2509-0044

Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. (see Fig. F.5.1)

Figure E.5.1 ELI Phantom

ELI Phantom Specification

Shell Thickness (2.0 ± 0.2) mm (bottom plate)

Dimensions Major axis: 600 mm, Minor: 400 mm

Filling Volume Approx. 30 liters

E.6 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c, V5.0 or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure E.6.1 Mounting Device

E.7 Automated Test System Specifications

Positioner

Robot Stäubli Unimation Corp. Robot Model: TX90XL

Report No.: DRRFCC2509-0044

Repeatability 0.02 mm

No. of axis 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor Intel Core i7-3 770

Clock Speed 3.40 GHz

Operating System Windows 7 Professional DASY5 PC-Board

Data Converter

Features Signal, multiplexer, A/D converter. & control logic

Software DASY5

Connecting Lines Optical downlink for data and status info

Optical uplink for commands and clock

PC Interface Card

Function 24 bit (64 MHz) DSP for real time processing

Link to DAE 4

16 bit A/D converter for surface detection system

serial link to robot

direct emergency stop output for robot

E-Field Probes

Model ES3DV3 S/N: 3327

Construction Triangular core fiber optic detection system

Frequency 10 MHz – 4 GHz

Linearity ±0.2 dB (30 MHz to 4 GHz)

Phantom

Phantom ELI Phantom (V5.0)

Shell Material Composite **Thickness** (2.0 ± 0.2) mm

Figure E.7.1 DASY5 Test System