

Report No.: FR551331A

FCC RADIO TEST REPORT

FCC ID : CNFAMFR1

Equipment : Camera
Brand Name : GoPro
Model Name : AMLF1

Applicant : GoPro, Inc.

3025 Clearview Way San Mateo, CA

94402 United States of America

Manufacturer : GoPro, Inc.

3025 Clearview Way San Mateo, CA 94402 United States of America

Standard : FCC Part 15 Subpart C §15.247

The product was received on May 22, 2025 and testing was performed from May 28, 2025 to Jul. 19, 2025. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

Report Template No.: BU5-FR15CBT Version 2.4 Report Version

/ersion : 02

Table of Contents

Report No.: FR551331A

His	tory o	of this test report	3
Sui	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Output Power Measurement	10
	3.2	Radiated Band Edges and Spurious Emission Measurement	11
	3.3	AC Conducted Emission Measurement	16
	3.4	Antenna Requirements	18
4	List o	of Measuring Equipment	19
5	Meas	surement Uncertainty	22
Ap	endi	x A. Conducted Test Results	
Ap	endi	x B. AC Conducted Emission Test Result	
Ap	endi	x C. Radiated Spurious Emission Test Result	
Αp	endi	x D. Duty Cycle Plots	
Ap	endi	x E. Setup Photographs	

 TEL: 886-3-327-0868
 Page Number
 : 2 of 22

 FAX: 886-3-327-0855
 Issue Date
 : Jul. 31, 2025

History of this test report

Report No.: FR551331A

Report No.	Version	Description	Issue Date
FR551331A	01	Initial issue of report	Jul. 01, 2025
FR551331A	02	Add Antenna 2 test data This report is an updated version, replacing the report issued on Jul. 01, 2025.	Jul. 31, 2025

TEL: 886-3-327-0868 Page Number : 3 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

Summary of Test Result

Report No.: FR551331A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	Not Required	See Note
-	15.247(a)(1)	Hopping Channel Separation	Not Required	See Note
-	15.247(a)(1)	Dwell Time of Each Channel	Not Required	See Note
-	15.247(a)(1)	20dB Bandwidth	Not Required	See Note
-	2.1049	99% Occupied Bandwidth	Not Required	See Note
3.1	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	Not Required	See Note
-	15.247(d)	Conducted Spurious Emission	Not Required	See Note
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	-
3.3	15.207	AC Conducted Emission	Pass	-
3.4	15.203	Antenna Requirement	Pass	-

Note:

- 1. Not required means after assessing, test items are not necessary to carry out.
- This is a variant report which can be referred Product Equality Declaration. All the test cases were performed
 on original report which can be referred to Sporton Report Number FR3D2932A. Based on the original report,
 the test cases were verified.

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Lewis Ho

Report Producer: Freda Wu

TEL: 886-3-327-0868 Page Number : 4 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

General Specs

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac.

Antenna Type

Bluetooth: FPC Loop Antenna

Antenna information					
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	<ant. 1="">: 0.07 <ant. 2="">: -0.2</ant.></ant.>			

Report No.: FR551331A

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH22-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

TEL: 886-3-327-0868 Page Number : 5 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR551331A

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 6 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-0868 FAX: 886-3-327-0855

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 7 of 22 Issue Date : Jul. 31, 2025

Report No.: FR551331A

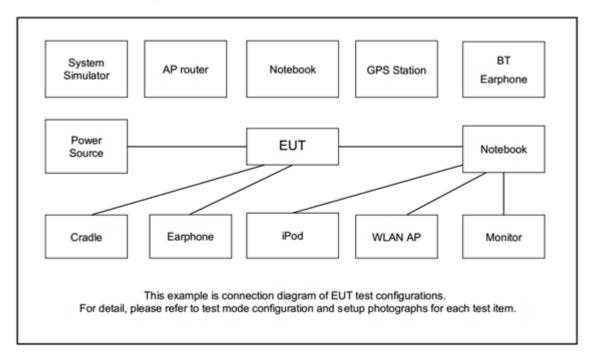
Report Version : 02

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

Report No.: FR551331A

b. AC power line Conducted Emission was tested under maximum output power.


	Test Cases						
AC	AC Mode 1 : BT TX + USB Cable + Adapter						
Conducted Mode 2: BLE TX + USB Cable + Adapter							
Emission Mode 3: WLAN TX + USB Cable + Adapter							

Remark:

- For Radiated Test Cases, the worst mode data rate 3Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. The worst case of Conducted Emission is mode 2; only the test data of it was reported.
- 3. For Radiated Test Cases, the tests were performed with USB cable option 1 (C-A).
- 4. The detailed Radiated test modes are shown in Appendix C.

TEL: 886-3-327-0868 Page Number : 8 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

2.3 Connection Diagram of Test System

Report No.: FR551331A

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	ASUS	PA-1100-01	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Tera Term Version 4.95" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-0868 Page Number : 9 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

3 Test Result

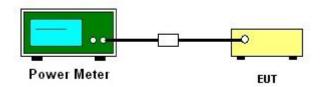
3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR551331A

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 10 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR551331A

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 11 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

3.2.3 Test Procedures

1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR551331A

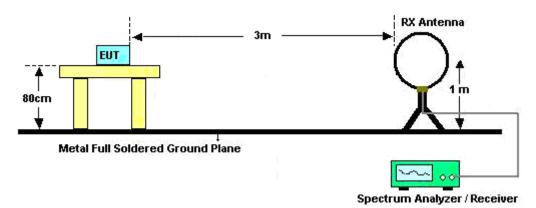
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

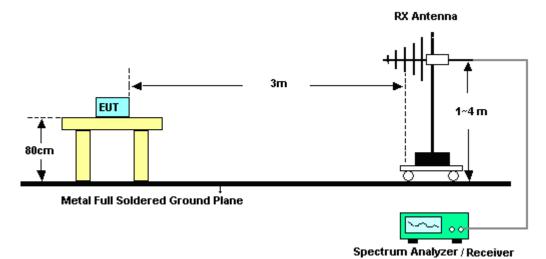
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

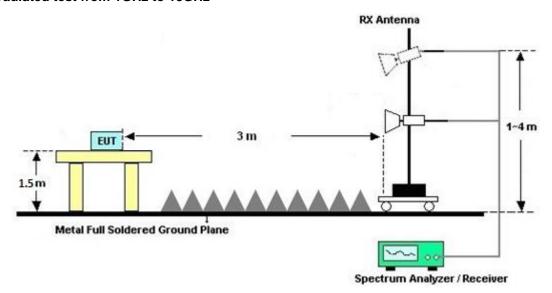

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

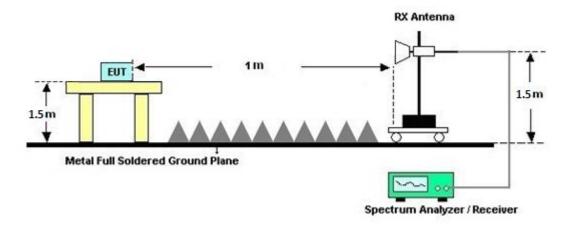
TEL: 886-3-327-0868 Page Number : 12 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025


3.2.4 Test Setup

For radiated test below 30MHz


Report No.: FR551331A

For radiated test from 30MHz to 1GHz


TEL: 886-3-327-0868 Page Number : 13 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

For radiated test from 1GHz to 18GHz

Report No.: FR551331A

For radiated test above 18GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

TEL: 886-3-327-0868 Page Number : 14 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

3.2.7 Duty Cycle

Please refer to Appendix D.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Report No.: FR551331A

Please refer to Appendix C.

TEL: 886-3-327-0868 Page Number : 15 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

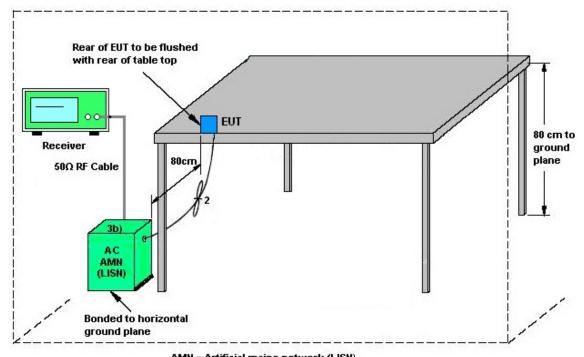
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR551331A

Frequency of emission (MHz)	Conducted limit (dBμV)			
Frequency of emission (winz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 9. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 10. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 11. All the support units are connecting to the other LISN.
- 12. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 13. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 14. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 15. The frequency range from 150 kHz to 30 MHz is scanned.
- 16. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 16 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

3.3.4 Test Setup

Report No.: FR551331A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 17 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

3.4 Antenna Requirements

3.4.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Report No.: FR551331A

3.4.2 Antenna Anti-Replacement Construction

Antenna permanently attached.

TEL: 886-3-327-0868 Page Number : 18 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9kHz~30MHz	Aug. 29, 2024	May 28, 2025~ Jun. 02, 2025	Aug. 28, 2025	Radiation (03CH22-HY)
Bilog Antenna with 6dB	TESEQ & WOKEN	CBL 6111D & 00802N1D-06	63304 & 002	30MHz~1GHz	Dec. 17, 2024	May 28, 2025~ Jun. 02, 2025	Dec. 16, 2025	Radiation (03CH22-HY)
Amplifier	SONOMA	310N	421581	N/A	Jul. 14, 2024	May 28, 2025~ Jun. 02, 2025	Jul. 13, 2025	Radiation (03CH22-HY)
Double Ridged Guide Horn Antenna	RFSPIN	DRH18-E	LE2C04A18EN	1GHz~18GHz	May 20, 2025	May 28, 2025~ Jun. 02, 2025	May 19, 2026	Radiation (03CH22-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1223	18GHz-40GHz	Jun. 24, 2024	May 28, 2025~ Jun. 02, 2025	Jun. 23, 2025	Radiation (03CH22-HY)
Amplifier	EMEC	EM01G18GA	060877	N/A	Sep. 27, 2024	May 28, 2025~ Jun. 02, 2025	Sep. 26, 2025	Radiation (03CH22-HY)
Preamplifier	EMEC	EM18G40G	060872	18-40GHz	Nov. 29, 2024	May 28, 2025~ Jun. 02, 2025	Nov. 28, 2025	Radiation (03CH22-HY)
Signal Analyzer	Keysight	N9010B	MY62170278	10Hz~44GHz	Sep. 24, 2024	May 28, 2025~ Jun. 02, 2025	Sep. 23, 2025	Radiation (03CH22-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Nov. 22, 2024	May 28, 2025~ Jun. 02, 2025	Nov. 21, 2025	Radiation (03CH22-HY)
Hygrometer	TECPEL	DTM-303A	TP211469	N/A	Dec. 24, 2024	May 28, 2025~ Jun. 02, 2025	Dec. 23, 2025	Radiation (03CH22-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	May 28, 2025~ Jun. 02, 2025	N/A	Radiation (03CH22-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	May 28, 2025~ Jun. 02, 2025	N/A	Radiation (03CH22-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	May 28, 2025~ Jun. 02, 2025	N/A	Radiation (03CH22-HY)
Software	Audix	E3	RK-002347	N/A	N/A	May 28, 2025~ Jun. 02, 2025	N/A	Radiation (03CH22-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9kHz~30MHz	Mar. 05, 2025	May 28, 2025~ Jun. 02, 2025	Mar. 04, 2026	Radiation (03CH22-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804390/2,8046 11/2,804615/2	N/A	Oct. 23, 2024	May 28, 2025~ Jun. 02, 2025	Oct. 22, 2025	Radiation (03CH22-HY)
RF Cable	HUBER + SUHNER/EM CI	SUCOFLEX 102/EMCI01Y- KM-KM-500/E MCI01Y-KM-K M-9000	804611/2,2409 14, 25043351,2504 3350	30MHz~40GHz	May 19, 2025	May 28, 2025~ Jun. 02, 2025	May 18, 2026	Radiation (03CH22-HY)

Report No.: FR551331A

TEL: 886-3-327-0868 Page Number : 19 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

FCC RADIO TEST REPORT Report No.: FR551331A

Instrument	Brand Name	Model No.	Serial No.	Characteristic s	Calibration Date	Test Date	Due Date	Remark
Double Ridged Guide Horn Antenna	RFSPIN	DRH18-E	LE2C04A18E N	1GHz~18GHz	May 20, 2025	Jul. 18, 2025~ Jul. 19, 2025	May 19, 2026	Radiation (03CH22-HY)
Amplifier	EMEC	EM01G18GA	060877	N/A	Sep. 27, 2024	Jul. 18, 2025~ Jul. 19, 2025	Sep. 26, 2025	Radiation (03CH22-HY)
Signal Analyzer	Keysight	N9010B	MY62170278	10Hz~44GHz	Sep. 24, 2024	Jul. 18, 2025~ Jul. 19, 2025	Sep. 23, 2025	Radiation (03CH22-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY53290053	3Hz~26.5GHz	Sep. 09, 2024	Jul. 18, 2025~ Jul. 19, 2025	Sep. 08, 2025	Radiation (03CH22-HY)
Hygrometer	TECPEL	DTM-303A	TP211469	N/A	Dec. 24, 2024	Jul. 18, 2025~ Jul. 19, 2025	Dec. 23, 2025	Radiation (03CH22-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Jul. 18, 2025~ Jul. 19, 2025	N/A	Radiation (03CH22-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jul. 18, 2025~ Jul. 19, 2025	N/A	Radiation (03CH22-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jul. 18, 2025~ Jul. 19, 2025	N/A	Radiation (03CH22-HY)
Software	Audix	E3	RK-002347	N/A	N/A	Jul. 18, 2025~ Jul. 19, 2025	N/A	Radiation (03CH22-HY)
RF Cable	HUBER + SUHNER/EM CI	SUCOFLEX 102/EMCI01Y- KM-KM-500/E MCI01Y-KM-K M-9000	804611/2,24 0914, 25043351,25 043350	30MHz~40GHz	May 19, 2025	Jul. 18, 2025~ Jul. 19, 2025	May 18, 2026	Radiation (03CH22-HY)

TEL: 886-3-327-0868 Page Number : 20 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 01, 2024	Jun. 04, 2025	Oct. 31, 2025	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Jul. 04, 2024	Jun. 04, 2025	Jul. 03, 2025	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Jul. 04, 2024	Jun. 04, 2025	Jul. 03, 2025	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV3044	101467	10HZ~44GHZ	Jan. 14, 2025	Jun. 04, 2025	Jan. 13, 2026	Conducted (TH05-HY)
Switch Control Mainframe	E-Instument	ETF-1405-0	EC1900157 (BOX6)	N/A	Feb. 10, 2025	Jun. 04, 2025	Feb. 09, 2026	Conducted (TH05-HY)
Software	Sporton	BTWIFI_Final _version_2405 13	N/A	Conducted Other Test Item	N/A	Jun. 04, 2025	N/A	Conducted (TH05-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Jun. 19, 2025	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Jun. 19, 2025	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 23, 2024	Jun. 19, 2025	Oct. 22, 2025	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 3, 2025	Jun. 19, 2025	Mar. 2, 2026	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 24, 2025	Jun. 19, 2025	Mar. 23, 2026	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 26, 2025	Jun. 19, 2025	Mar. 25, 2026	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 23, 2024	Jun. 19, 2025	Sep. 22, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI7	100724	9kHz~7GHz	Feb. 13, 2025	Jun. 19, 2025	Feb. 12, 2026	Conduction (CO07-HY)

Report No.: FR551331A

TEL: 886-3-327-0868 Page Number : 21 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

5 Measurement Uncertainty

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	3.7 dB
of 95% (U = 2Uc(y))	3.7 UB

Report No.: FR551331A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.6 dB	
of 95% (U = 2Uc(y))	6.6 dB	

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.2 dB	
of 95% (U = 2Uc(y))	5.2 dB	

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.VUB

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.7 dB
of 95% (U = 2Uc(y))	3.7 UB

TEL: 886-3-327-0868 Page Number : 22 of 22 FAX: 886-3-327-0855 Issue Date : Jul. 31, 2025

Report Number : FR551331A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	joseph hu	Temperature:	21~25	°C
Test Date:	2025/6/4	Relative Humidity:	51~54	%

<Ant. 1>

<u>TEST RESULTS DATA</u> Peak Power Table									
					can I owe				
DH	CH.	NTX	Peak Power	Power Limit	Test				
DII	OI I.	1117	(dBm)	(dBm)	Result				
	0	1	7.94	20.97	Pass				
DH1	39	1	8.25	20.97	Pass				
	78	1	7.96	20.97	Pass				
	0	1	9.24	20.97	Pass				
2DH1	39	1	8.95	20.97	Pass				
	78	1	8.55	20.97	Pass				
L	0	1	9.40	20.97	Pass				
3DH1	39	1	9.07	20.97	Pass				
	78	1	8.72	20.97	Pass				

TEST RESULTS DATA
Average Power Table
(Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	7.63	5.14
DH1	39	1	7.92	5.14
	78	1	7.50	5.14
	0	1	6.97	5.03
2DH1	39	1	6.74	5.03
	78	1	6.21	5.03
	0	1	7.03	5.02
3DH1	39	1	6.68	5.02
	78	1	6.29	5.02

Report Number : FR551331A

<Ant. 2>

TEST RESULTS DATA Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	7.94	20.97	Pass
DH1	39	1	8.25	20.97	Pass
	78	1	7.96	20.97	Pass
	0	1	9.24	20.97	Pass
2DH1	39	1	8.95	20.97	Pass
	78	1	8.55	20.97	Pass
	0	1	9.40	20.97	Pass
3DH1	39	1	9.07	20.97	Pass
	78	1	8.72	20.97	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	7.63	5.14
DH1	39	1	7.92	5.14
	78	78 1 7.50		5.14
	0	1	6.97	5.03
2DH1	39	1	6.74	5.03
	78	1	6.21	5.03
	0	1	7.03	5.02
3DH1	39	1	6.68	5.02
	78	1	6.29	5.02

Appendix B. AC Conducted Emission Test Results

Test Engineer :	Lavia Chung	Temperature :	22.9~25.3℃
	Louis Chung	Relative Humidity :	44.1~52%

Report No.: FR551331A

TEL: 886-3-327-0868 Page Number : B1 of B5

Report No. : FR551331A CO07-HY 2025/6/19

EUT Information


 Report NO :
 551331

 Test Mode :
 Mode 2

 Test Voltage :
 120Vac/60Hz

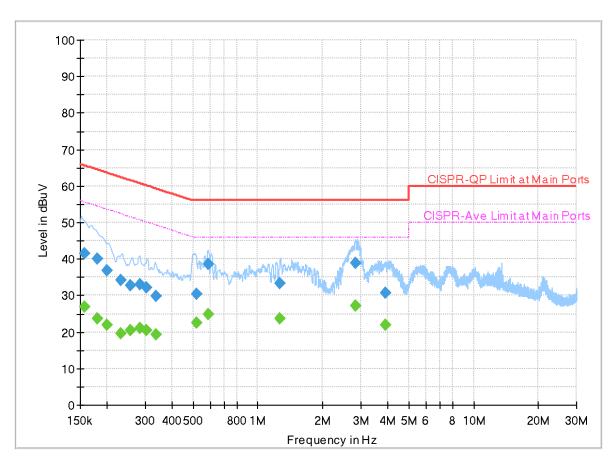
Phase: Line

Full Spectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	PE	Corr.
					Lille	, L	
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.153915		27.61	55.79	28.18	L1	FLO	20.0
0.153915	42.06		65.79	23.73	L1	FLO	20.0
0.169800		24.82	54.97	30.15	L1	FLO	20.0
0.169800	39.87		64.97	25.10	L1	FLO	20.0
0.198690		21.80	53.67	31.87	L1	FLO	20.0
0.198690	36.68		63.67	26.99	L1	FLO	20.0
0.248370		19.79	51.81	32.02	L1	FLO	20.0
0.248370	34.14		61.81	27.67	L1	FLO	20.0
0.326850		19.55	49.53	29.98	L1	FLO	20.0
0.326850	32.57		59.53	26.96	L1	FLO	20.0
0.504960		22.67	46.00	23.33	L1	FLO	20.0
0.504960	33.75		56.00	22.25	L1	FLO	20.0
1.191300		18.77	46.00	27.23	L1	FLO	20.0
1.191300	28.82		56.00	27.18	L1	FLO	20.0
1.275990		21.46	46.00	24.54	L1	FLO	20.0
1.275990	30.90		56.00	25.10	L1	FLO	20.0
2.892750		24.18	46.00	21.82	L1	FLO	20.1
2.892750	37.01		56.00	18.99	L1	FLO	20.1
4.054200		19.45	46.00	26.55	L1	FLO	20.1

Report No. : FR551331A CO07-HY 2025/6/19


ſ	4.054200	27.97	 56.00	28.03	L1	FLO	20.1

Report No. : FR551331A CO07-HY 2025/6/19

EUT Information

Report NO: 551331
Test Mode: Mode 2
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	PE	Corr. (dB)
0.156750		26.95	55.63	28.68	N	FLO	20.0
0.156750	41.42		65.63	24.21	N	FLO	20.0
0.179250		23.65	54.52	30.87	N	FLO	20.0
0.179250	39.95		64.52	24.57	N	FLO	20.0
0.199500		21.89	53.63	31.74	N	FLO	20.0
0.199500	36.75		63.63	26.88	N	FLO	20.0
0.231000		19.71	52.41	32.70	N	FLO	20.0
0.231000	34.31		62.41	28.10	N	FLO	20.0
0.256920		20.43	51.53	31.10	N	FLO	20.0
0.256920	32.88		61.53	28.65	N	FLO	20.0
0.284010		20.98	50.70	29.72	N	FLO	20.0
0.284010	32.90		60.70	27.80	N	FLO	20.0
0.303000		20.47	50.16	29.69	N	FLO	20.0
0.303000	32.05		60.16	28.11	N	FLO	20.0
0.338370		19.19	49.24	30.05	N	FLO	20.0
0.338370	29.83		59.24	29.41	N	FLO	20.0
0.519000		22.47	46.00	23.53	N	FLO	20.0
0.519000	30.47		56.00	25.53	N	FLO	20.0
0.588030		24.98	46.00	21.02	N	FLO	20.0

Report No. : FR551331A 2025/6/19 CO07-HY

0.588030	38.49		56.00	17.51	N	FLO	20.0
1.266360		23.54	46.00	22.46	N	FLO	20.0
1.266360	33.42		56.00	22.58	N	FLO	20.0
2.840910		27.08	46.00	18.92	N	FLO	20.1
2.840910	39.01		56.00	16.99	N	FLO	20.1
3.902280		21.84	46.00	24.16	N	FLO	20.1
3.902280	30.73		56.00	25.27	N	FLO	20.1

Appendix C. Radiated Spurious Emission Test Data

Test Engineer :	Ken Kuo and York Huang	Relative Humidity(%):	58.7~63.5
	Ken Kuo and Tolk Huang	Temperature(°C):	19.9~23.5

Report No.: FR551331A

Note symbol

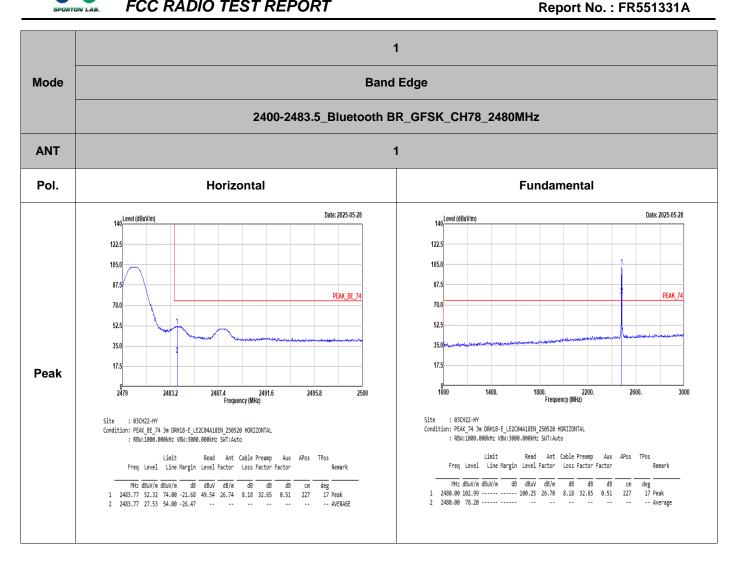
-L	Low channel location
-R	High channel location

<Ant. 1>

C1-1. Radiated Spurious Emission Test Modes

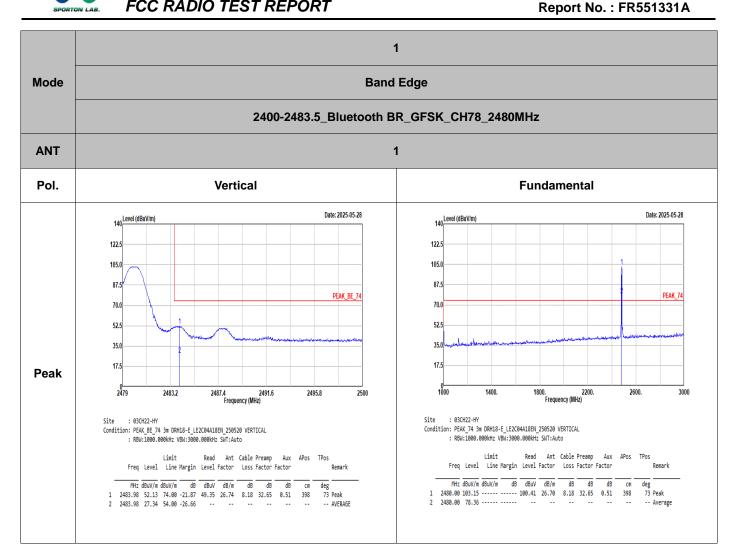
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	3Mbps	-	-
Mode 2	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	3Mbps	-	LF
Mode 3	2400-2483.5	1	Bluetooth BR_GFSK	78	2480	3Mbps	-	SHF

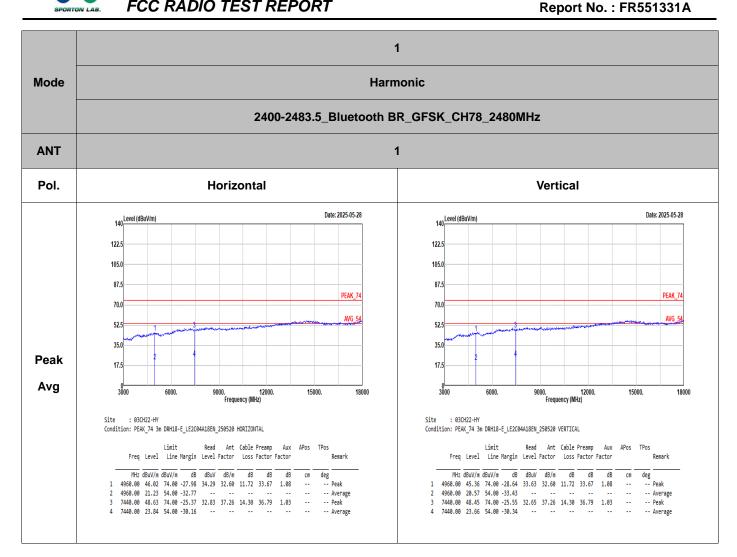
TEL: 886-3-327-0868 Page Number : C1-1 of 8


C1-2. Summary of each worse mode

Mode	Modulation	Ch.	Freq.	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	RU	Remark
	Bluetooth BR_GFSK	78	2483.77	52.32	74.00	-21.68	Н	Peak	Pass	-	Band Edge
1	Bluetooth BR_GFSK	78	7440.00	48.63	74.00	-25.37	Н	Peak	Pass	-	Harmonic
2	Bluetooth BR_GFSK	78	180.35	39.69	43.50	-3.81	Н	QP	Pass	-	LF
3	Bluetooth BR_GFSK	78	23670.53	38.75	74.00	-35.25	V	Peak	Pass	-	SHF

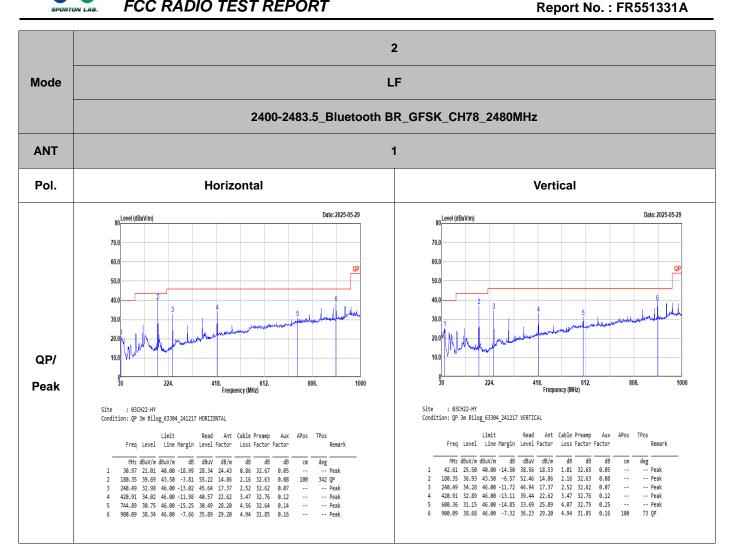
Report No.: FR551331A


TEL: 886-3-327-0868 Page Number : C1-2 of 8


TEL: 886-3-327-0868 Page Number : C1-3 of 8

TEL: 886-3-327-0868 Page Number : C1-4 of 8

TEL: 886-3-327-0868 Page Number : C1-5 of 8



1 Mode **Harmonic** 2400-2483.5_Bluetooth BR_GFSK_CH78_2480MHz ANT 1 Pol. Horizontal Vertical 140 Level (dBuV/m) 140_Level (dBuV/m) Date: 2025-05-28 Date: 2025-05-28 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 10.6G AVG_54 AVG_54 52.5 52.5 ~18G 35.0 35.0 Avg 17.5 17.5 10600 10600 13560. 15040. Frequency (MHz) 16520. 18000 12080. 18000 12080. 15040. 16520. Frequency (MHz) Site : 03CH22-HY Condition: AV6_54 3m DRH18-E_LE2C04A18EN_250520 HORIZONTAL Site : 03CH22-HY Condition: AVG_54 3m DRH18-E_LE2C04A18EN_250520 VERTICAL

Report No.: FR551331A

TEL: 886-3-327-0868 Page Number : C1-6 of 8

TEL: 886-3-327-0868 Page Number : C1-7 of 8

3 Mode SHF 2400-2483.5_Bluetooth BR_GFSK_CH78_2480MHz ANT 1 Pol. Horizontal Vertical 140 Level (dBuV/m) Date: 2025-05-29 Date: 2025-05-29 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 52.5 52.5 **Peak** 17.5 17.5 18000 18000 20800. 22200. Frequency (MHz) 23600. 20800. 22200. Frequency (MHz) 19400. 25000 19400. 23600. 25000 Site : 03CH22-HY Condition: PEAK_74 1m SHF_1223_240624 VERTICAL Site : 03CH22-HY Condition: PEAK_74 1m SHF_1223_240624 HORIZONTAL Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB dB cm deg
1 24732.78 38.67 74.00 -35.33 42.59 39.37 26.56 60.31 -9.54 -- -- PEAK | MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB dB cm deg | 1 23670.53 38.75 74.00 -35.25 43.72 38.90 25.87 60.20 -9.54 -- -- PEAK

Report No.: FR551331A

TEL: 886-3-327-0868 Page Number : C1-8 of 8

<Ant. 2>

C2-1. Radiated Spurious Emission Test Modes

Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	RU	Remark
Mode 1	2400-2483.5	2	Bluetooth-LE GSFK	39	2480	1Mbps	-	-

Report No.: FR551331A

C2-2. Summary of each worse mode

Mode	Modulation	Ch.	Freq.	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	RU	Remark
1	Bluetooth-LE GSFK	39	2483.94	48.89	54.00	-5.11	V	Avg.	Pass	-	Band Edge
1	Bluetooth-LE GSFK	39	7440.00	38.85	54.00	-15.15	Н	Avg.	Pass	-	Harmonic

TEL: 886-3-327-0868 Page Number : C2-1 of 5

Band Edge Mode 2400-2483.5_Bluetooth-LE GSFK_CH39_2480MHz **ANT** 2 Pol. Horizontal **Fundamental** 140 Level (dBuV/m) Date: 2025-07-18 140 Level (dBuV/m) Date: 2025-07-18 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_BE_74 PEAK_74 70.0 70.0 52.5 35.0 35.0 17.5 17.5 Peak 2480 2488. Frequency (MHz) 1000 2484. 2496. 2500 1400. 1800. 2200. Frequency (MHz) 2600. 3000 : 03CH22-HY : 03CH22-HY Condition: PEAK_74 3m DRH18-E_LE2C04A18EN_250520 HORIZONTAL
: RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Condition: PEAK_BE_74 3m DRH18-E_LE2C04A18EN_250520 HORIZONTAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos
Freq Level Line Margin Level Factor Loss Factor Factor Remark Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor I | MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB dB cm deg | 1 2483.90 54.93 74.00 -19.07 43.20 26.74 8.18 32.65 9.46 204 11 Peak 140 Level (dBuV/m) Date: 2025-07-18 140 Level (dBuV/m) Date: 2025-07-18 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 AVG_BE_54 AVG_54 52.5 52.5 35.0 35.0 17.5 17.5 Avg 1000 2480 2484. 2488. 2492. Frequency (MHz) 2496. 2500 1400. 1800. 2200. Frequency (MHz) 3000 Site : 03CH22-HY : 03CH22-HY Condition: AVG_54 3m DRH18-E_LE2C04A18EN_250520 HORIZONTAL : RBN:1000.000kHz VBN:0.510kHz SNT:Auto Condition: AVG BE 54 3m DRH18-E LE2C04A18EN 250520 HORIZONTAL : RBW:1000.000kHz VBW:0.510kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark | MHz dBuW/m dBuW/m dB dB dB dB cm deg | 1 2483,94 48.77 54.00 -5.23 37.04 26.74 8.18 32.65 9.46 204 11 Average | MHI dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg | 1 2480.00 103.25 ----- 91.54 26.70 8.18 32.65 9.46 204 11 Average

Report No.: FR551331A

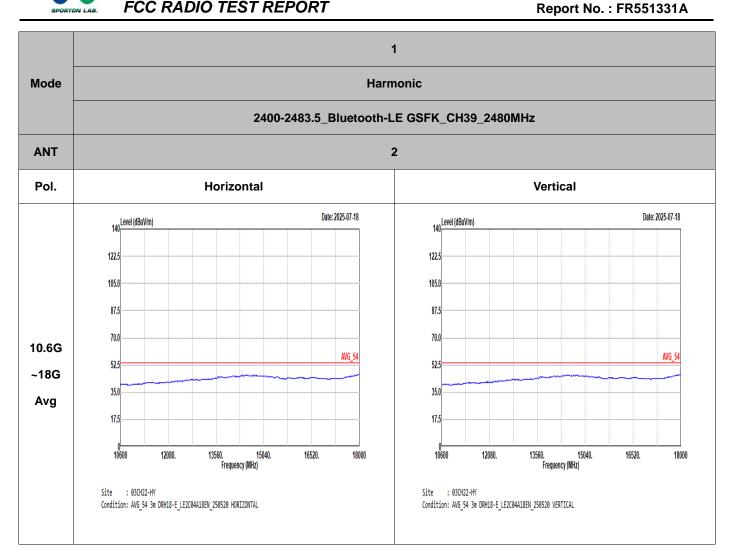
TEL: 886-3-327-0868 Page Number : C2-2 of 5

Band Edge Mode 2400-2483.5_Bluetooth-LE GSFK_CH39_2480MHz **ANT** 2 Pol. Vertical **Fundamental** 140 Level (dBuV/m) Date: 2025-07-18 140 Level (dBuV/m) Date: 2025-07-18 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_BE_74 PEAK_74 70.0 70.0 52.5 35.0 35.0 17.5 17.5 Peak 2480 2488. Frequency (MHz) 1000 1800. Frequency (MHz) 2484. 2496. 2500 1400. 2600. 3000 : 03CH22-HY : 03CH22-HY Condition: PEAK_74 3m DRH18-E_LE2C04A18EN_250520 VERTICAL
: RBW:1000.000kHz VBW:3000.000kHz SNT:Auto Condition: PEAK_BE_74 3m DRH18-E_LE2C04A18EN_250520 VERTICAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos
Freq Level Line Margin Level Factor Loss Factor Factor Remark Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor R | MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB dB cm deg | 1 2483.70 55.38 74.00 -18.62 43.65 26.74 8.18 32.65 9.46 399 83 Peak
 //Hz
 dBuV/m
 dB uV/m
 dB
 dBuV
 dB/m
 dB
 dB
 dB
 dB
 cm
 deg

 1
 2480.00 104.33
 92.64
 26.70
 8.18
 32.65
 9.46
 399
 83 Peak
 140 Level (dBuV/m) Date: 2025-07-18 140 Level (dBuV/m) Date: 2025-07-18 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 AVG_BE_54 AVG_54 52.5 52.5 35.0 35.0 17.5 17.5 Avg Frequency (MHz) 1000 2480 2484. 2496. 2500 1400. 1800. 2200. Frequency (MHz) 2600. 3000 Site : 03CH22-HY : 03CH22-HY Condition: AVG_54 3m DRH18-E_LE2C04A18EN_250520 VERTICAL : RBW:1000.000kHz VBW:0.510kHz SWT:Auto Condition: AVG BE 54 3m DRH18-E LE2C04A18EN 250520 VERTICAL : RBW:1000.000kHz VBW:0.510kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark | MHz dBuW/m dBuW/m dB dB dB dB cm deg | 1 2483,94 48.89 54.00 -5.11 37.16 26.74 8.18 32.65 9.46 399 83 Average

Report No.: FR551331A

TEL: 886-3-327-0868 Page Number : C2-3 of 5



Mode **Harmonic** 2400-2483.5_Bluetooth-LE GSFK_CH39_2480MHz **ANT** 2 Pol. Horizontal Vertical Date: 2025-07-18 140 Level (dBuV/m) 140 Level (dBuV/m) Date: 2025-07-18 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 **Peak** 17.5 17.5 Avg 0<u></u> 3000 3000 6000. 9000. 12000. Frequency (MHz) 15000. 18000 6000. 9000. 12000. Frequency (MHz) 15000. 18000 Site : 03CH22-HY Condition: PEAK_74 3m DRH18-E_LE2C04A18EN_250520 VERTICAL Site : 03CH22-HY Condition: PEAK_74 3m DRH18-E_LE2C04A18EN_250520 HORIZONTAL Limit Read Ant Cable Preamp Aux APos TPos
Freq Level Line Margin Level Factor Loss Factor Factor Remark Limit Read Ant Cable Preamp Aux APos TPos
Freq Level Line Margin Level Factor Loss Factor Factor Remark

Report No.: FR551331A

TEL: 886-3-327-0868 Page Number : C2-4 of 5

TEL: 886-3-327-0868 : C2-5 of 5 Page Number

Appendix D. Duty Cycle Plots

<Ant. 1>

Report No.: FR551331A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

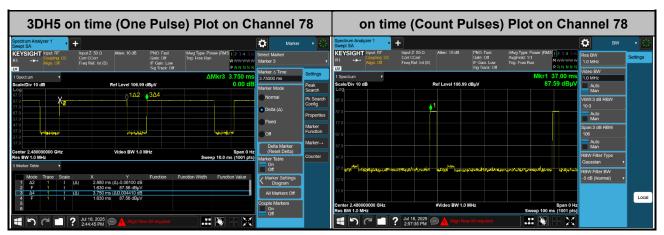
Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

$$2.88 \text{ ms x } 20 \text{ channels} = 57.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:


$$2.88 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$

TEL: 886-3-327-0868 Page Number : D1 of D2

<Ant. 2>

Report No.: FR551331A

Note:

- 4. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 5. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 6. **3DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

$$2.88 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$

TEL: 886-3-327-0868 Page Number : D2 of D2