Spacelabs Medical

91343-09 and 91347-09

July 10, 2006

Report No. SPAC0415 Rev. 1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2006 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: July 10, 2006 Spacelabs Medical Models: 91343-09 and 91347-09

Emissions						
Test Description	Specification	Test Method	Pass	Fail		
Field Strength of Fundamental	FCC 95.1115(a):2004	TIA/EIA-603-B:2001				
Field Strength of Spurious Emissions	FCC 95.1115(b):2004	TIA/EIA-603-B:2001				
Occupied Bandwidth	FCC 2.1049:2004	TIA/EIA-603-B:2001				
Frequency Stability	FCC 2.1055:2004	TIA/EIA-603-B:2001				
Conducted Output Power	FCC 95H:2005	TIA/EIA-603-B:2002				

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc.

22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Dean Ghizzone, President

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision	Description	Date	Page Number
Number	Description	Date	rage Number

01	Changed report number, and date on Cover Page, and Certificate of Test.	7/10/2006	Cover Page, 2
01	Added Conducted Output Power specification to Certificate of Test.	7/10/2006	2
01	Added Conducted Output Power to modification page.	7/10/2006	11
01	Added test description, test data, and photos for Conducted Output Power to report.	7/10/2006	43-47

Accreditations and Authorizations

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 89/336/EEC, ANSI C63.4, MIL-STD 461E, DO-160D and SAE J1113. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0401C.

TUV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

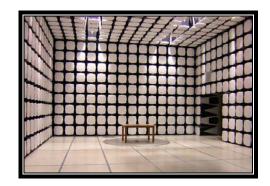
NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment, Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

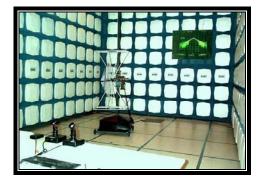
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071 and R-1025, Irvine: C-2094 and R-1943, Sultan: R-871, C-1784 and R-1761*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.


GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp



California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV10

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Product Description

Revision 10/3/03

Party Requesting the Test	
Company Name:	Spacelabs Medical
Address:	5150 220 th Ave SE
City, State, Zip:	Issaquah, WA 98029
Test Requested By:	Steve Cantwell
Model:	91343-09 and 91347-09
First Date of Test:	March 22, 2006
Last Date of Test:	March 31, 2006
Receipt Date of Samples:	February 22, 2006
Equipment Design Stage:	Production
Equipment Condition:	No visual damage.

Information Provided by the Party Requesting the Test

Clocks/Oscillators:	Not provided.				
I/O Ports:	91343-09: NiBP, SpO2, ECG (x5) 91347-09: ECG (x5)				

Functional Description of the EUT (Equipment Under Test):

Both of the EUTs are patient worn monitors. The devices are the same except the 91343-09 unit has an additional SpO2 board and different plastic packaging.

Client Justification for EUT Selection:

The products are representative production samples. For FCC part 95, tests were performed on both units to demonstrate compliance.

Client Justification for Test Selection:

These tests are required by our customers to satisfy FCC Part 95.

EUT Photo

Configurations

Revision 9/21/05

CONFIGURATION 1 SPAC0415

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Patient Worn Transmitter	Spacelabs Medical	91343-09	1343-000005				

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Shorting Bar	Spacelabs Medical	N/A	N/A			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Patient Leads (5 each)	No	1.0m	No	Patient Worn Transmitter	Shorting Bar	
SpO2	Yes	1.0m	No	Patient Worn Transmitter	Terminated	
NIBP	Yes	1.5m	No	Patient Worn Transmitter	Unterminated	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 2 SPAC0415

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Patient Worn Transmitter	Spacelabs Medical	91347-09	1347-000001				

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Shorting Bar	Spacelabs Medical	N/A	N/A			

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Patient Leads (5 each)	No	1.0m	No	Patient Worn Transmitter	Shorting Bar	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 3 SPAC0415

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Patient Worn Transmitter	Spacelabs Medical	91347-09	1347-000005			

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Shorting Bar	Spacelabs Medical	N/A	N/A		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Patient Leads (5 each)	No	1.0m	No	Patient Worn Transmitter	Shorting Bar
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 9/21/05

CONFIGURATION 4 SPAC0415

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Patient Worn Transmitter	Spacelabs Medical	91343-09	1343-000005

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Shorting Bar	Spacelabs Medical	N/A	N/A		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Patient Leads (5 each)	No	1.0m	No	Patient Worn Transmitter	Shorting Bar
SpO2	Yes	1.0m	No	Patient Worn Transmitter	Terminated
NIBP	Yes	1.5m	No	Patient Worn Transmitter	Unterminated
PA = Cable is perman	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.				

CONFIGURATION 5 SPAC0415

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Patient Worn Transmitter	Spacelabs Medical	91347-09	See comments			

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Shorting Bar	Spacelabs Medical	N/A	N/A		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Patient Leads (5 each)	No	1.0m	No	Patient Worn Transmitter	Shorting Bar
PA = Cable is permar	ently attach	ed to the device.	Shielding a	and/or presence of ferrite may be	unknown.

CONFIGURATION 6 SPAC0415

Software/Firmware Running during test	
Description	Version
Patient Monitoring System	Unknown

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Patient Worn Transmitter	Spacelabs Medical	91343-09	1343-000005			

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Shorting Bar	Spacelabs Medical	N/A	N/A		

Remote Equipment Outside of Test Setup Boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Patient Monitor	Spacelabs Medical	90369	369-119324			
DC Block	Aim	25-7901	Unknown			
V-Band Module (installed in Patient Monitor)	Spacelabs Medical	90478	478-142126			
Down Converter	Spacelabs Medical	Down Converter STD	N/A			

Configurations

Revision 9/21/05

Power Inserter	Unknown	Unknown	P10015012
Power Supply 1	Ault, Inc.	MW100	119-0251-01
Power Supply 2	Jerome Industries	WSL724	Unknown
Antenna	Spacelabs Medical	650-1381-01	N/A

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Patient Leads (5 each)	No	1.0m	No	Patient Worn Transmitter	Shorting Bar
SpO2	Yes	1.0m	No	Patient Worn Transmitter	Terminated
NIBP	Yes	1.5m	No	Patient Worn Transmitter	Unterminated
RG-59	Yes	200ft	No	Antenna	Down Converter
RG-59	Yes	100ft	No	Down Converter	Power inserter
RG-59	Yes	4ft	No	Power inserter	DC Block
F to BNC Adapter	Yes	0	No	DC Block	V-Band Module
DC	P/A	1.2m	No	Patient Monitor	Power Supply 1
DC	Yes	0.5m	No	Down Converter	Power Supply 2
AC	No	1.8m	No	Power Supply 1	AC Mains
AC	No	2.0m	No	Power Supply 2	AC Mains
PA = Cable is perm	anentiv atta	ched to the device	e. Shieldin	g and/or presence of ferrite may l	oe unknown.

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	3/22/2006	Field Strength of Spurious Emissions	Modified from delivered configuration. Initial or No Modification	Improved grounding on internal shielding on both units. Modification done by Steve Cantwell.	EUT remained at Northwest EMC following the test.	
2	3/27/2006	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	3/28/2006	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	3/29/2006	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	3/30/2006	Field Strength of the Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	3/31/2006	Field Strength of Spurious Emissions	Modified from delivered configuration. This Modification is in Addition to Previous Modifications.	This is not really an EMI modification. I removed the SpO2 board from the 91343-09. This effectively made the 91347-09 unit a 91347-09 unit, which was tested here. The boards are identical. Modification done by Holly Ashkannejhad.	EUT remained at Northwest EMC following the test.	
7	6/30/2006	Conducted Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

PSA 2006.03.15

Field Strength of Fundamental

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting low band, low channel 1395.05MHz Transmitting low band, high channel 1399.95MHz

Transmitting high band, low channel 1427.05MHz

Transmitting high band, high channel 1431.45MHz

DEVICES INVESTIGATED

91347-09

91343-09

POWER SETTINGS INVESTIGATED

9V Battery

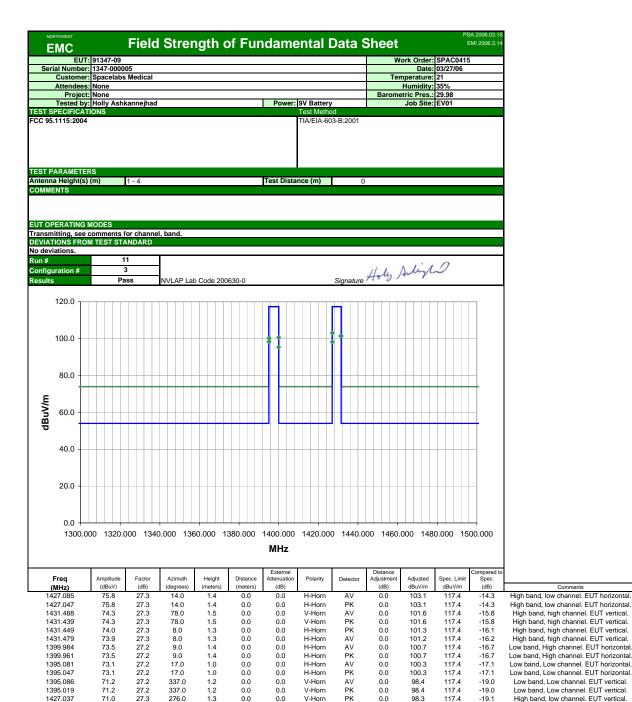
FREQUENCY RANGE INVESTIGATED

Start Frequency 1395MHz Stop Frequency 1432MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHC	8/30/2005	12
Spectrum Analyzer	Agilent	E4446A	AAQ	7/15/2005	12


MEASUREMENT BANDWIDTHS							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
	(MHz)	(kHz)	(kHz)	(kHz)			
	0.01 - 0.15	1.0	0.2	0.2			
	0.15 - 30.0	10.0	9.0	9.0			
	30.0 - 1000	100.0	120.0	120.0			
	Above 1000	1000.0	N/A	1000.0			
Me	Measurements were made using the bandwidths and detectors specified. No video filter was used.						

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel and the highest channel available in each band. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes.

27.2 27.2 27.3

27.3 27.2

71.2 71.0

70.9 68.2

68.2

1395.086

1395.019 1427.037

1427.080 1399.982

1399.953

337.0

337.0 276.0

276.0 277.0

277.0

0.0

0.0

0.0

0.0

0.0

0.0

V-Horn

V-Horn V-Horn

V-Horn V-Horn

V-Horn

AV AV

0.0

0.0

0.0

0.0

98.4

98.4 98.3

98.2 95.4

1.2

1.2

1.3

117.4

117.4 117.4

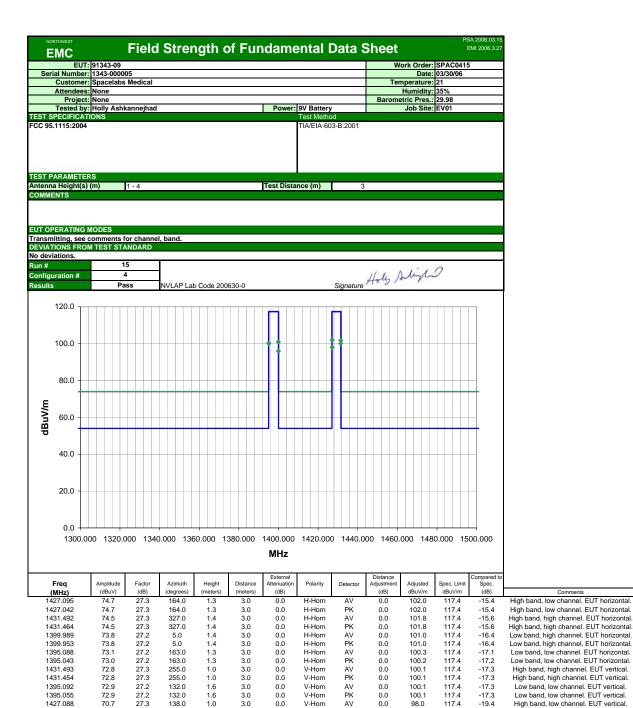
117.4 117.4

117.4

-19.0

-19.0 -19.1

-19.2 -22.0


-22.0

Low band, Low channel, EUT vertical.

Low band, Low channel. EUT vertical. High band, low channel, EUT vertical

High band, low channel. EUT vertical. Low band, High channel. EUT on side.

Low band, High channel. EUT on side.

1427.056 1399.995

1399.968

70.7 68.8

68.8

27.3 27.2 138.0 236.0

236.0

1.0

3.0

3.0

0.0

0.0

V-Horn V-Horn

V-Horn

0.0

0.0

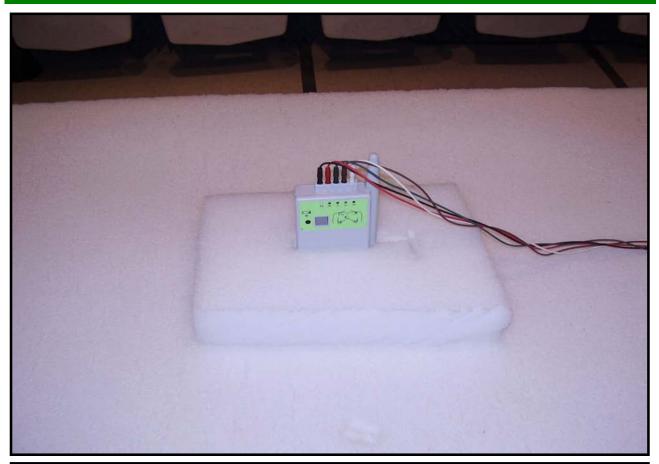
98.0 96.0

96.0

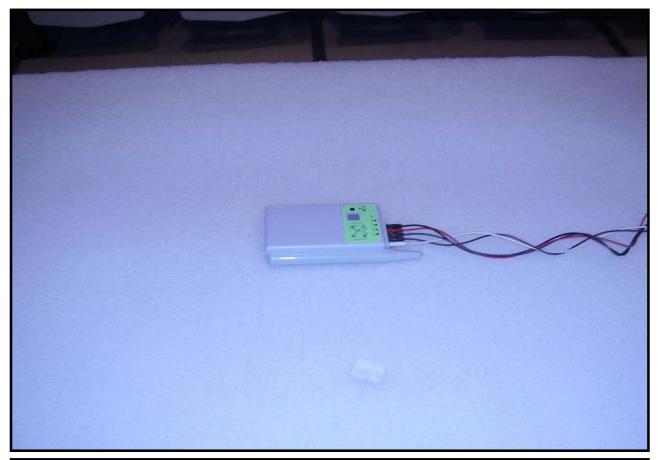
117.4 117.4

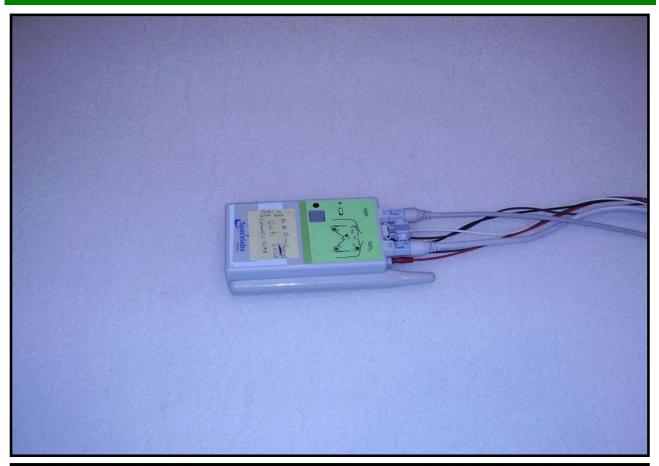

117.4

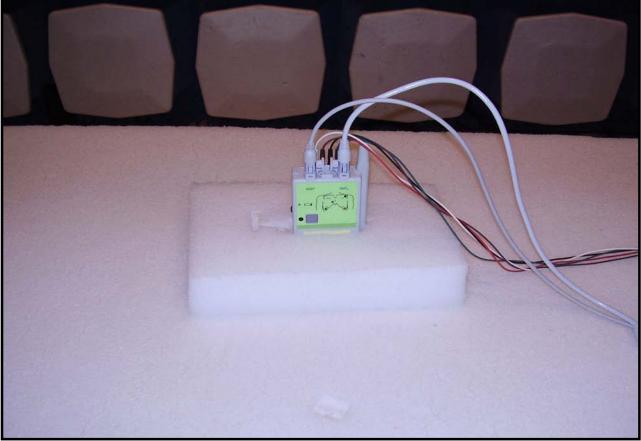
-19.4 -21.4

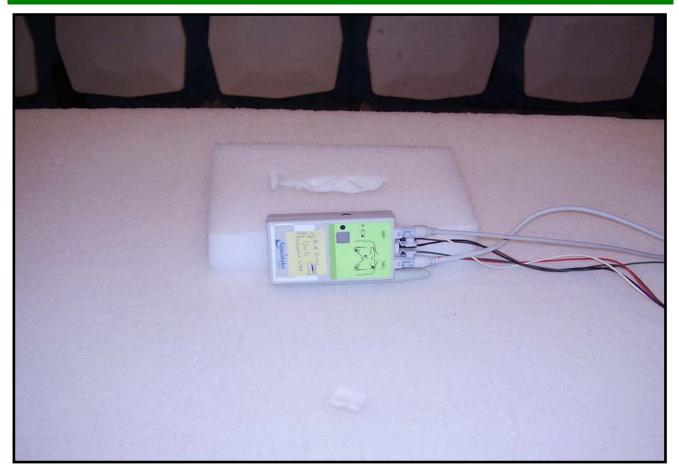

-21.4

High band, low channel. EUT vertical. Low band, high channel. EUT vertical.


Low band, high channel. EUT vertical.







Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Chamber Temp. & Humidity Controller	ESZ / Eurotherm	Dimension II	TBC	8/24/2005	12
Chamber, Temp./Humidity Chamber	Cincinnati Sub Zero (CSZ)	ZH-32-2-2-H/AC	TBA	8/24/2005	12
Multimeter	Tektronix	DMM912	MMH	12/8/2005	13
DC Power Supply	Topward	TPS-2000	TPD	NCR	0
Spectrum Analyzer	Hewlett-Packard	8593E	AAN	1/25/2006	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal. The EUT can only be battery operated, so a DC lab supply was used to vary the supply voltage up to 115% of 9V and down to the EUT's voltage end point.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30° to +50° C) and at 10°C intervals.

The antenna is integral to the EUT, so a radiated measurement was made using a spectrum analyzer and a near field probe. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

NORTHWEST		EDECHENOV	OTABILITY		XMit 2006.03.01
EMC		FREQUENCY	STABILITY		
EUT:	91343-09			Work Order:	SPAC0415
Serial Number:	1343-000005			Date:	03/29/06
Customer:	Spacelabs Medical			Temperature:	22°C
Attendees:	None			Humidity:	33%
Project:				Barometric Pres.:	29.78
	Rod Peloquin		Power: 9V Battery	Job Site:	EV06 &EV09
TEST SPECIFICATION	ONS		Test Method		
FCC 2.1055 Frequei	ncy Stability 2004		TIA/EIA-603 1998		
COMMENTS					
DEVIATIONS FROM	I TEST STANDARD				
Configuration #	3	Rocky les Signature	Releng		

Modes of Operation and Test Conditions	Value	Limit	Result
Low Channel, 1395-1400MHz Band	0.82 ppm	In Band	Pass
High Channel, 1395-1400MHz Band	0.88 ppm	In Band	Pass
Low Channel, 1427-1429.5MHz Band	0.36 ppm	In Band	Pass
High Channel, 1427-1429.5MHz Band	0.39 ppm	In Band	Pass

	Low Channel, 1395-1400MHz Band		
Result: Pass	Value: 0.82 ppm	Limit:	In Band

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 9VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	1395.050000	1395.051140	0.82	N/A
40	1395.050000	1395.050590	0.42	N/A
30	1395.050000	1395.050764	0.55	N/A
20	1395.050000	1395.050639	0.46	N/A
10	1395.050000	1395.050014	0.01	N/A
0	1395.050000	1395.050164	0.12	N/A
-10	1395.050000	1395.050014	0.01	N/A
-20	1395.050000	1395.049760	0.17	N/A
-30	1395.050000	1395.049801	0.14	N/A

Frequency Stability with Variation of Battery Voltage (Ambient Temperature = 22°C)

Voltage	Assigned Frequency	Measured Frequency	Tolerance	Specification
(VDC)	(MHz)	(MHz)	(ppm)	(ppm)
10.35 (115%)	1395.050000	1395.050752	0.54	N/A
9.9 (110%)	1395.050000	1395.050740	0.53	N/A
9.45 (105%)	1395.050000	1395.050765	0.55	N/A
9 (100%)	1395.050000	1395.050740	0.53	N/A
8.55 (95%)	1395.050000	1395.050740	0.53	N/A
8.1 (90%)	1395.050000	1395.050740	0.53	N/A
7.65 (85%)	1395.050000	1395.050752	0.54	N/A
5.3 (end point)	1395.050000	1395.050815	0.58	N/A

	High Channe	el, 1395-1400MHz Band		
Result: Pa	ass Value:	0.88 ppm	Limit:	In Band

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 9VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	1399.950000	1399.951230	0.88	N/A
40	1399.950000	1399.950707	0.51	N/A
30	1399.950000	1399.950720	0.51	N/A
20	1399.950000	1399.950067	0.05	N/A
10	1399.950000	1399.950012	0.01	N/A
0	1399.950000	1399.950024	0.02	N/A
-10	1399.950000	1399.949950	0.04	N/A
-20	1399.950000	1399.950087	0.06	N/A
-30	1399.950000	1399.949587	0.30	N/A

Frequency Stability with Variation of Battery Voltage (Ambient Temperature = 22°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
10.35 (115%)	1399.950000	1399.950752	0.54	N/A
9.9 (110%)	1399.950000	1399.950737	0.53	N/A
9.45 (105%)	1399.950000	1399.950742	0.53	N/A
9 (100%)	1399.950000	1399.950812	0.58	N/A
8.55 (95%)	1399.950000	1399.950747	0.53	N/A
8.1 (90%)	1399.950000	1399.950807	0.58	N/A
7.65 (85%)	1399.950000	1399.950807	0.58	N/A
5.3 (end point)	1399.950000	1399.950802	0.57	N/A

	Low Channel, 1427-1429.5MHz Band		
Result: Pass	Value: 0.36 ppm	Limit:	In Band

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 9VDC)

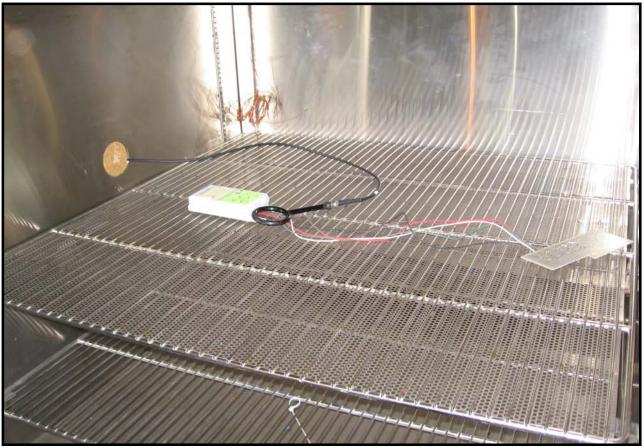
Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(ppm)	(ppm)
50	1427.050000	1427.050510	0.36	N/A
40	1427.050000	1427.050188	0.13	N/A
30	1427.050000	1427.050200	0.14	N/A
20	1427.050000	1427.050250	0.18	N/A
10	1427.050000	1427.050000	0.00	N/A
0	1427.050000	1427.049987	0.01	N/A
-10	1427.050000	1427.049987	0.01	N/A
-20	1427.050000	1427.049975	0.02	N/A
-30	1427.050000	1427.050125	0.09	N/A

Frequency Stability with Variation of Battery Voltage (Ambient Temperature = 22°C)

Voltage	Assigned Frequency	Measured Frequency	Tolerance	Specification
(VDC)	(MHz)	(MHz)	(ppm)	(ppm)
10.35 (115%)	1427.050000	1427.050330	0.23	N/A
9.9 (110%)	1427.050000	1427.050330	0.23	N/A
9.45 (105%)	1427.050000	1427.050330	0.23	N/A
9 (100%)	1427.050000	1427.050300	0.21	N/A
8.55 (95%)	1427.050000	1427.050280	0.20	N/A
8.1 (90%)	1427.050000	1427.050280	0.20	N/A
7.65 (85%)	1427.050000	1427.050250	0.18	N/A
5.3 (end point)	1427.050000	1427.050130	0.09	N/A

	High Channel, 1427-1429.5MHz Band		
Result: Pass	Value: 0.39 ppm	Limit:	In Band

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 9VDC)


Temp (°C)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)
50	1431.450000	1431.450560	0.39	N/A
40	1431.450000	1431.450188	0.13	N/A
30	1431.450000	1431.450163	0.11	N/A
20	1431.450000	1431.450188	0.13	N/A
10	1431.450000	1431.449997	0.00	N/A
0	1431.450000	1431.449885	0.08	N/A
-10	1431.450000	1431.449910	0.06	N/A
-20	1431.450000	1431.449735	0.19	N/A
-30	1431.450000	1431.449023	0.68	N/A

Frequency Stability with Variation of Battery Voltage (Ambient Temperature = 22°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (ppm)	Specification (ppm)	
10.35 (115%)	1431.450000	1431.450290	0.20	N/A	
9.9 (110%)	1431.450000	1431.450260	0.18	N/A	
9.45 (105%)	1431.450000	1431.450260	0.18	N/A	
9 (100%)	1431.450000	1431.450260	0.18	N/A	
8.55 (95%)	1431.450000	1431.450260	0.18	N/A	
8.1 (90%)	1431.450000	1431.450260	0.18	N/A	
7.65 (85%)	1431.450000	1431.450260	0.18	N/A	
5.3 (end point)	1431.450000	1431.450110	0.08	N/A	

PSA 2006.03.15

EMC

Field Strength of Spurious Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting low channel, 1395.05MHz, low band.

Transmitting high channel, 1399.95MHz, low band

Transmitting low channel, 1427.05MHz, high band.

Transmitting high channel, 1431.45MHz, high band.

POWER SETTINGS INVESTIGATED

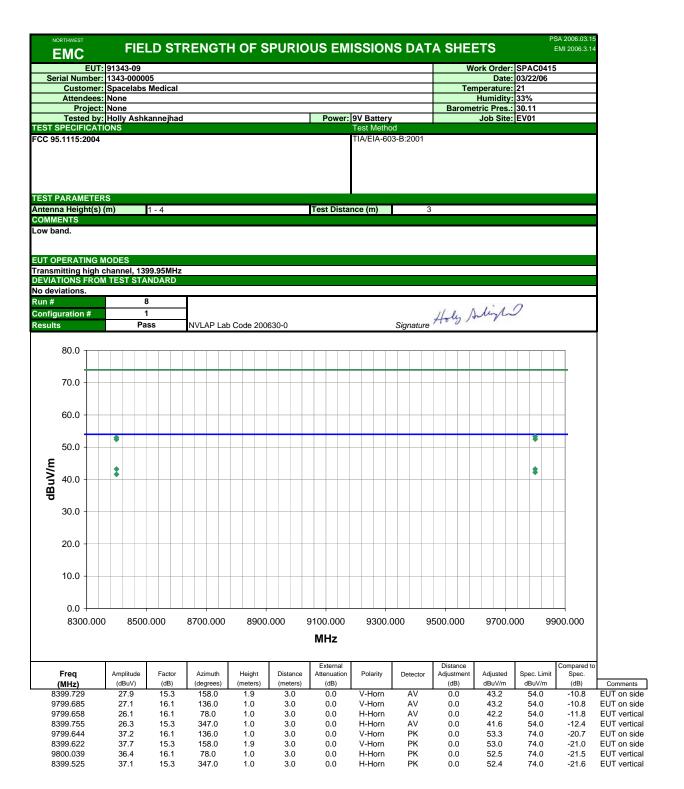
9V Battery

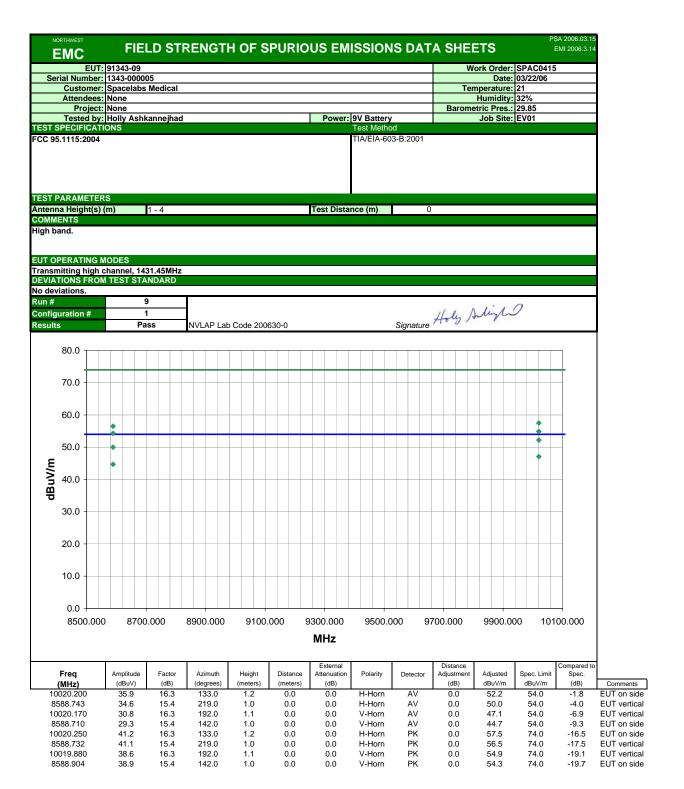
FREQUENCY RANGE IN\	/ESTIGATED		
Start Eraguanay	30MHz	Stop Eroguepov	15GHz

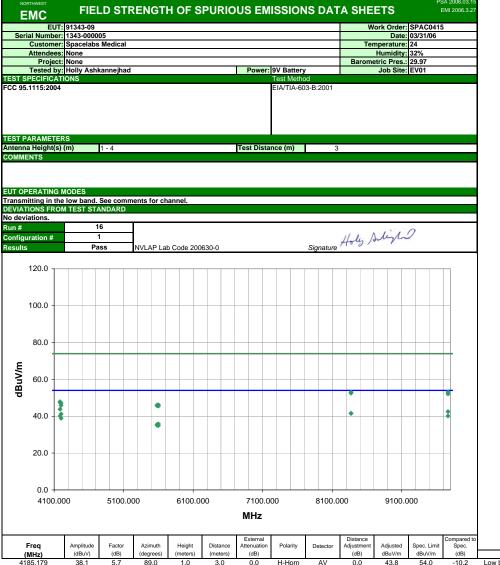
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	9/28/2005	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	3/9/2005	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	8/2/2005	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	1/4/2006	13
Antenna, Horn	EMCO	3115	AHC	8/30/2005	12
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
Spectrum Analyzer	Agilent	E4446A	AAQ	7/15/2005	12

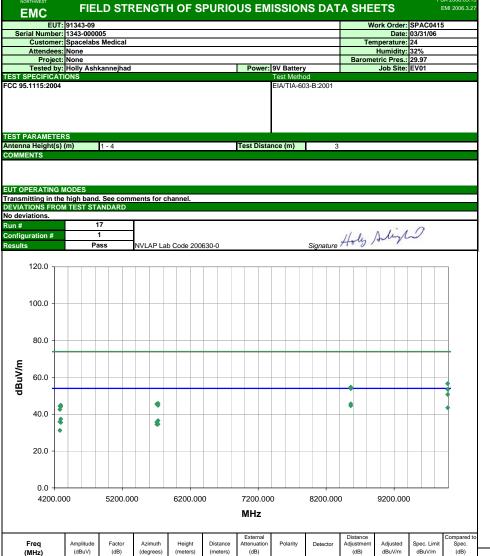

MEASUREMENT BANDWIDTHS									
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data					
	(MHz)	(kHz)	(kHz)	(kHz)					
	0.01 - 0.15	1.0	0.2	0.2					
	0.15 - 30.0	10.0	9.0	9.0					
	30.0 - 1000	100.0	120.0	120.0					
	Above 1000	1000.0	N/A	1000.0					
	Measurements were made using the bandwidths and detectors specified. No video filter was used.								


MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

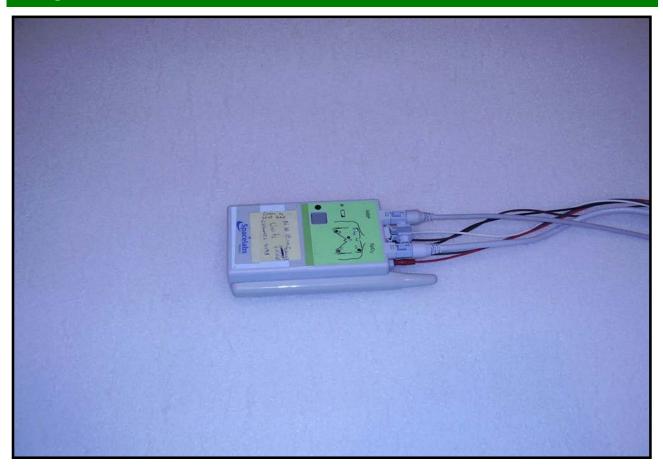
TEST DESCRIPTION

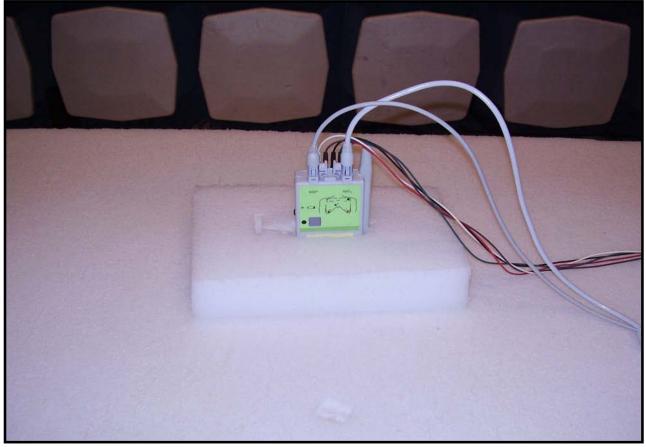
The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low and high channels in both frequency bands. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.



						External			Distance			Compared to
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
4185.179	38.1	5.7	89.0	1.0	3.0	0.0	H-Horn	AV	0.0	43.8	54.0	-10.2
9765.364	26.4	16.1	30.0	1.0	3.0	0.0	V-Horn	AV	0.0	42.5	54.0	-11.5
8370.291	26.4	15.2	109.0	1.0	3.0	0.0	H-Horn	AV	0.0	41.6	54.0	-12.4
8370.325	26.3	15.2	134.0	1.7	3.0	0.0	V-Horn	AV	0.0	41.5	54.0	-12.5
4199.869	35.5	5.7	215.0	1.1	3.0	0.0	V-Horn	AV	0.0	41.2	54.0	-12.8
4185.171	34.4	5.7	305.0	1.0	3.0	0.0	V-Horn	AV	0.0	40.1	54.0	-13.9
9765.418	24.0	16.1	13.0	1.0	3.0	0.0	H-Horn	AV	0.0	40.1	54.0	-13.9
4199.865	33.2	5.7	142.0	1.0	3.0	0.0	H-Horn	AV	0.0	38.9	54.0	-15.1
5599.796	27.6	8.2	349.0	1.0	3.0	0.0	H-Horn	AV	0.0	35.8	54.0	-18.2
5580.221	27.3	8.2	140.0	1.0	3.0	0.0	H-Horn	AV	0.0	35.5	54.0	-18.5
5580.178	26.9	8.2	196.0	1.0	3.0	0.0	V-Horn	AV	0.0	35.1	54.0	-18.9
5599.773	26.7	8.2	46.0	1.0	3.0	0.0	V-Horn	AV	0.0	34.9	54.0	-19.1
9765.172	37.0	16.1	30.0	1.0	3.0	0.0	V-Horn	PK	0.0	53.1	74.0	-20.9
8370.117	37.8	15.2	134.0	1.7	3.0	0.0	V-Horn	PK	0.0	53.0	74.0	-21.0
8370.235	37.3	15.2	109.0	1.0	3.0	0.0	H-Horn	PK	0.0	52.5	74.0	-21.5
9765.833	36.0	16.1	13.0	1.0	3.0	0.0	H-Horn	PK	0.0	52.1	74.0	-21.9
4185.102	42.2	5.7	89.0	1.0	3.0	0.0	H-Horn	PK	0.0	47.9	74.0	-26.1
4185.260	41.7	5.7	305.0	1.0	3.0	0.0	V-Horn	PK	0.0	47.4	74.0	-26.6
4199.921	41.4	5.7	215.0	1.1	3.0	0.0	V-Horn	PK	0.0	47.1	74.0	-26.9
5599.952	38.0	8.2	349.0	1.0	3.0	0.0	H-Horn	PK	0.0	46.2	74.0	-27.8

Comments


Low band, low channel. EUT horizontal.
Low band, low channel. EUT vertical.
Low band, low channel. EUT horizontal.
Low band, low channel. EUT horizontal.
Low band, high channel. EUT horizontal.
Low band, high channel. EUT horizontal.
Low band, low channel. EUT horizontal.
Low band, low channel. EUT vertical.
Low band, ligh channel. EUT vertical.
Low band, ligh channel. EUT vertical.



						External			Distance			Compared t
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
9989.405	34.5	16.2	179.0	1.2	3.0	0.0	V-Horn	AV	0.0	50.7	54.0	-3.3
8562.321	30.3	15.3	277.0	1.0	3.0	0.0	H-Horn	AV	0.0	45.6	54.0	-8.4
8562.306	29.2	15.4	355.0	1.0	3.0	0.0	V-Horn	AV	0.0	44.6	54.0	-9.4
9989.343	27.3	16.2	66.0	1.0	3.0	0.0	H-Horn	AV	0.0	43.5	54.0	-10.5
4294.367	31.7	5.7	294.0	1.0	3.0	0.0	H-Horn	AV	0.0	37.4	54.0	-16.6
9988.674	40.4	16.2	179.0	1.2	3.0	0.0	V-Horn	PK	0.0	56.6	74.0	-17.4
5725.836	28.2	8.3	27.0	1.0	3.0	0.0	V-Horn	AV	0.0	36.5	54.0	-17.5
4281.185	30.2	5.7	35.0	1.2	3.0	0.0	V-Horn	AV	0.0	35.9	54.0	-18.1
5708.202	27.4	8.3	343.0	1.0	3.0	0.0	V-Horn	AV	0.0	35.7	54.0	-18.3
4294.370	29.8	5.7	218.0	1.0	3.0	0.0	V-Horn	AV	0.0	35.5	54.0	-18.5
8562.119	39.4	15.3	277.0	1.0	3.0	0.0	H-Horn	PK	0.0	54.7	74.0	-19.3
5725.861	26.3	8.3	269.0	1.0	3.0	0.0	H-Horn	AV	0.0	34.6	54.0	-19.4
5708.178	26.2	8.3	222.0	1.0	3.0	0.0	H-Horn	AV	0.0	34.5	54.0	-19.5
8563.033	38.6	15.3	355.0	1.0	3.0	0.0	V-Horn	PK	0.0	53.9	74.0	-20.1
9989.444	37.3	16.2	66.0	1.0	3.0	0.0	H-Horn	PK	0.0	53.5	74.0	-20.5
4281.089	25.5	5.7	158.0	1.1	3.0	0.0	H-Horn	AV	0.0	31.2	54.0	-22.8
5726.040	37.6	8.3	27.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.9	74.0	-28.1
5708.088	37.2	8.3	222.0	1.0	3.0	0.0	H-Horn	PK	0.0	45.5	74.0	-28.5
5708.431	37.2	8.3	343.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.5	74.0	-28.5
4294.313	39.2	5.7	294.0	1.0	3.0	0.0	H-Horn	PK	0.0	44.9	74.0	-29.1

Comments

High band, low channel. EUT vertical.
High band, low channel. EUT horizontal.
High band, high channel. EUT vertical.
High band, ligh channel. EUT vertical.
High band, low channel. EUT horizontal.
High band, high channel. EUT horizontal.
High band, low channel. EUT horizontal.
High band, high channel. EUT horizontal.
High band, low channel. EUT horizontal.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting low channel, 1395.05MHz, low band.

Transmitting high channel, 1399.95MHz, low band.

Transmitting low channel, 1427.05MHz, high band.

Transmitting high channel, 1431.45MHz, high band.

POWER SETTINGS INVESTIGATED

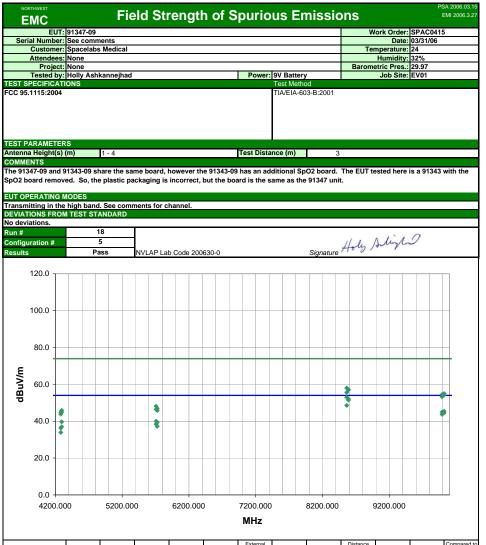
9V Battery

FREQUENCY RANGE INVESTIGATED							
ı	Start Frequency	30 MHz	Stop Frequency	15 GHz			

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

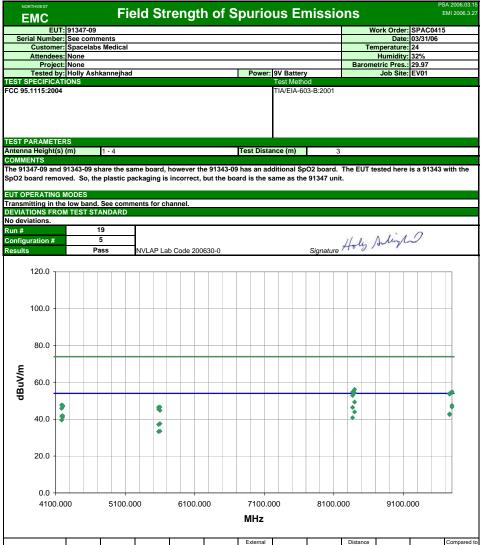
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	9/28/2005	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	3/9/2005	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	8/2/2005	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	1/4/2006	13
Antenna, Horn	EMCO	3115	AHC	8/30/2005	12
Antenna, Biconilog	EMCO	3141	AXE	12/28/2005	24
Spectrum Analyzer	Agilent	E4446A	AAQ	7/15/2005	12


MEASUREMENT BANDWIDTHS								
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
	(MHz)	(kHz)	(kHz)	(kHz)				
	0.01 - 0.15	1.0	0.2	0.2				
	0.15 - 30.0	10.0	9.0	9.0				
	30.0 - 1000	100.0	120.0	120.0				
	Above 1000	1000.0	N/A	1000.0				
	Measurements were made using	on the bandwidths and det	ectors specified No video filter	was used				

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION


The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low and high channels in both frequency bands. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

						External			Distance			Compared t
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
8562.352	37.7	15.3	17.0	1.0	3.0	0.0	V-Horn	AV	0.0	53.0	54.0	-1.0
8588.730	36.6	15.4	27.0	1.6	3.0	0.0	H-Horn	AV	0.0	52.0	54.0	-2.0
8588.732	36.1	15.4	173.0	1.2	3.0	0.0	V-Horn	AV	0.0	51.5	54.0	-2.5
8562.337	33.3	15.3	23.0	1.2	3.0	0.0	H-Horn	AV	0.0	48.6	54.0	-5.4
10020.180	29.1	16.3	220.0	1.6	3.0	0.0	V-Horn	AV	0.0	45.4	54.0	-8.6
9989.374	28.8	16.2	353.0	1.2	3.0	0.0	V-Horn	AV	0.0	45.0	54.0	-9.0
10020.170	28.2	16.3	42.0	1.0	3.0	0.0	H-Horn	AV	0.0	44.5	54.0	-9.5
9989.387	27.5	16.2	345.0	1.0	3.0	0.0	H-Horn	AV	0.0	43.7	54.0	-10.3
5708.251	31.7	8.3	180.0	1.0	3.0	0.0	V-Horn	AV	0.0	40.0	54.0	-14.0
4294.395	34.0	5.7	182.0	1.3	3.0	0.0	H-Horn	AV	0.0	39.7	54.0	-14.3
5725.836	31.1	8.3	162.0	1.5	3.0	0.0	H-Horn	AV	0.0	39.4	54.0	-14.6
5708.205	30.1	8.3	152.0	1.0	3.0	0.0	H-Horn	AV	0.0	38.4	54.0	-15.6
8562.373	42.7	15.3	17.0	1.0	3.0	0.0	V-Horn	PK	0.0	58.0	74.0	-16.0
5725.845	28.9	8.3	79.0	1.5	3.0	0.0	V-Horn	AV	0.0	37.2	54.0	-16.8
8588.534	41.8	15.4	27.0	1.6	3.0	0.0	H-Horn	PK	0.0	57.2	74.0	-16.8
4294.355	31.3	5.7	51.0	1.2	3.0	0.0	V-Horn	AV	0.0	37.0	54.0	-17.0
8588.409	41.6	15.4	173.0	1.2	3.0	0.0	V-Horn	PK	0.0	57.0	74.0	-17.0
4281.172	30.6	5.7	255.0	1.1	3.0	0.0	H-Horn	AV	0.0	36.3	54.0	-17.7
8562.169	40.3	15.3	23.0	1.2	3.0	0.0	H-Horn	PK	0.0	55.6	74.0	-18.4
10020.380	38.7	16.3	220.0	1.6	3.0	0.0	V-Horn	PK	0.0	55.0	74.0	-19.0

Comments

Low channel, high band. EUT vertical. High channel, high band. EUT vertical. High channel, high band. EUT vertical. High channel, high band. EUT vertical. Low channel, high band. EUT vertical. High channel, high band. EUT vertical. Low channel, high band. EUT vertical. Low channel, high band. EUT vertical. Low channel, high band. EUT vertical. High channel, high band. EUT vertical. Low channel, high band. EUT vertical. High channel, high band. EUT vertical. High channel, high band. EUT vertical. High channel, high band. EUT vertical.

_						External			Distance			Compared
Freq	Amplitude	Factor	Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
(MHz)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
8399.719	34.0	15.3	133.0	1.8	3.0	0.0	H-Horn	AV	0.0	49.3	54.0	-4.7
9799.664	31.4	16.1	172.0	1.0	3.0	0.0	V-Horn	AV	0.0	47.5	54.0	-6.5
9799.684	30.5	16.1	195.0	1.0	3.0	0.0	H-Horn	AV	0.0	46.6	54.0	-7.4
8370.322	31.2	15.2	316.0	1.6	3.0	0.0	H-Horn	AV	0.0	46.4	54.0	-7.6
8399.690	28.7	15.3	143.0	1.0	3.0	0.0	V-Horn	AV	0.0	44.0	54.0	-10.0
9765.383	26.8	16.1	7.0	1.3	3.0	0.0	V-Horn	AV	0.0	42.9	54.0	-11.1
9765.376	26.4	16.1	270.0	1.4	3.0	0.0	H-Horn	AV	0.0	42.5	54.0	-11.5
4199.869	36.2	5.7	208.0	1.1	3.0	0.0	V-Horn	AV	0.0	41.9	54.0	-12.1
4185.170	36.0	5.7	111.0	1.0	3.0	0.0	V-Horn	AV	0.0	41.7	54.0	-12.3
4199.885	35.4	5.7	75.0	1.0	3.0	0.0	H-Horn	AV	0.0	41.1	54.0	-12.9
8370.317	25.6	15.2	43.0	1.2	3.0	0.0	V-Horn	AV	0.0	40.8	54.0	-13.2
4185.197	33.8	5.7	333.0	1.0	3.0	0.0	H-Horn	AV	0.0	39.5	54.0	-14.5
5599.810	29.4	8.2	153.0	1.0	3.0	0.0	V-Horn	AV	0.0	37.6	54.0	-16.4
5580.200	28.9	8.2	25.0	1.0	3.0	0.0	V-Horn	AV	0.0	37.1	54.0	-16.9
8399.517	40.9	15.3	133.0	1.8	3.0	0.0	H-Horn	PK	0.0	56.2	74.0	-17.8
9799.460	38.8	16.1	172.0	1.0	3.0	0.0	V-Horn	PK	0.0	54.9	74.0	-19.1
8370.374	39.6	15.2	316.0	1.6	3.0	0.0	H-Horn	PK	0.0	54.8	74.0	-19.2
9799.586	38.3	16.1	195.0	1.0	3.0	0.0	H-Horn	PK	0.0	54.4	74.0	-19.6
8399.693	39.0	15.3	143.0	1.0	3.0	0.0	V-Horn	PK	0.0	54.3	74.0	-19.7
9764.354	37.8	16.1	270.0	1.4	3.0	0.0	H-Horn	PK	0.0	53.9	74.0	-20.1

Comments

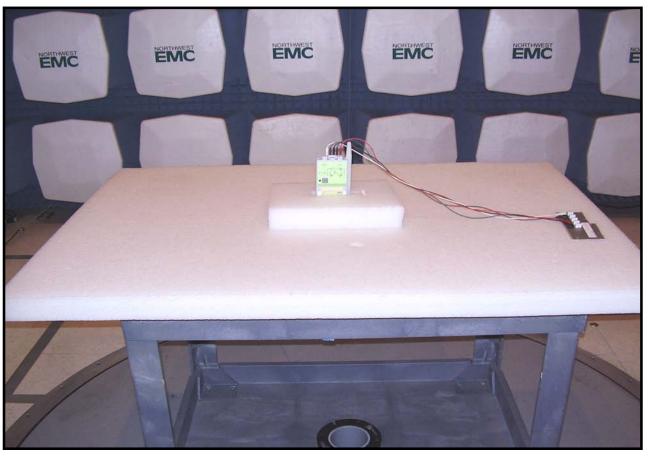
High channel, low band. EUT vertical.

High channel, low band. EUT vertical.

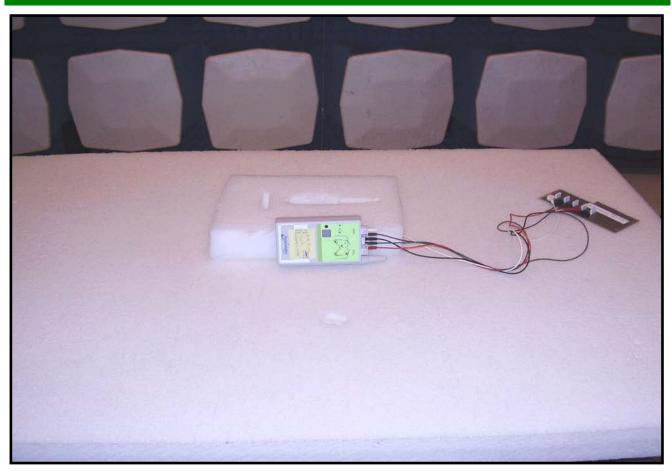
High channel, low band. EUT vertical.

Low channel, low band. EUT vertical.

Low channel, low band. EUT vertical.


Low channel, low band. EUT norizontal.

Low channel, low band. EUT norizontal.


Ligh channel, low band. EUT horizontal.

Low channel, low band. EUT vertical.

High channel, low band. EUT vertical.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT										
Description	Manufacturer	Model	ID	Last Cal.	Interval					
Spectrum Analyzer	Hewlett-Packard	8593E	AAN	1/25/2006	13					

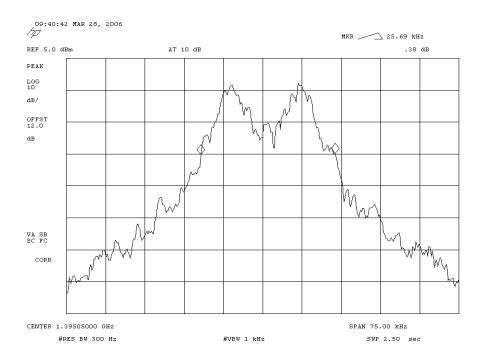
MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

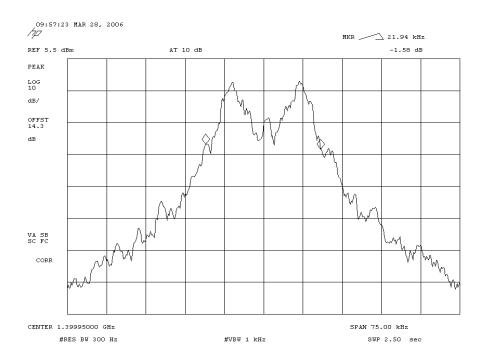
TEST DESCRIPTION

Per 47 CFR 2.1049, the 99% bandwidth was measured utilizing the analyzer's peak detector and measuring the carrier's 20 dB occupied bandwidth.

The antenna is integral to the EUT, so a radiated measurement was made using a spectrum analyzer and a near field probe. At 300Hz the spectrum analyzer's resolution bandwidth was sufficiently narrow to plot the actual bandwidth of the signal and not the filter response curve of the spectrum analyzer. The resolution bandwidth was >1% of the 20dB bandwidth and the video bandwidth was greater than or equal to the resolution bandwidth.

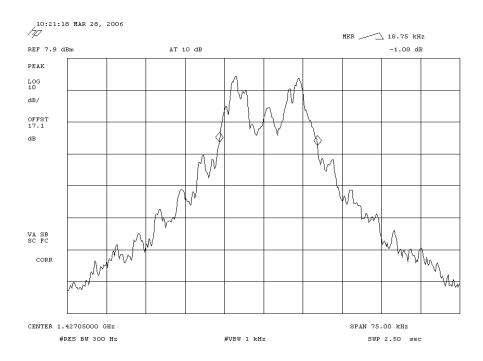

The occupied bandwidth was measured with the EUT configured for continuous modulated operation at the low and high channel of each of the operational bands.

NORTHWEST		COCURIER DAN	DWIDTH		XMit 2006.03.01
EMC		OCCUPIED BAN	IDWIDTH		
EUT:	91347-09			Work Order:	SPAC0415
Serial Number:	1347-000005			Date:	03/28/06
Customer:	Spacelabs Medical			Temperature:	22°C
Attendees:	None			Humidity:	33%
Project:				Barometric Pres.:	
	Rod Peloquin	Pow	er: 9V Battery	Job Site:	EV06
TEST SPECIFICATION	ONS		Test Method		
FCC 2.1049 Occupio	ed Bandwidth 2004		TIA/EIA-603-B 2001		
COMMENTS					
DEVIATIONS FROM	I TEST STANDARD				
Configuration #	3	Rocky le Re Signature	eleng		

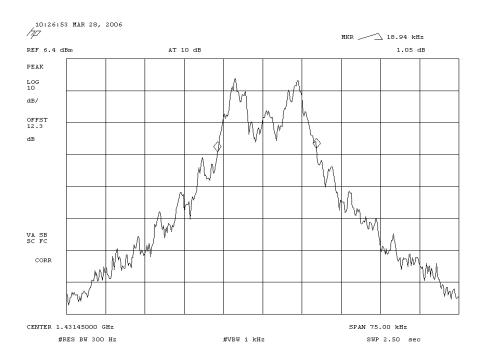

Modes of Operation and Test Conditions	Value	Limit	Result
Low Channel, 1395-1400MHz Band	25.7 kHz	N/A	Pass
High Channel, 1395-1400MHz Band	21.9 kHz	N/A	Pass
Low Channel, 1427-1429.5MHz Band	18.8 kHz	N/A	Pass
High Channel, 1427-1429.5MHz Band	18.9 kHz	N/A	Pass

Low Channel, 1395-1400MHz Band

Result: Pass Value: 25.7 kHz Limit: N/A



	High Channel, 1395-1400MHz Band		
Result: Pass	Value: 21.9 kHz	Limit:	N/A



Low Channel, 1427-1429.5MHz Band

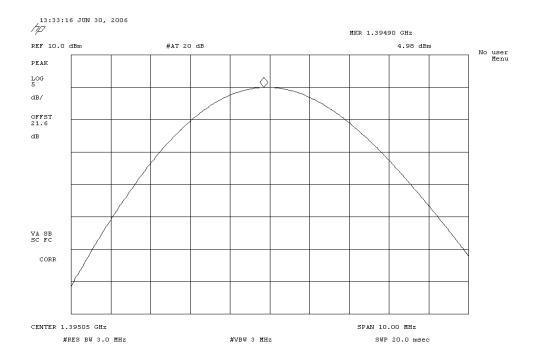
Result: Pass Value: 18.8 kHz Limit: N/A

	High Channel, 1427-1429.5MHz Bar	nd
Result: Pass	Value: 18.9 kHz	Limit: N/A

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

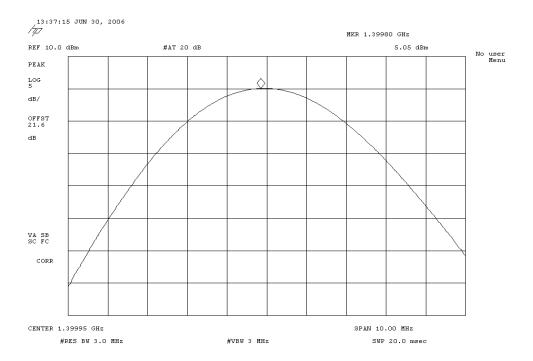
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Signal Generator	Hewlett-Packard	8648D	TGC	1/27/2006	13
Power Sensor	Hewlett-Packard	8481H	SPB	7/23/2004	24
Power Meter	Hewlett Packard	E4418A	SPA	7/23/2004	24
Spectrum Analyzer	Hewlett-Packard	8593E	AAN	1/25/2006	13

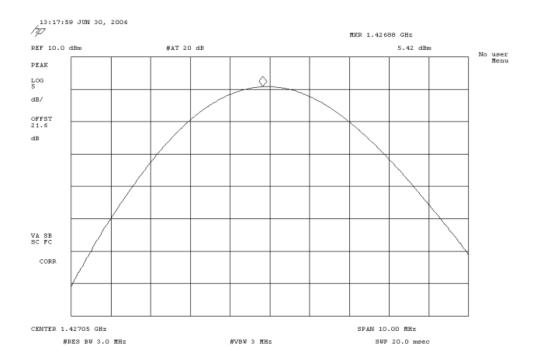
MEASUREMENT UNCERTAINTY


Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

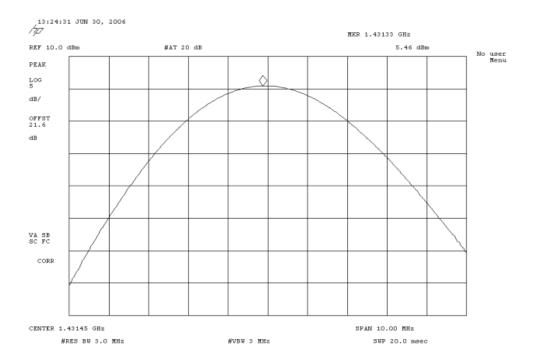
The peak output power was measured with the EUT set to the lowest and highest transmit frequencies in each band. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate.


NORTHWEST		Conducted Output Power			XMit 2006.05.31
EMC		oonaaotoa oatpati onoi			
EUT:	91343-09 / 91347-09		Work Order:	SPAC0418	
Serial Number:	1343-000005		Date:	06/30/06	
Customer:	Spacelabs Medical		Temperature:		
Attendees:			Humidity:		
Project:			Barometric Pres.:		
	Greg Kiemel	Power: 9V Battery	Job Site:	EV06	
TEST SPECIFICAT	IONS	Test Method			
FCC 95H:2005		ANSI/TIA/EIA-603	-B-2002		
COMMENTS					
DEVIATIONS FROM	I TEST STANDARD				
		AMU.KIP			
Configuration #	1				
		Signature V			
			Value	Limit	Results
Law Dand			value	Limit	Results
Low Band	Low Channel		4.98 dBm	N/A	Pass
			4.96 dBm	N/A N/A	
High Band	High Channel		5.U5 dBm	IN/A	Pass
riigii baliu	Low Channel		5.42 dBm	N/A	Pass
			5.42 dBm	N/A N/A	Pass
	High Channel		5.46 dBM	IN/A	Pass



Low Band, High Channel

Result: Pass Value: 5.05 dBm Limit: N/A



High Band, High Channel

Result: Pass Value: 5.46 dBm Limit: N/A

