



# FCC TEST REPORT

## CERTIFICATION

according to

**47 CFR FCC Rules and Regulations Part 15 Subpart B,  
Class B Digital Device**

Equipment : TransferJet MicroUSB Adapter

Model No. : TJM35420MU

FCC ID : CJ6UPA5145TJ

Filing Type : Certification

Applicant : **TOSHIBA CORPORATION**  
1-1, Shibaura 1-chome, Minato-ku,  
Tokyo, 105-8001, Japan

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- **Certificate or Test Report must not be used by the applicant to claim the product in this test report endorsement by TAF or any agency of U.S. government.**

**SPORTON International Inc.**

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

## Table of Contents

|                                                             |                |
|-------------------------------------------------------------|----------------|
| <b>History of this test report.....</b>                     | <b>ii</b>      |
| <b>CERTIFICATE OF COMPLIANCE.....</b>                       | <b>1</b>       |
| <b>1. General Description of Equipment under Test.....</b>  | <b>2</b>       |
| 1.1. Applicant.....                                         | 2              |
| 1.2. Manufacturer .....                                     | 2              |
| 1.3. Basic Description of Equipment under Test .....        | 2              |
| 1.4. Feature of Equipment under Test .....                  | 2              |
| 1.5. Modification of EUT .....                              | 2              |
| <b>2. Test Configuration of Equipment under Test.....</b>   | <b>3</b>       |
| 2.1. Test Manner .....                                      | 3              |
| 2.2. Description of Test System .....                       | 4              |
| 2.3. Connection Diagram of Test System .....                | 5              |
| <b>3. Test Software .....</b>                               | <b>7</b>       |
| <b>4. General Information of Test.....</b>                  | <b>8</b>       |
| 4.1. Test Facility .....                                    | 8              |
| 4.2. Uncertainty of Test Site .....                         | 8              |
| 4.3. Test Voltage .....                                     | 8              |
| 4.4. Measurement Procedure.....                             | 8              |
| 4.5. Test in Compliance with .....                          | 8              |
| 4.6. Frequency Range Investigated .....                     | 8              |
| 4.7. Test Distance .....                                    | 9              |
| <b>5. Test of Conducted Powerline .....</b>                 | <b>10</b>      |
| 5.1. Test Procedures .....                                  | 10             |
| 5.2. Typical Test Setup Layout of Conducted Powerline ..... | 11             |
| 5.3. Test Result of AC Powerline Conducted Emission .....   | 12             |
| <b>6. Test of Radiated Emission.....</b>                    | <b>14</b>      |
| 6.1. Test Procedures .....                                  | 14             |
| 6.2. Typical Test Setup Layout of Radiated Emission.....    | 15             |
| 6.3. Test Result of Radiated Emission for Below 1GHz.....   | 16             |
| 6.4. Test Result of Radiated Emission for Above 1GHz .....  | 20             |
| <b>7. List of Measuring Equipment Used .....</b>            | <b>22</b>      |
| <b>Appendix A. Test Photos .....</b>                        | <b>A1 ~ A5</b> |
| <b>Appendix B. Photographs of EUT.....</b>                  | <b>B1 ~ B5</b> |

## History of this test report

Original Report Issue Date: Apr. 01, 2014

- No additional attachment.
- Additional attachment were issued as following record:

Certificate No. : FC3O0402

# **CERTIFICATE OF COMPLIANCE**

## **CERTIFICATION**

according to



**47 CFR FCC Rules and Regulations Part 15 Subpart B,  
Class B Digital Device**

Equipment : TransferJet MicroUSB Adapter

Model No. : TJM35420MU

FCC ID : CJ6UPA5145TJ

Applicant : **TOSHIBA CORPORATION**  
1-1, Shibaura 1-chome, Minato-ku,  
Tokyo, 105-8001, Japan

I **HEREBY** CERTIFY THAT :

The measurements shown in this test report were made in accordance with the procedures given in **ANSI C63.4 - 2009** and the energy emitted by this equipment was **passed CISPR PUB. 22 and FCC Part 15** in both radiated and conducted emission **Class B** limits.

The product sample received on **Oct. 03, 2013** and completely tested on **Oct. 25, 2013** at **SPORTON International Inc. LAB.**



Kero Kuo  
Engineering Supervisor

**SPORTON International Inc.**

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

**1. General Description of Equipment under Test****1.1. Applicant**

TOSHIBA CORPORATION

1-1, Shibaura 1-chome, Minato-ku, Tokyo, 105-8001, Japan

**1.2. Manufacturer**

GOOD WAY TECHNOLOGY CO., LTD.

3F, No. 135, Ln. 235, Baociao Rd., Sindian Dist., New Taipei City 231, Taiwan, R.O.C.

**1.3. Basic Description of Equipment under Test**

Equipment : TransferJet MicroUSB Adapter  
Model No. : TJM35420MU  
Trade Name : TOSHIBA  
Power Supply Type : From host system

**1.4. Feature of Equipment under Test**

Please refer to user manual.

**1.5. Modification of EUT**

None.

## **2. Test Configuration of Equipment under Test**

### **2.1. Test Manner**

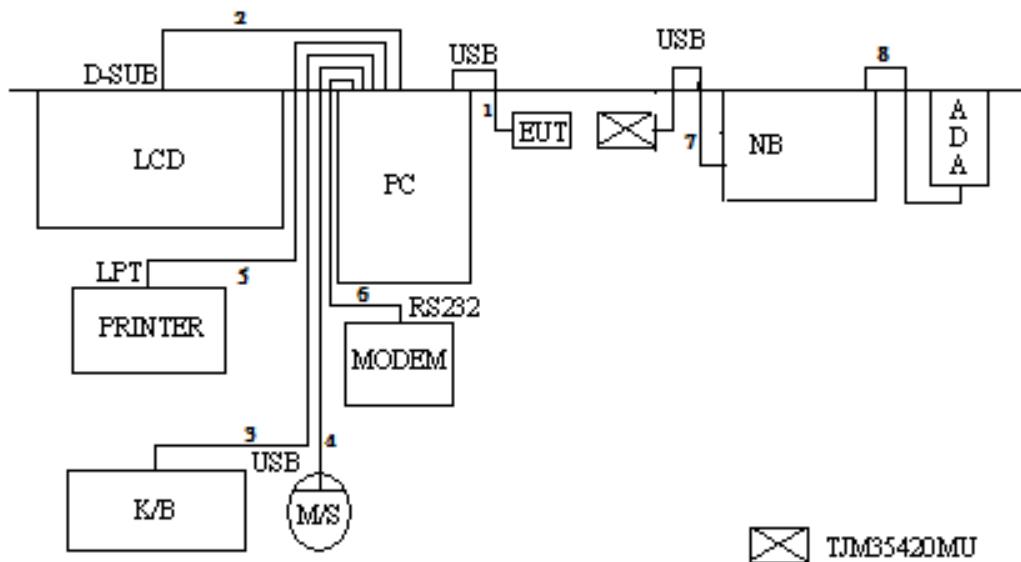
- a. During testing, the personal computer and equipment positions were varied according to ANSI C63.4-2009 and configuration operated in a manner which tended to maximize its emission characteristics in a typical application.
- b. The equipment under test were performed the following test modes:

| <b>Test Items</b>            | <b>Function Type</b> |
|------------------------------|----------------------|
| <b>AC Conducted Emission</b> | Mode 1. SEND DATA    |
| <b>Radiated Emissions</b>    | Mode 1. SEND DATA    |

- c. Frequency range investigated: Conduction 150 kHz to 30 MHz, Radiation 30 MHz to 23 GHz

## 2.2. Description of Test System

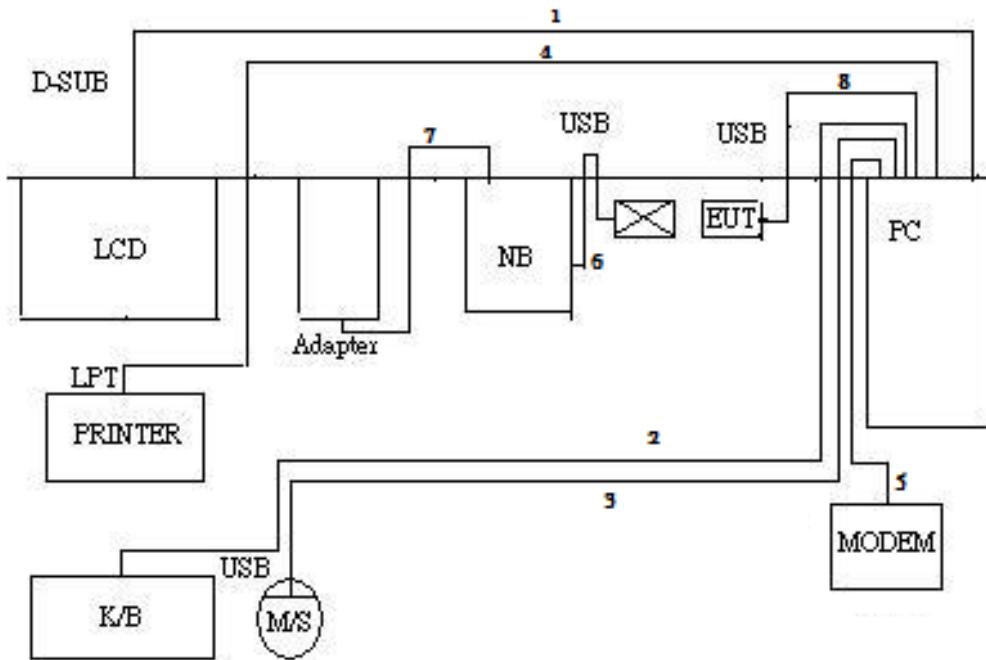
<For conducted and radiated emission below 1GHz >


| No. | Description             | Manufacturer | Model      | FCC ID     | Signal Cable Description        |
|-----|-------------------------|--------------|------------|------------|---------------------------------|
| 1   | PC                      | DELL         | DCTA       | DOC        | -                               |
| 2   | LCD Monitor"19"         | DELL         | E198WFPP   | DOC        | D-SUB Cable, D-Shielded, 1.8m   |
| 3   | Keyboard                | DELL         | SK-8175    | DOC        | USB Cable, AL-F-Shielded, 1.8m  |
| 4   | Mouse                   | DELL         | MOC5UO     | DOC        | USB Cable, AL-F-Shielded, 1.8m  |
| 5   | Printer                 | HP           | C2642A     | B94C2642X  | LPT Cable, D-Shielded, 1.2m     |
| 6   | Modem                   | ACEEX        | DM1414     | IFAXDM1414 | RS-232 Cable, D-Shielded, 1.15m |
| 7   | Notebook                | DELL         | E5520      | DOC        | -                               |
| 8   | TransferJet USB Adapter | TOSHIBA      | TJM35420UX | -          | USB Cable, D-Shielded, 1.0m     |

<For radiated emission above 1GHz>

| No. | Description             | Manufacturer | Model      | FCC ID     | Signal Cable Description        |
|-----|-------------------------|--------------|------------|------------|---------------------------------|
| 1   | PC                      | DELL         | DCTA       | DoC        | -                               |
| 2   | LCD Monitor"19"         | DELL         | U2410      | DoC        | D-SUB Cable, D-Shielded, 1.8m   |
| 3   | Keyboard                | DELL         | SK-8175    | DoC        | USB Cable, AL-F-Shielded, 1.8m  |
| 4   | Mouse                   | DELL         | MOC5UO     | DoC        | USB Cable, AL-F-Shielded, 1.8m  |
| 5   | Printer                 | HP           | C2642A     | B94C2642X  | LPT Cable, D-Shielded, 1.2m     |
| 6   | Modem                   | ACEEX        | DM1414     | IFAXDM1414 | RS-232 Cable, D-Shielded, 1.15m |
| 7   | Notebook                | DELL         | PP05L      | DoC        | -                               |
| 8   | TransferJet USB Adapter | TOSHIBA      | TJM35420UX | -          | USB Cable, D-Shielded, 1.0m     |

## 2.3. Connection Diagram of Test System


< Conducted Emission >



1. The USB cable is connected from the PC to the EUT.
2. The D-SUB cable is connected from the PC to the support unit 2.
3. The USB cable is connected from the PC to the support unit 3.
4. The USB cable is connected from the PC to the support unit 4.
5. The I/O cable is connected from the PC to the support unit 5.
6. The RS232 cable is connected from the EUT to the support unit 6.
7. The USB cable is connected from the Notebook to the support unit 8.
8. The I/O cable is connected from the Notebook to the Adapter.

**Note:** Above support unit on behalf of the meaning, please refer to section 2.2.

## &lt; Radiated Emission &gt;



1. The D-DUB cable is connected from the PC to the support unit 2.
2. The USB cable is connected from the PC to the support unit 3.
3. The USB cable is connected from the PC to the support unit 4.
4. The I/O cable is connected from the PC to the support unit 5.
5. The I/O cable is connected from the PC to the support unit 6.
6. The I/O cable is connected from the Notebook to the support unit 8.
7. The I/O cable is connected from the Notebook to the Adapter.
8. The USB cable is connected from the PC to the EUT.

**Note:** Above support unit on behalf of the meaning, please refer to section 2.2.

### **3. Test Software**

Two executive programs, "EMITEST.exe & EMCTEST.exe" under WIN XP, which generate a complete line of continuously repeating "H" pattern were used as the test software.

The program was executed as follows :

- a. Turn on the power of all equipment.
- b. The PC reads the test program from the hard disk drive and runs it.
- c. The PC sends "H" pattern to the monitor, and the monitor displays "H" patterns on the screen.
- d. The PC sends "H" messages to the printer, and then the printer prints them on the paper.
- e. The PC sends signal messages to the modem.
- f. The PC sends signal messages to the internal Hard Disk, and the Hard Disk reads and writes the message.
- g. Repeat the steps from c to f.
- h. Executed "TJetUSBTransfer" to link with the NB to keep transmitting and receiving data via EUT.

## 4. General Information of Test

### 4.1. Test Facility

**Test Site : SPORTON INTERNATIONAL INC.**

Test Site Location : No. 3, Lane 238, Kang Lo Street, Nei Hwu District, Taipei 11424, Taiwan, R.O.C.  
 TEL : 886-2-2631-4739  
 FAX : 886-2-2631-9740

Test Site No. : CO01-NH, OS01-NH

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.  
 TEL : 886-3-327-3456  
 FAX : 886-3-318-0055

Test Site No. : 03CH04-HY

### 4.2. Uncertainty of Test Site

| Test Items                    | Test Site No. | Uncertainty | Remark                   |
|-------------------------------|---------------|-------------|--------------------------|
| Conducted Emissions           | CO01-NH       | ± 2.62dB    | Confidence levels of 95% |
| Radiated Emissions below 1GHz | OS01-NH       | ± 2.80dB    | Confidence levels of 95% |
| Radiated Emissions above 1GHz | 03CH04-HY     | ± 4.78dB    | Confidence levels of 95% |

### 4.3. Test Voltage

AC 120V / 60Hz

### 4.4. Measurement Procedure

ANSI C63.4-2009

### 4.5. Test in Compliance with

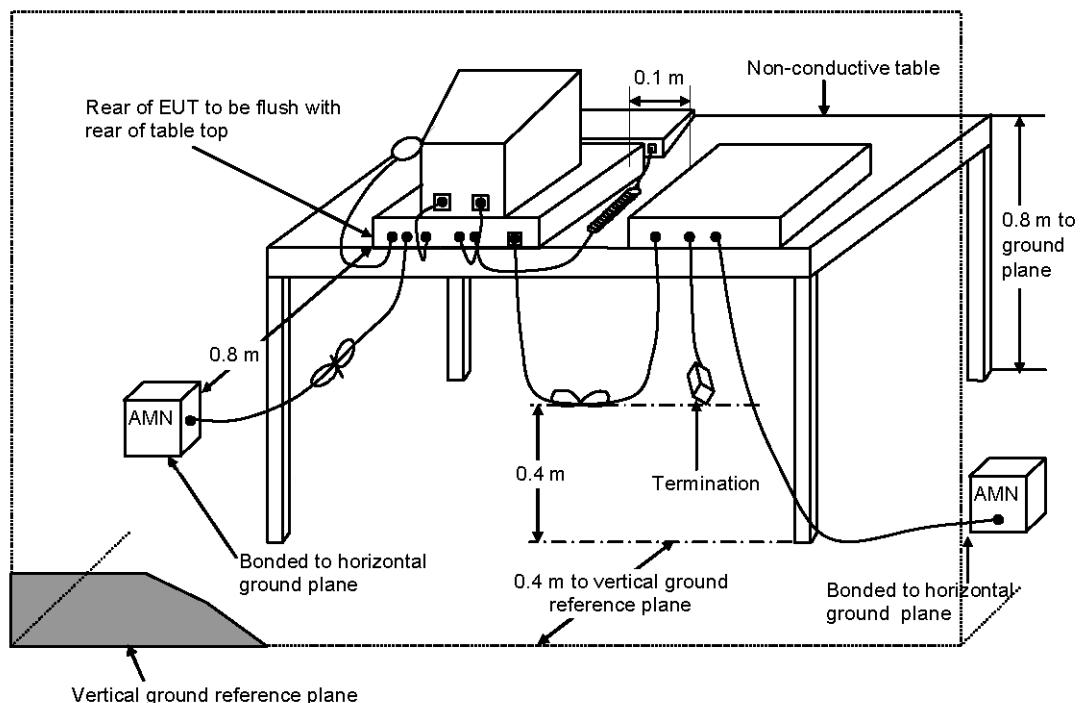
CISPR PUB. 22 and Part 15 Subpart B  
 15.107 Conducted Emission  
 15.109 Radiated Emission

### 4.6. Frequency Range Investigated

- a. Conducted emission test: from 150 kHz to 30 MHz
- b. Radiated emission test: from 30 MHz to 23 GHz

**4.7. Test Distance**

- c. The test distance of radiated emission test from antenna to EUT is 10 M (from 30MHz~1000MHz).
- d. The test distance of radiated emission test from antenna to EUT is 3 M (from 1GHz~ 9GHz).
- e. The test distance of radiated emission test from antenna to EUT is 1 M (from 9GHz~ 23GHz).


## **5. Test of Conducted Powerline**

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 kHz and return leads of the EUT according to the methods defined in ANSI C63.4, Clause 7. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 5.3. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position producing maximum conducted emissions.

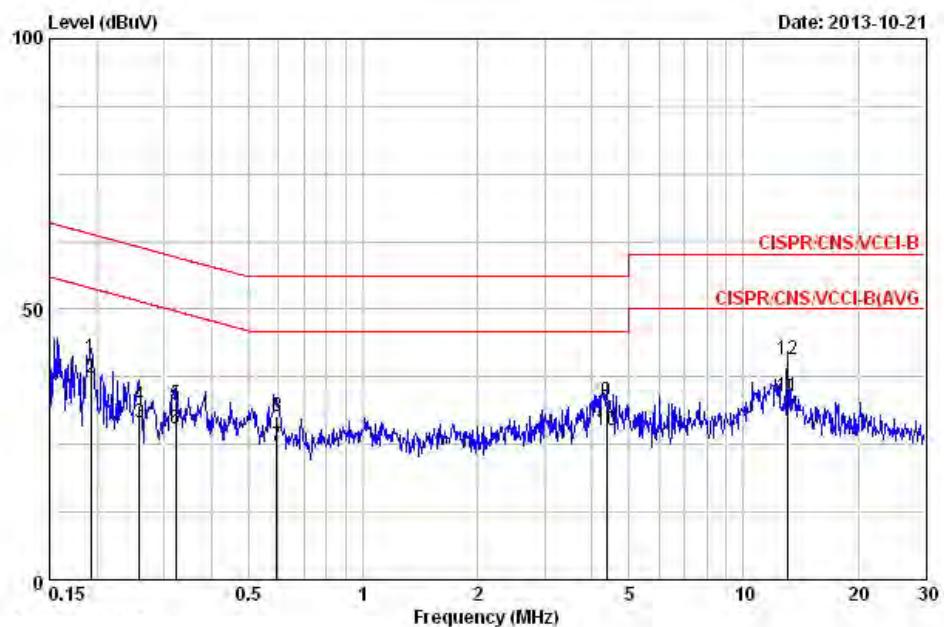
### **5.1. Test Procedures**

- a. The EUT was warmed up for 15 minutes before testing started.
- b. The EUT was placed on a desk 0.8 meters height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- c. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- d. All the support units are connect to the other LISN.
- e. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- f. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- g. Both sides of AC line were checked for maximum conducted interference.
- h. The frequency range from 150 kHz to 30 MHz was searched.
- i. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

## 5.2. Typical Test Setup Layout of Conducted Powerline

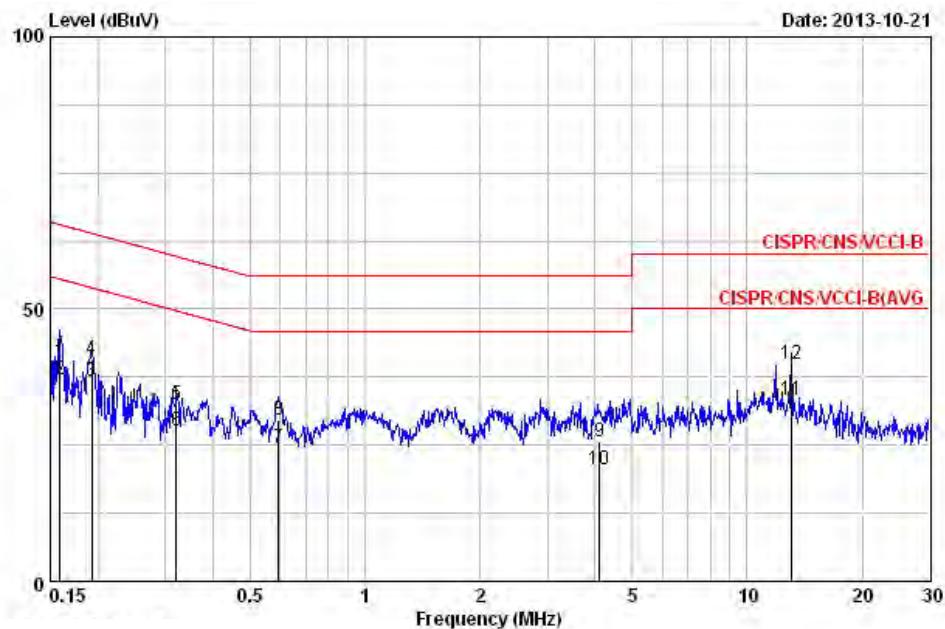


- a. AMN is 80 cm from the EUT and at least 80 cm from other units and other metal planes.
- b. EUT is connected to one artificial mains network (AMN).
- c. All other units of a system are powered from a second AMN. A multiple outlet strip can be used for multiple mains cords.
- d. Rear of EUT to be flushed with rear of table top.
- e. Peripherals shall be placed at a distance of 10 cm from each other and from the controller, except for the monitor which, if this is an acceptable installation practice, shall be placed directly on the top of the controller.
- f. If cables, which hang closer than 40 cm to the horizontal metal ground plane, cannot be shortened to appropriate length, the excess shall be folded back and forth forming a bundle 30 cm to 40 cm long.
- g. Mains cords and signal cables shall be positioned for their entire lengths, as far as possible, at 40 cm from the vertical reference plane.
- h. Cables of hand operated devices, such as keyboards, mice, etc. shall be placed as for normal usage.


## 5.3. Test Result of AC Powerline Conducted Emission

|                       |                   |                          |         |
|-----------------------|-------------------|--------------------------|---------|
| <b>Test Mode</b>      | Mode 1            | <b>Test Site No.</b>     | CO01-NH |
| <b>Test Frequency</b> | 0.15 MHz ~ 30 MHz | <b>Test Engineer</b>     | Eddie   |
| <b>Temperature</b>    | 24 °C             | <b>Relative Humidity</b> | 54 %    |

Note: 1. Corrected Reading (dB $\mu$ V) = LISN Factor + Cable Loss + Read Level = Level  
 2. All emissions not reported here are more than 10 dB below the prescribed limit.


■ The test was passed at the minimum margin that marked by the frame in the following data

Line



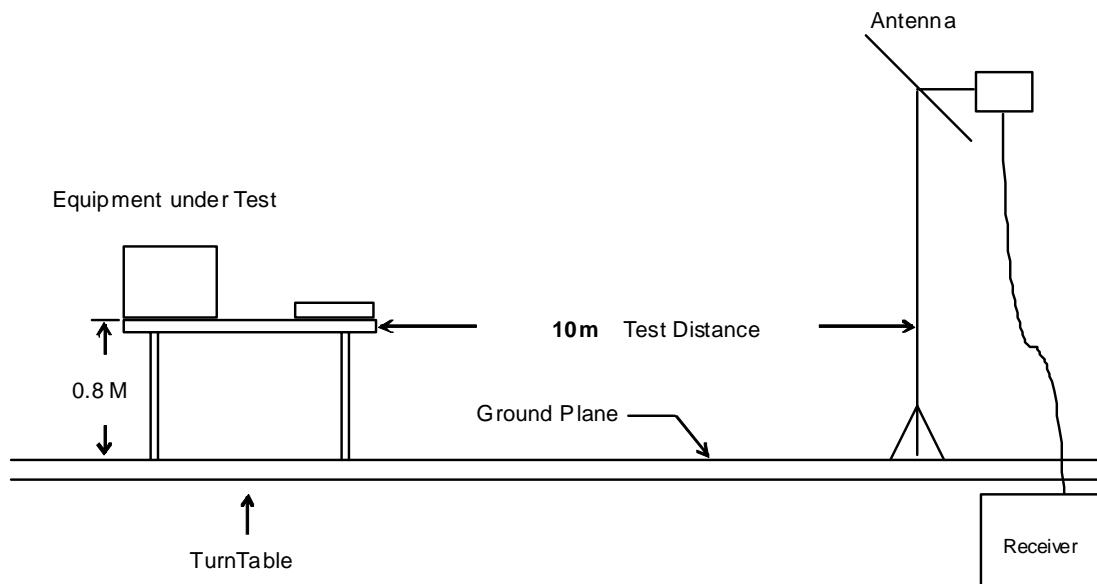
| Freq | Level  | Over Limit | Limit Line | Read Level | LISN  |            | Cable Loss | Remark  |
|------|--------|------------|------------|------------|-------|------------|------------|---------|
|      |        |            |            |            | MHz   | dB $\mu$ V | dB         |         |
| 1    | 0.192  | 41.09      | -22.86     | 63.94      | 30.82 | 10.17      | 0.10       | QP      |
| 2    | 0.192  | 37.19      | -16.76     | 53.94      | 26.92 | 10.17      | 0.10       | AVERAGE |
| 3    | 0.259  | 29.07      | -22.40     | 51.47      | 18.80 | 10.17      | 0.10       | AVERAGE |
| 4    | 0.259  | 32.22      | -29.25     | 61.47      | 21.95 | 10.17      | 0.10       | QP      |
| 5    | 0.322  | 32.57      | -27.09     | 59.66      | 22.30 | 10.17      | 0.10       | QP      |
| 6    | 0.322  | 27.89      | -21.77     | 49.66      | 17.62 | 10.17      | 0.10       | AVERAGE |
| 7    | 0.592  | 24.67      | -21.33     | 46.00      | 14.39 | 10.18      | 0.10       | AVERAGE |
| 8    | 0.592  | 30.25      | -25.75     | 56.00      | 19.97 | 10.18      | 0.10       | QP      |
| 9    | 4.361  | 33.07      | -22.93     | 56.00      | 22.63 | 10.24      | 0.20       | QP      |
| 10   | 4.361  | 27.65      | -18.35     | 46.00      | 17.21 | 10.24      | 0.20       | AVERAGE |
| 11   | 13.014 | 33.90      | -16.10     | 50.00      | 23.33 | 10.37      | 0.20       | AVERAGE |
| 12   | 13.014 | 40.74      | -19.26     | 60.00      | 30.17 | 10.37      | 0.20       | QP      |

## Neutral

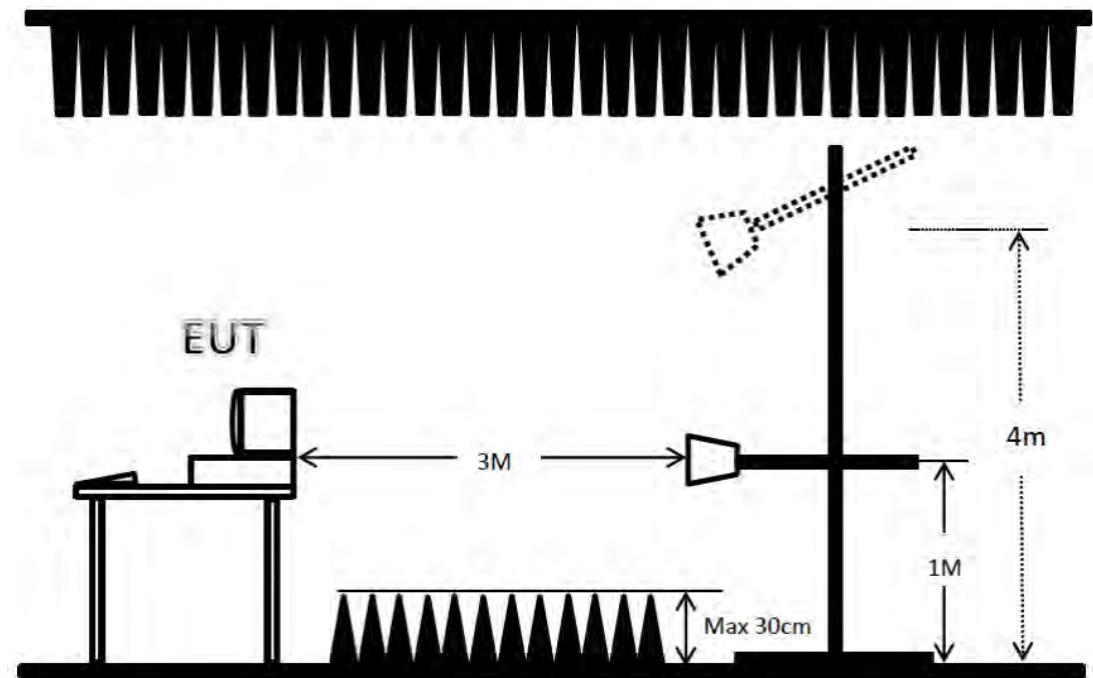


| Freq | Level  | Over Limit | Limit Line | Read Level | LISN Cable |       | Remark       |
|------|--------|------------|------------|------------|------------|-------|--------------|
|      |        |            |            |            | dB         | dBuV  |              |
| MHz  | dBuV   |            | dB         | dBuV       |            | dB    |              |
| 1    | 0.159  | 40.46      | -25.06     | 65.52      | 30.22      | 10.14 | 0.10 QP      |
| 2    | 0.159  | 37.04      | -18.48     | 55.52      | 26.80      | 10.14 | 0.10 AVERAGE |
| 3    | 0.192  | 36.78      | -17.15     | 53.93      | 26.54      | 10.14 | 0.10 AVERAGE |
| 4    | 0.192  | 40.79      | -23.14     | 63.93      | 30.55      | 10.14 | 0.10 QP      |
| 5    | 0.320  | 32.50      | -27.20     | 59.71      | 22.26      | 10.14 | 0.10 QP      |
| 6    | 0.320  | 27.56      | -22.14     | 49.71      | 17.32      | 10.14 | 0.10 AVERAGE |
| 7    | 0.595  | 24.45      | -21.55     | 46.00      | 14.20      | 10.14 | 0.10 AVERAGE |
| 8    | 0.595  | 29.75      | -26.25     | 56.00      | 19.50      | 10.14 | 0.10 QP      |
| 9    | 4.114  | 25.66      | -30.34     | 56.00      | 15.26      | 10.19 | 0.20 QP      |
| 10   | 4.114  | 20.54      | -25.46     | 46.00      | 10.14      | 10.19 | 0.20 AVERAGE |
| 11   | 13.015 | 33.31      | -16.69     | 50.00      | 22.76      | 10.35 | 0.20 AVERAGE |
| 12   | 13.015 | 39.97      | -20.03     | 60.00      | 29.42      | 10.35 | 0.20 QP      |

## 6. Test of Radiated Emission


Radiated emissions below 1 GHz were measured with a bandwidth of 120 kHz for 30 MHz to 1,000 MHz and bandwidth of 1 MHz for above 1 GHz to 5th harmonic of highest frequency according to the methods defines in ANSI C63.4, Clause 8. The EUT was placed on a nonmetallic stand, 0.8 meter above the ground plane, as shown in section 6.3. The interface cables and equipment positions were varied within limits of reasonable applications to determine the positions producing maximum radiated emissions.

### 6.1. Test Procedures

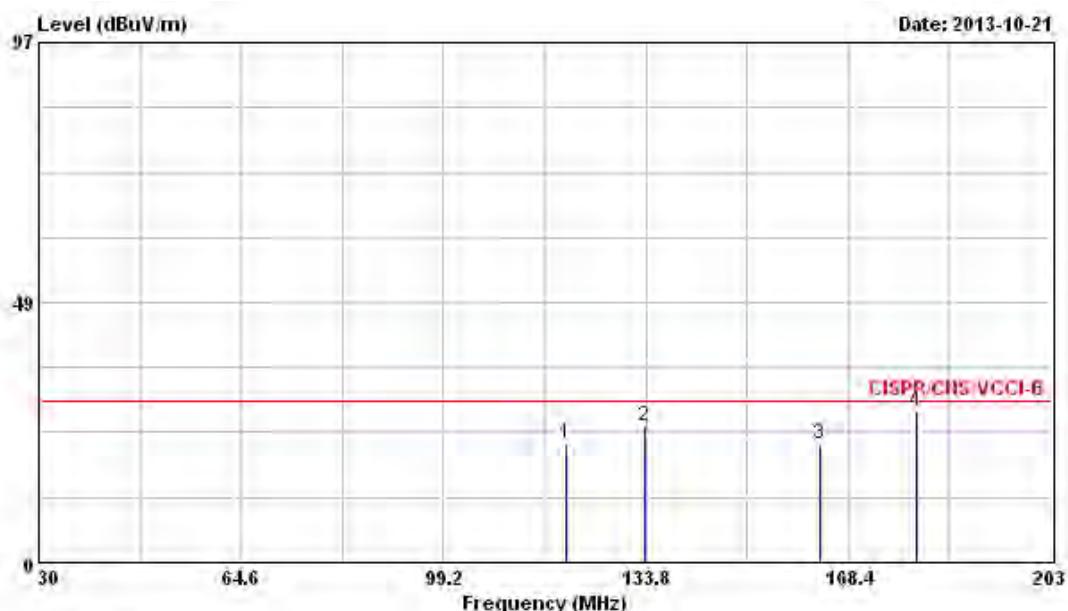

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 1/3m(above 1GHz)/10m(below 1GHz) from the interference-receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- h. The FCC Part 15.109 (g) permit parties seeking to authorize a digital device to choose to demonstrate that the device complies with either the Part 15 standards or the international standards found in Publication 22 of the International Special Committee on Radio Interference (CISPR).
- i. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- j. The main board was tested in accordance with section 15.32 of the FCC rules. Testing for radiated emissions was first performed with the main board installed in a typical enclosure but with the enclosure's cover removed so that the internal circuitry is exposed at the top and on at least two sides. And then the EUT was tested with enclosure's cover unless it pass the required limits at first condition.

## 6.2. Typical Test Setup Layout of Radiated Emission

< Below 1GHz >

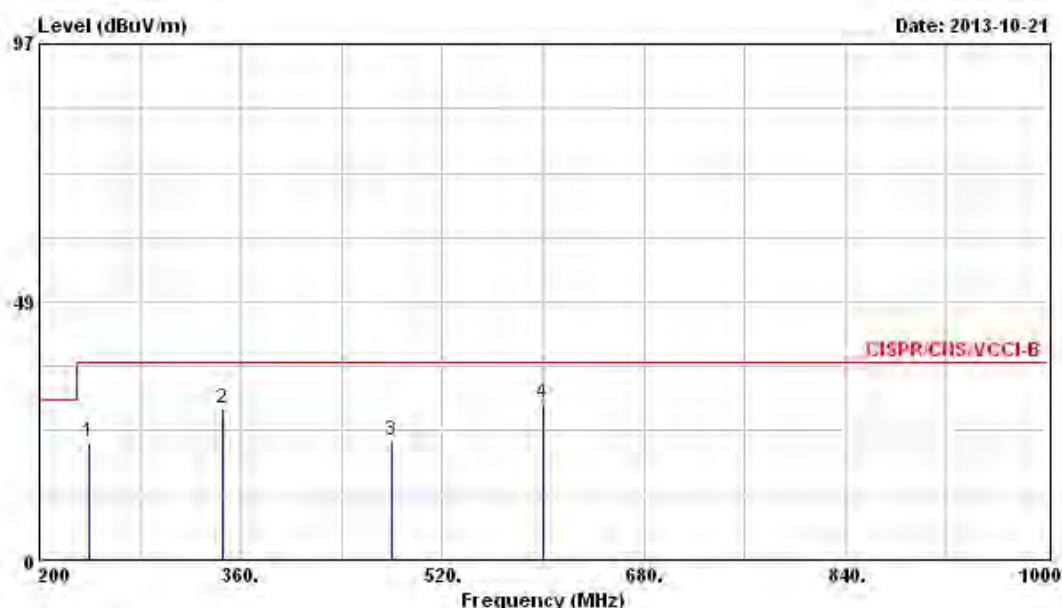


< Above 1GHz >



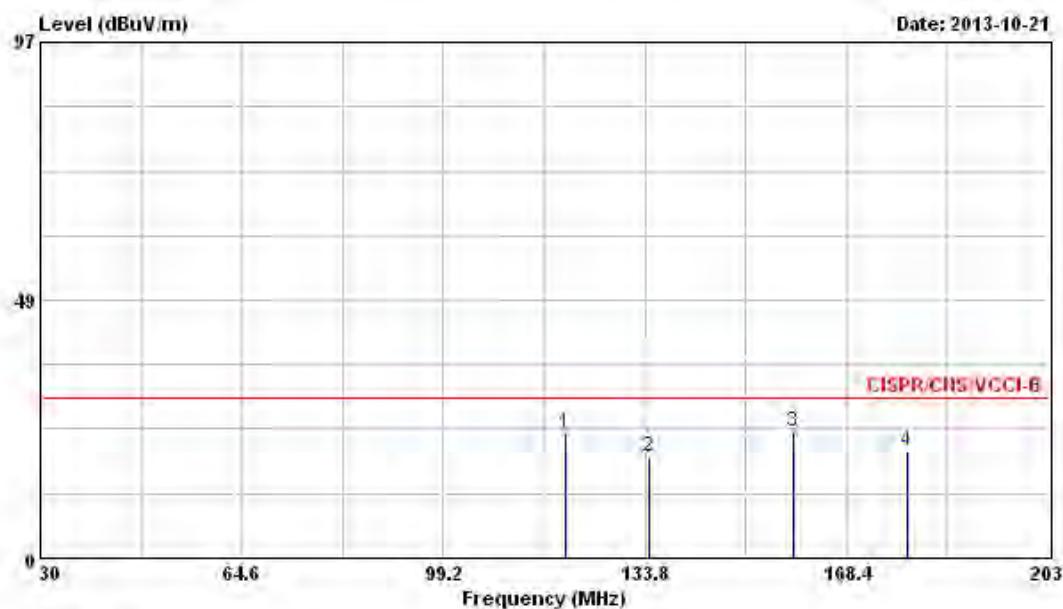

## 6.3. Test Result of Radiated Emission for Below 1GHz

|                       |                   |                          |         |
|-----------------------|-------------------|--------------------------|---------|
| <b>Test mode</b>      | Mode 1            | <b>Test Site No.</b>     | OS01-NH |
| <b>Test frequency</b> | 30 MHz ~ 1000 MHz | <b>Test Engineer</b>     | Louis   |
| <b>Temperature</b>    | 25 °C             | <b>Relative Humidity</b> | 55 %    |


Note: 1. Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m)  
2. Corrected Reading : Antenna Factor + Cable Loss + Read Level – Preamp Factor = Level  
■ The test was passed at the minimum margin that marked by the frame in the following data

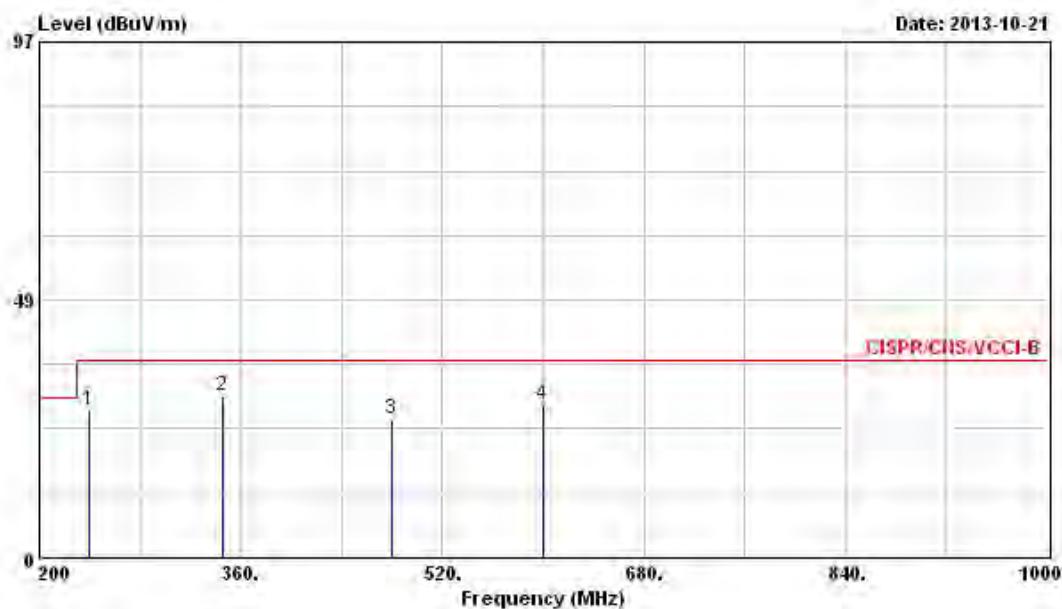
Vertical




| Freq      | Level        | Over Limit | Limit        | Read       | Antenna | Cable | Preamplifier | Remark | Ant | Table |
|-----------|--------------|------------|--------------|------------|---------|-------|--------------|--------|-----|-------|
|           |              |            |              |            |         |       |              |        | Pos | Pos   |
| MHz       | dB $\mu$ V/m | dB         | dB $\mu$ V/m | dB $\mu$ V | dB/m    | dB    | dB           |        | cm  | deg   |
| 1 120.130 | 22.05        | -7.95      | 30.00        | 33.79      | 11.90   | 1.52  | 25.16        | QP     | 100 | 122   |
| 2 133.630 | 25.56        | -4.44      | 30.00        | 37.58      | 11.48   | 1.60  | 25.10        | QP     | 100 | 174   |
| 3 163.570 | 22.19        | -7.81      | 30.00        | 35.52      | 9.84    | 1.78  | 24.95        | QP     | 100 | 225   |
| 4 180.000 | 28.06        | -1.94      | 30.00        | 41.86      | 9.20    | 1.87  | 24.87        | QP     | 100 | 180   |

## Vertical




| Freq      | Level  | Over Limit | Line  | Read   | Antenna | Cable Preamp |        |      | Int | Table |
|-----------|--------|------------|-------|--------|---------|--------------|--------|------|-----|-------|
|           |        |            |       |        |         | Level        | Factor | Loss |     |       |
| MHz       | dBuV/m |            | dB    | dBuV/m | dBuV    | dB/m         | dB     | dB   | cm  | deg   |
| 1 240.000 | 22.21  | -14.79     | 37.00 | 33.54  | 11.20   | 2.12         | 24.65  | QP   | 100 | 316   |
| 2 345.600 | 28.52  | -8.48      | 37.00 | 36.02  | 14.28   | 2.53         | 24.31  | QP   | 100 | 206   |
| 3 480.000 | 22.49  | -14.51     | 37.00 | 25.72  | 17.22   | 3.20         | 23.65  | QP   | 100 | 133   |
| 4 600.000 | 29.27  | -7.73      | 37.00 | 29.82  | 18.70   | 3.96         | 23.21  | QP   | 100 | 197   |

## Horizontal

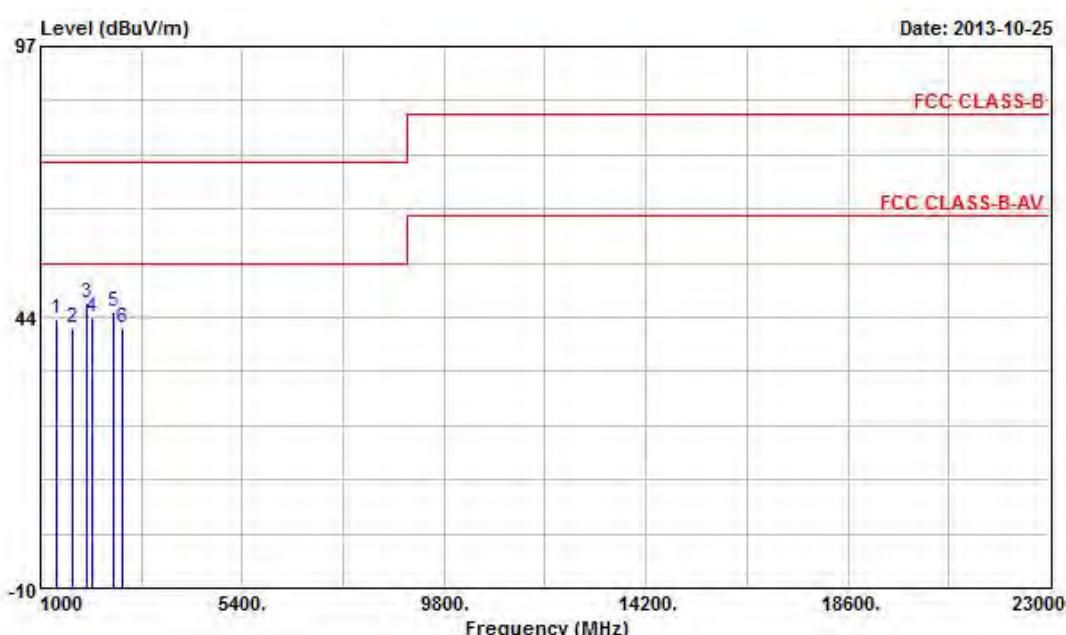


| Freq | Level   | Over Limit | Line   | Read  | Antenna | Table | Preamp | Loss  | Factor | Remark | Ant | Table |
|------|---------|------------|--------|-------|---------|-------|--------|-------|--------|--------|-----|-------|
|      |         |            |        |       |         |       |        |       |        |        | Pos | Pos   |
|      |         |            |        |       |         |       |        |       |        |        | cm  | deg   |
|      | MHz     | dBuV/m     |        | dB    | dBuV/m  | dBuV  | dB/m   |       | dB     |        |     |       |
| 1    | 120.130 | 23.53      | -6.47  | 30.00 | 35.27   | 11.90 | 1.52   | 25.16 | QP     |        | 400 | 79    |
| 2    | 134.620 | 19.13      | -10.87 | 30.00 | 31.20   | 11.42 | 1.60   | 25.09 | QP     |        | 400 | 328   |
| 3    | 159.230 | 23.64      | -6.36  | 30.00 | 36.93   | 9.94  | 1.75   | 24.98 | QP     |        | 400 | 197   |
| 4    | 178.840 | 20.01      | -9.99  | 30.00 | 33.72   | 9.31  | 1.86   | 24.88 | QP     |        | 400 | 272   |

## Horizontal

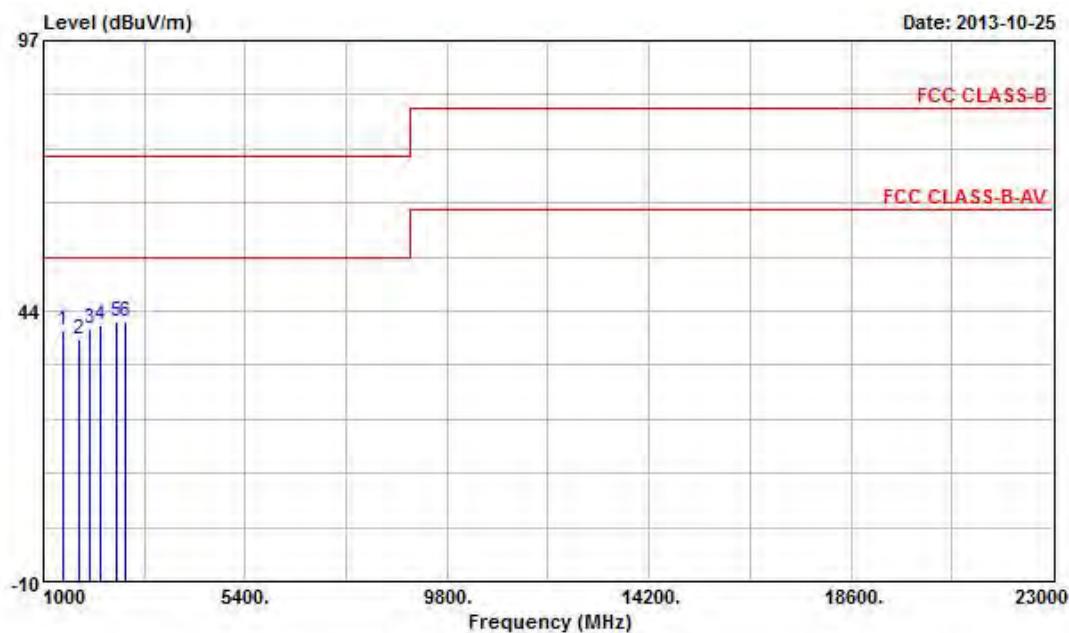


| Freq       | Level  | Over   | Limit  | Read  | Antenna | Cable | Preamp | Remark | Int | Table |
|------------|--------|--------|--------|-------|---------|-------|--------|--------|-----|-------|
|            |        | Limit  | Line   | Level | Factor  | Cable | Preamp |        |     |       |
| MHz        | dBuV/m | dB     | dBuV/m | dBuV  | dB/m    | dB    | dB     |        | cm  | deg   |
| 1. 240.000 | 27.74  | -9.26  | 37.00  | 39.07 | 11.20   | 2.12  | 24.65  | QP     | 400 | 322   |
| 2. 345.600 | 30.44  | -6.56  | 37.00  | 37.94 | 14.28   | 2.53  | 24.31  | QP     | 400 | 268   |
| 3. 480.000 | 26.23  | -10.77 | 37.00  | 29.46 | 17.22   | 3.20  | 23.65  | QP     | 300 | 213   |
| 4. 600.000 | 28.90  | -8.10  | 37.00  | 29.45 | 18.70   | 3.96  | 23.21  | QP     | 300 | 207   |


## 6.4. Test Result of Radiated Emission for Above 1GHz

|                       |                |                          |           |
|-----------------------|----------------|--------------------------|-----------|
| <b>Test mode</b>      | Mode 1         | <b>Test Site No.</b>     | 03CH04-HY |
| <b>Test frequency</b> | 1 GHz ~ 23 GHz | <b>Test Engineer</b>     | Alan      |
| <b>Temperature</b>    | 21 °C          | <b>Relative Humidity</b> | 50 %      |

Note: 1. Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m)  
2. Corrected Reading : Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level


■ The test was passed at the minimum margin that marked by the frame in the following data

Vertical



| Freq | Level    | Over  | Limit  | Read  | Antenna | Preamp | Cable | Ant  | Table        |
|------|----------|-------|--------|-------|---------|--------|-------|------|--------------|
|      |          | Limit | Line   | Level | Factor  | Factor | Loss  | Pos  | Pos          |
| MHz  | dBuV/m   | dB    | dBuV/m | dBuV  | dB/m    | dB     | dB    | cm   | deg          |
| 1    | 1332.000 | 43.06 | -30.94 | 74.00 | 49.00   | 25.48  | 34.02 | 2.60 | ---          |
| 2    | 1686.000 | 41.27 | -32.73 | 74.00 | 46.96   | 24.98  | 33.67 | 3.00 | ---          |
| 3    | 1990.000 | 46.17 | -27.83 | 74.00 | 50.31   | 26.07  | 33.52 | 3.31 | 100 168 Peak |
| 4    | 2142.000 | 43.44 | -30.56 | 74.00 | 46.32   | 27.30  | 33.66 | 3.49 | ---          |
| 5    | 2590.000 | 44.42 | -29.58 | 74.00 | 46.72   | 27.80  | 34.04 | 3.94 | ---          |
| 6    | 2766.000 | 41.25 | -32.75 | 74.00 | 42.94   | 28.33  | 34.16 | 4.14 | ---          |

## Horizontal



| Freq | Level    | Over   | Limit  | Read   | Antenna | Preamp | Cable | Ant  | Table |        |      |
|------|----------|--------|--------|--------|---------|--------|-------|------|-------|--------|------|
|      |          | Limit  | Line   | Level  | Factor  | Factor | Loss  | Pos  | Pos   | Remark |      |
|      | MHz      | dBuV/m | dB     | dBuV/m | dBuV    | dB/m   | dB    | dB   | cm    | deg    |      |
| 1    | 1438.000 | 39.53  | -34.47 | 74.00  | 45.36   | 25.33  | 33.87 | 2.71 | ---   | ---    | Peak |
| 2    | 1766.000 | 37.76  | -36.24 | 74.00  | 43.14   | 25.17  | 33.63 | 3.08 | ---   | ---    | Peak |
| 3    | 1996.000 | 40.04  | -33.96 | 74.00  | 44.09   | 26.13  | 33.52 | 3.34 | ---   | ---    | Peak |
| 4    | 2228.000 | 40.59  | -33.41 | 74.00  | 42.80   | 27.96  | 33.73 | 3.56 | ---   | ---    | Peak |
| 5    | 2580.000 | 41.51  | -32.49 | 74.00  | 43.86   | 27.76  | 34.04 | 3.94 | ---   | ---    | Peak |
| 6    | 2774.000 | 41.50  | -32.50 | 74.00  | 43.21   | 28.33  | 34.18 | 4.14 | ---   | ---    | Peak |

## 7. List of Measuring Equipment Used

### < Conducted Emission >

| Instrument   | Manufacturer       | Model No. | Serial No. | Characteristics  | Calibration Date | Remark               |
|--------------|--------------------|-----------|------------|------------------|------------------|----------------------|
| Receiver     | R&S                | ESCS 30   | 100357     | 9 kHz ~ 2.75 GHz | Nov. 22, 2012    | Conduction (CO01-NH) |
| LISN         | SCHAFFNER          | NNB41     | 04/10053   | 9 kHz ~ 30 MHz   | Nov. 20, 2012    | Conduction (CO01-NH) |
| Power Filter | CORCOM             | MR12030   | N/A        | 30A*2            | NCR              | Conduction (CO01-NH) |
| RF Cable-CON | Suhner Switzerland | RG223/U   | CB004      | 9 kHz ~ 30 MHz   | Dec. 12, 2012    | Conduction (CO01-NH) |

※ Calibration Interval of instruments listed above is one year. NCR: No calibration request.

### < Radiated Emission below 1GHz >

| Instrument          | Manufacturer | Model No.  | Serial No. | Characteristics       | Calibration Date | Remark              |
|---------------------|--------------|------------|------------|-----------------------|------------------|---------------------|
| Open Area Test Site | SPORTON      | OATS-10    | OS01-NH    | 30 MHz - 1 GHz<br>10m | Jul. 28, 2013    | Radiation (OS01-NH) |
| Amplifier           | HP           | 8447D      | 2944A06292 | 0.1 MHz - 1.3 GHz     | Apr. 25, 2013    | Radiation (OS01-NH) |
| Spectrum Analyzer   | R&S          | FSP        | 838858/038 | 9 kHz – 7 GHz         | Mar. 12, 2013    | Radiation (OS01-NH) |
| Test Receiver       | R&S          | ESCS 30    | 100168     | 9 kHz - 2.75 GHz      | Feb. 23, 2013    | Radiation (OS01-NH) |
| Bilog Antenna       | SCHAFFNER    | CBL6111C   | 2738       | 30 MHz ~ 1 GHz        | Mar. 25, 2013    | Radiation (OS01-NH) |
| Turn Table          | EMCO         | 1060-1.211 | 9507-1805  | 0 ~ 360 degree        | NCR              | Radiation (OS01-NH) |
| Antenna Mast        | EMCO         | 1051-1.2   | 9503-1876  | 1 m ~ 4 m             | NCR              | Radiation (OS01-NH) |
| RF Cable-R10m       | BELDEN       | RG8/U      | CB001      | 30 MHz ~ 1 GHz        | Nov. 13, 2012    | Radiation (OS01-NH) |

※ Calibration Interval of instruments listed above is one year. NCR: No calibration request.

## &lt; Radiated Emission above 1GHz &gt;

| Instrument        | Manufacturer | Model No.    | Serial No.    | Characteristics  | Calibration Date | Remark                |
|-------------------|--------------|--------------|---------------|------------------|------------------|-----------------------|
| Spectrum Analyzer | R&S          | FSP40        | 100004        | 9 kHz ~ 40 GHz   | Mar. 11, 2013    | Radiation (03CH04-HY) |
| Amplifier         | Agilent      | 8449B        | 3008A02326    | 1 GHz ~ 26.5 GHz | May. 17, 2013    | Radiation (03CH04-HY) |
| Horn Antenna      | SCHWARZBECK  | BBHA9120     | BBHA9120D1130 | 1 GHz ~ 18 GHz   | Sep.10, 2013     | Radiation (03CH04-HY) |
| Horn Antenna      | SCHWARZBECK  | BBHA9170     | BBHA9170154   | 15 GHz ~ 40 GHz  | Jan. 08, 2013    | Radiation (03CH04-HY) |
| Turn Table        | Chaintek     | 3000         | MF7802056     | 0 ~ 360 degree   | NCR              | Radiation (03CH04-HY) |
| Antenna Mast      | MF           | MF-7802      | MF780208163   | 1 m ~ 4 m        | NCR              | Radiation (03CH04-HY) |
| RF Cable-HIGH     | SUHNER       | SUCOFLEX 106 | CB063-HF      | 1 GHz ~ 40 GHz   | Nov. 21, 2012    | Radiation (03CH04-HY) |

※ Calibration Interval of instruments listed above is one year. NCR: No calibration request.