

FCC OET BULLETIN 65 SUPPLEMENT C Edition 01-01

Class II Permissive Change

IC RSS-102 ISSUE 4

SAR EVALUATION REPORT

For

802.11b/g/n + BT2.1+EDR MISO Combo Card

(Tested inside of Netbook NB500/505)

MODEL: PA3894U-1MPC

FCC ID: CJ6UPA3894WB

IC: 248H-DPA3894W

REPORT NUMBER: 10U13510-1, Revision A

ISSUE DATE: November 19, 2010

Prepared for

TOSHIBA AMERICA INFORMATION SYSTEMS, INC.

9740 IRVINE BLVD. IRVINE,

CA 92618, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)

47173 BENICIA STREET

FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000

FAX: (510) 661-0888

The logo for NVLAP (National Voluntary Laboratory Accreditation Program) features the word 'NVLAP' in a large, bold, black, sans-serif font. The 'A' is stylized with a vertical bar extending downwards. A small registered trademark symbol (®) is located in the top right corner of the 'A'. Below the main text, the words 'LAB CODE 200065-0' are printed in a smaller, black, sans-serif font.

NVLAP LAB CODE 200065-0

Revision History

<u>Rev.</u>	<u>Issue Date</u>	<u>Revisions</u>	<u>Revised By</u>
--	November 19, 2010	Initial Issue	--
A	November 19, 2010	Revised FCC and IC ID	A. Zaffar

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION.....	5
4. CALIBRATION AND UNCERTAINTY.....	6
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	6
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	7
5. EQUIPMENT UNDER TEST	8
6. SYSTEM SPECIFICATIONS.....	9
7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8. LIQUID PARAMETERS CHECK.....	11
8.1. <i>LIQUID CHECK RESULTS FOR 2450 MHZ.....</i>	12
9. SYSTEM VERIFICATION.....	13
9.1. <i>SYSTEM CHECK RESULTS FOR D2450V2.....</i>	13
9.2. <i>SYSTEM CHECK PLOTS</i>	14
10. DASY4 SAR MEASUREMENT PROCEDURES	16
11. RF OUTPUT POWER VERIFICATION.....	17
12. SUMMARY OF SAR TEST RESULTS	18
13. SAR TEST PLOTS.....	19
14. ATTACHMENTS.....	21
15. ANTENNA LOCATIONS AND SEPARATION DISTANCES	22
15.1. <i>ANTENNA-TO-USERS</i>	22
15.2. <i>ANTENNA-TO-ANTENNA.....</i>	23
16. TEST SETUP PHOTOS	24
17. HOST DEVICE PHOTOS.....	25

1. ATTESTATION OF TEST RESULTS

Applicant name:	TOSHIBA AMERICA INFORMATION SYSTEMS, INC. 9740 IRVINE BLVD. IRVINE, CA 92618, USA				
EUT description:	802.11b/g/n + BT2.1+EDR MISO Combo Card (Tested inside of Netbook NB500/505)				
Model number:	PA3894U-1MPC				
Device category:	Portable				
Exposure category:	General Population/Uncontrolled Exposure				
Date tested:	November 18, 2010				
FCC / IC rule parts	Frequency Range [MHz]	Highest 1-g SAR (mW/g)	Limit (mW/g)		
15.247 / RSS-102	2412 – 2462	0.028	1.6		
Applicable Standards			Test Results		
FCC OET Bulletin 65 Supplement C Edition 01-01 IC RSS 102 Issue 4			Pass		
Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.					
Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.					
Approved & Released For UL CCS By:	Tested By:				
	 Devin Chang EMC Engineer Compliance Certification Services (UL CCS)				
Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS)					

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528-2003, IC RSS 102 Issue 4 and the following specific FCC Test Procedures.

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters
- 616217 D01 SAR for Laptop with Screen Ant v01r01
- 616217 D03 SAR Supp Note and Netbook Laptop V01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date		
				MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A
Dielectric Probe Kit	HP	85070C	N/A			N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010
E-Field Probe	SPEAG	EX3DV3	3531	2	23	2011
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011
System Validation Dipole	SPEAG	D2450V2	706	4	19	2013
Thermometer	ERTCO	639-1S	1718	7	19	2011
Power Meter	Giga-tronics	8651A	8651404	5	13	2012
Power Sensor	Giga-tronics	80701A	1834588	5	13	2012
Power Meter	Boonton	4541	12414	2	26	2011
Power Sensor	Boonton	57006	6871	2	23	2011
Amplifier	Mini-Circuits	ZVE-8G	90606			N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A
Simulating Liquid	SPEAG	M2450	N/A	Within 24 hrs of first test		

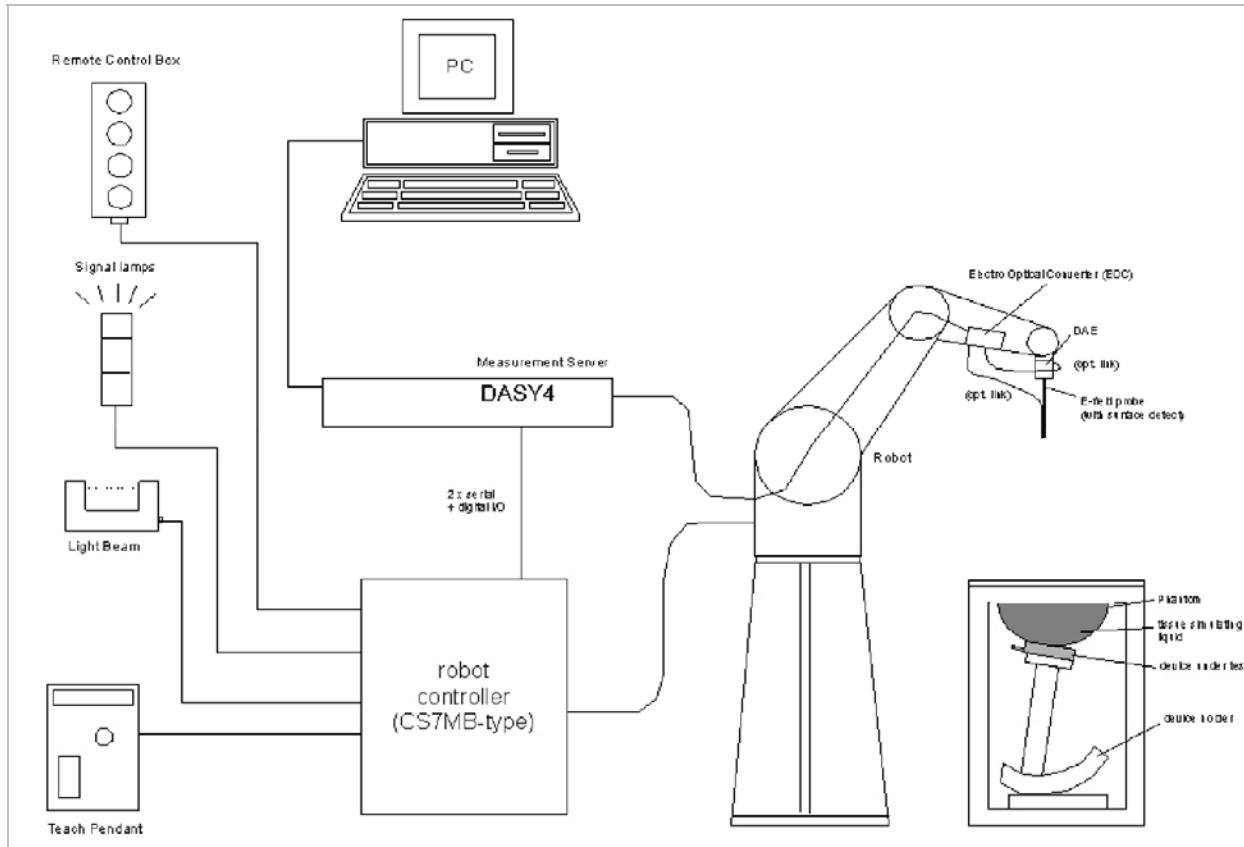
Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole
2. System validation with specific dipole is within 10% of calibrated value.
3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	2.59	Normal	1	0.64	1.66
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement	-0.64	Normal	1	0.6	-0.38
Combined Standard Uncertainty $U_c(y) =$					
Expanded Uncertainty U , Coverage Factor = 2, > 95 % Confidence = 19.18 %					
Expanded Uncertainty U , Coverage Factor = 2, > 95 % Confidence = 1.52 dB					


5. EQUIPMENT UNDER TEST

802.11b/g/n + BT2.1+EDR MISO Combo Card

(Tested inside of Netbook NB500/505)

Normal operation:	Lap-held (with display open at 90° to the keyboard)		
Antennas tested:	<u>Manufacturer</u>	<u>Antenna name</u>	<u>Antenna Gain (dBi)</u>
	Tyco	<input checked="" type="checkbox"/> TX1 (Main): 1556183-1	-0.23
	WNC	<input type="checkbox"/> Main: 81.EJZ15.G67	-0.45
Antenna-to-antenna/user separation distances:	See Section 15 for details of antenna locations and separation distances		
Simultaneous transmission:	802.11bgn cannot transmit simultaneously with Bluetooth		
Assessment for SAR evaluation for Simultaneous transmission:	Both 802.11bgn and Bluetooth are not considered as co-located transmitters each other.		

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% by weight)	Frequency (MHz)									
	450		835		900		1800 - 1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 MΩ+ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within $\pm 5\%$ of the target values. The measured relative permittivity tolerance can be relaxed to no more than $\pm 10\%$.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.8
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.9	55.2	0.97
900	41.5	0.97	55	1.05
915	41.5	0.98	55	1.06
1450	40.5	1.2	54	1.3
1610	40.3	1.29	53.8	1.4
1800 – 2000	40	1.4	53.3	1.52
2450	39.2	1.8	52.7	1.95
3000	38.5	2.4	52	2.73
5800	35.3	5.27	48.2	6

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MHz)	Body Tissue		Reference
	rel. permittivity	conductivity	
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameter Check Result @ Body 2450 MHz

Measured by: David Lee

f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
	e'	52.36	Relative Permittivity (ϵ_r):	52.365	52.7	-0.64	± 5
2450	e"	14.68	Conductivity (σ):	2.000	1.95	2.59	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

November 18, 2010 08:23 AM

Frequency	e'	e"
2400000000.	52.1711	14.4444
2405000000.	52.1748	14.4977
2410000000.	52.1944	14.5442
2415000000.	52.2301	14.5879
2420000000.	52.2735	14.6252
2425000000.	52.3210	14.6518
2430000000.	52.3624	14.6698
2435000000.	52.3884	14.6814
2440000000.	52.3979	14.6830
2445000000.	52.3929	14.6837
2450000000.	52.3648	14.6773
2455000000.	52.3171	14.6748
2460000000.	52.2530	14.6692
2465000000.	52.1734	14.6670
2470000000.	52.0909	14.6713
2475000000.	52.0056	14.6795
2480000000.	51.9344	14.6965
2485000000.	51.8713	14.7186
2490000000.	51.8256	14.7486
2495000000.	51.8030	14.7858
2500000000.	51.7984	14.8290

The conductivity (σ) can be given as:

$$\sigma = \omega \epsilon_0 \epsilon'' = 2 \pi f \epsilon_0 \epsilon''$$

where $f = \text{target } f * 10^6$

$$\epsilon_0 = 8.854 * 10^{-12}$$

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System validation dipole	Cal. certificate #	Cal. date	Cal. Freq. (GHz)	SAR Avg (mW/g)		
				Tissue:	Head	Body
D2450V2	D2450V2-706_Apr10	4/19/10	2.4	SAR _{1g} :	51.6	52.4
				SAR _{10g} :	24.4	24.5

9.1. SYSTEM CHECK RESULTS FOR D2450V2

Measured by: Devin Chang

System validation dipole	Date Tested	Measured (Normalized to 1 W)		Target	Delta (%)	Tolerance (%)
		Tissue:	Body			
D2450V2	11/18/10	SAR _{1g} :	54.1	52.4	3.24	± 10
		SAR _{10g} :	25.2	24.5	2.86	

9.2. SYSTEM CHECK PLOTS

SYSTEM CHECK PLOT

Date/Time: 11/18/2010 9:52:38 AM

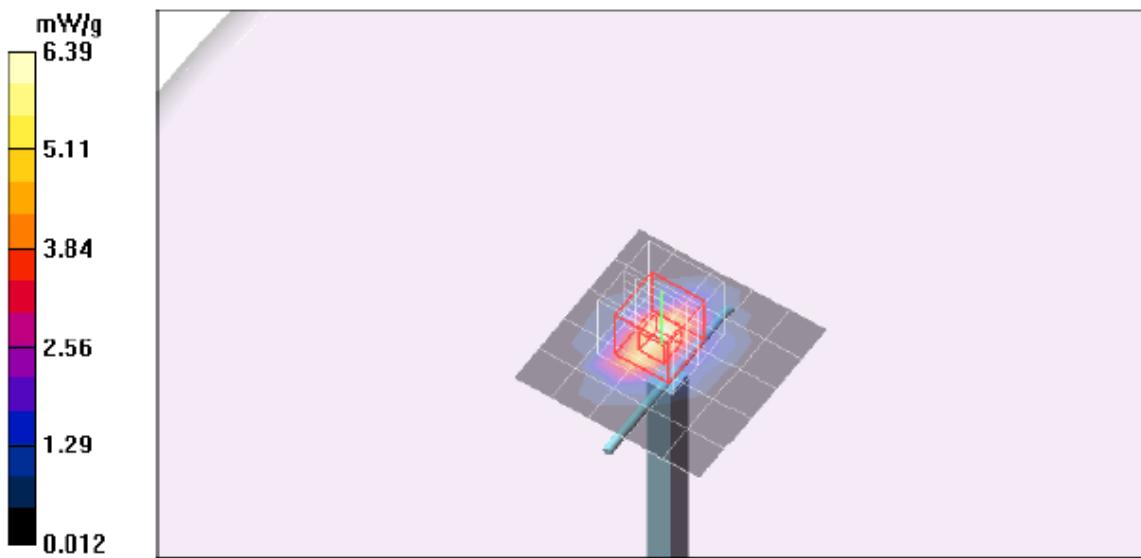
Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 2450$ MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

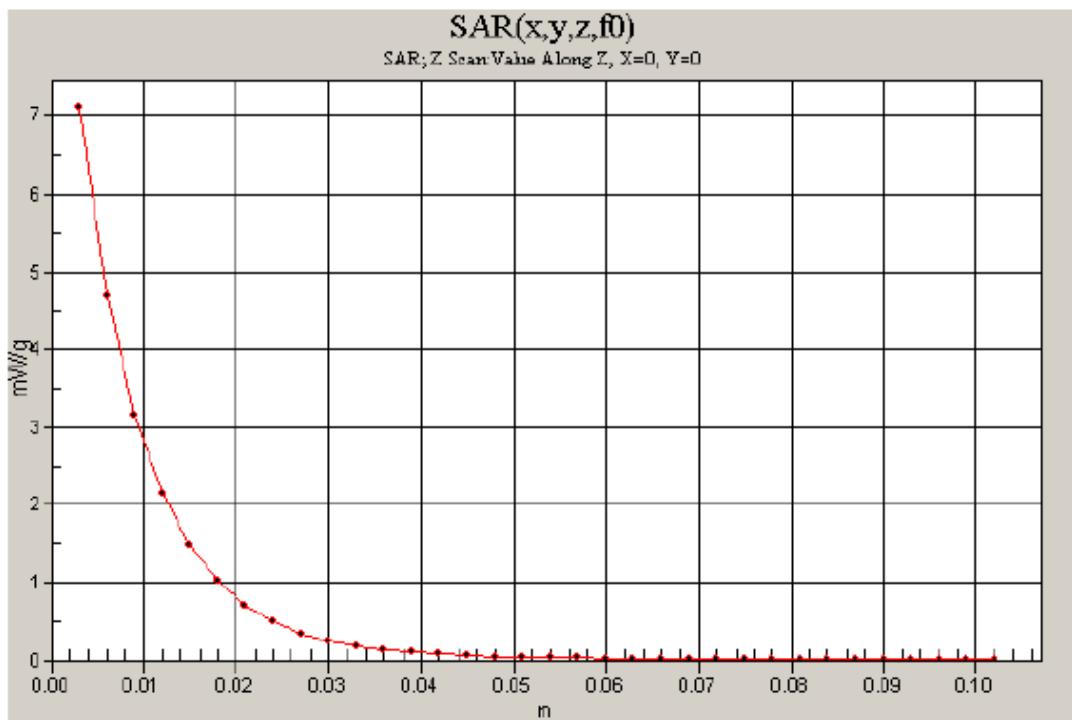
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (measured) = 6.39 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 57.7 V/m; Power Drift = 0.182 dB
Peak SAR (extrapolated) = 11.0 W/kg
SAR(1 g) = 5.41 mW/g; SAR(10 g) = 2.52 mW/g
Maximum value of SAR (measured) = 7.05 mW/g

SYSTEM CHECK – Z Plot

Date/Time: 11/18/2010 10:08:37 AM


Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole ; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm
Maximum value of SAR (measured) = 7.10 mW/g

10. DASY4 SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

11. RF OUTPUT POWER VERIFICATION

Results

802.11b			
Channel #	Freq. (MHz)	Conducted Avg Power	
		(dBm)	(mW)
1	2412	17.6	57.5
6	2437	18.0	63.1
11	2462	17.5	56.2
802.11g			
1	2412	14.1	25.7
6	2437	17.4	55.0
11	2462	13.8	24.0
802.11n HT20			
1	2412	13.2	20.9
6	2437	17.2	52.5
11	2462	12.6	18.2
802.11n HT40			
3	2422	13.3	21.4
6	2437	15.2	33.1
9	2452	13.0	20.0

Note: According to KDB 248227, SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

12. SUMMARY OF SAR TEST RESULTS

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
				1g-SAR	10g-SAR
802.11b	1	2412	TX1 (Main)		
	6	2437		0.028	0.017
	11	2462			

Note: According to KDB 248227, SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

13. SAR TEST PLOTS

Date/Time: 11/18/2010 4:13:19 PM

Test Laboratory: Compliance Certification Services

Lap-held Mode

DUT: Realtek; Type: RTL8188CE; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.99$ mho/m; $\epsilon_r = 52.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

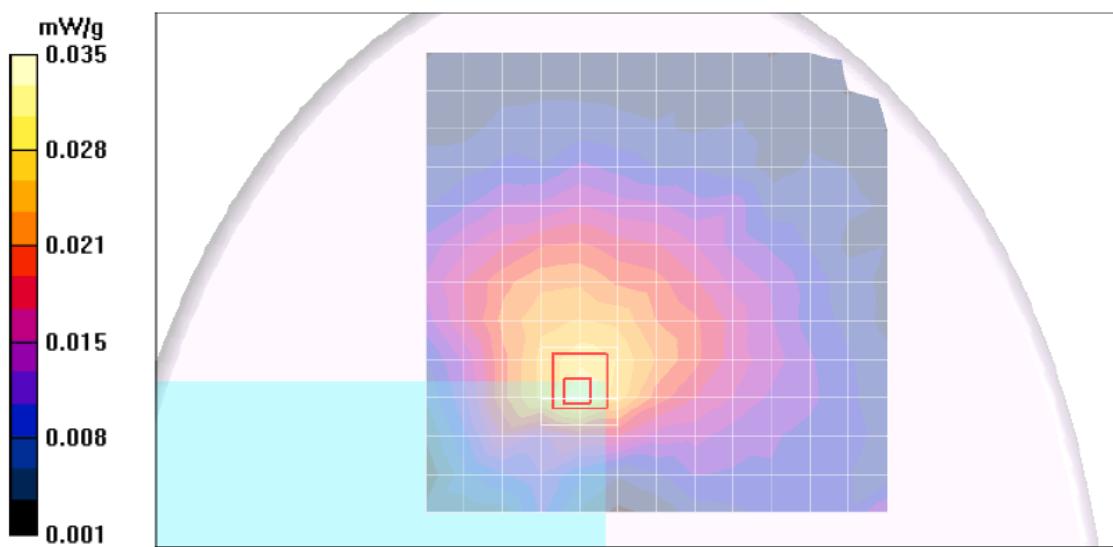
- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 - SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.033 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 0.954 V/m; Power Drift = 0.156 dB

Peak SAR (extrapolated) = 0.049 W/kg

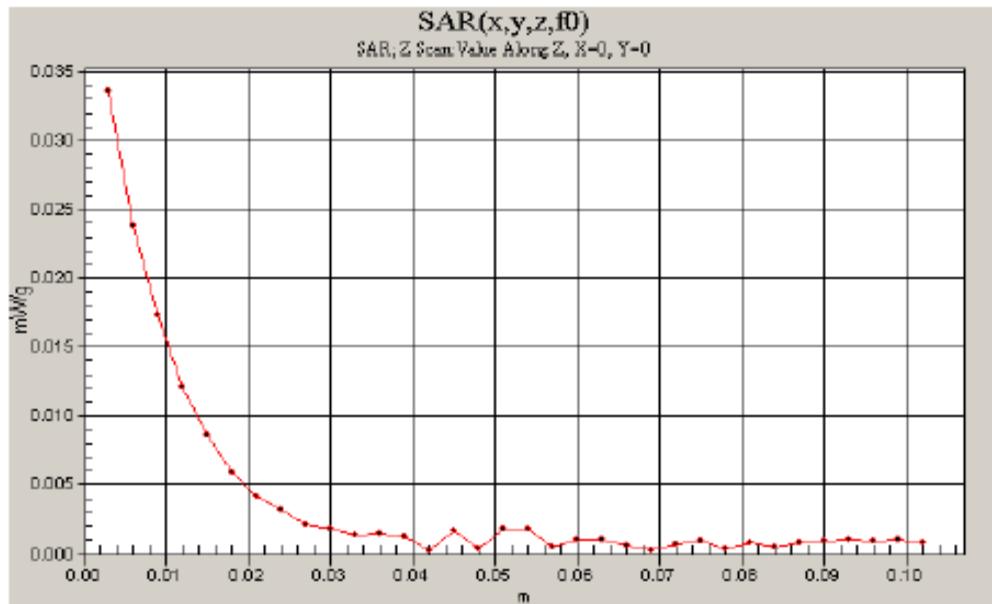
SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.017 mW/g

[Info: Interpolated medium parameters used for SAR evaluation.](#)

Maximum value of SAR (measured) = 0.035 mW/g

Date/Time: 11/18/2010 4:46:47 PM

Test Laboratory: Compliance Certification Services


Lap-held Mode

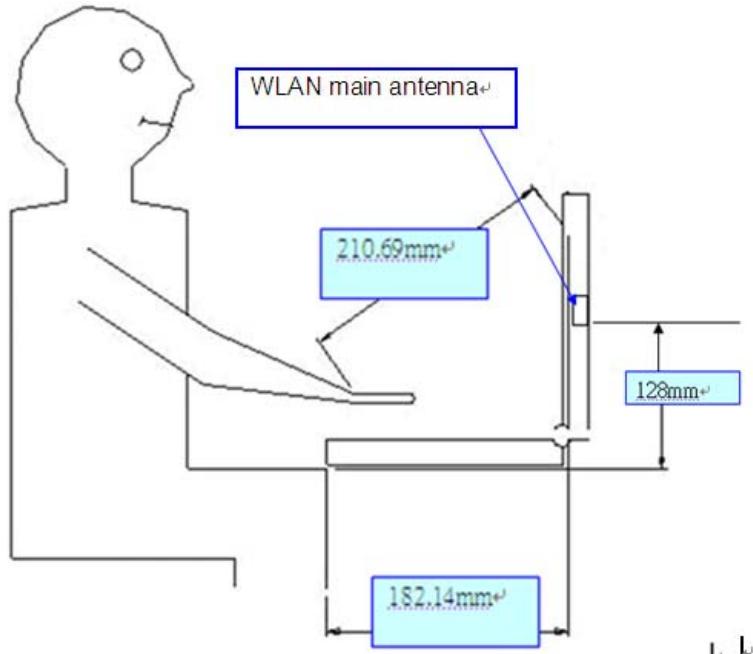
DUT: Realtek; Type: RTL8188CE; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

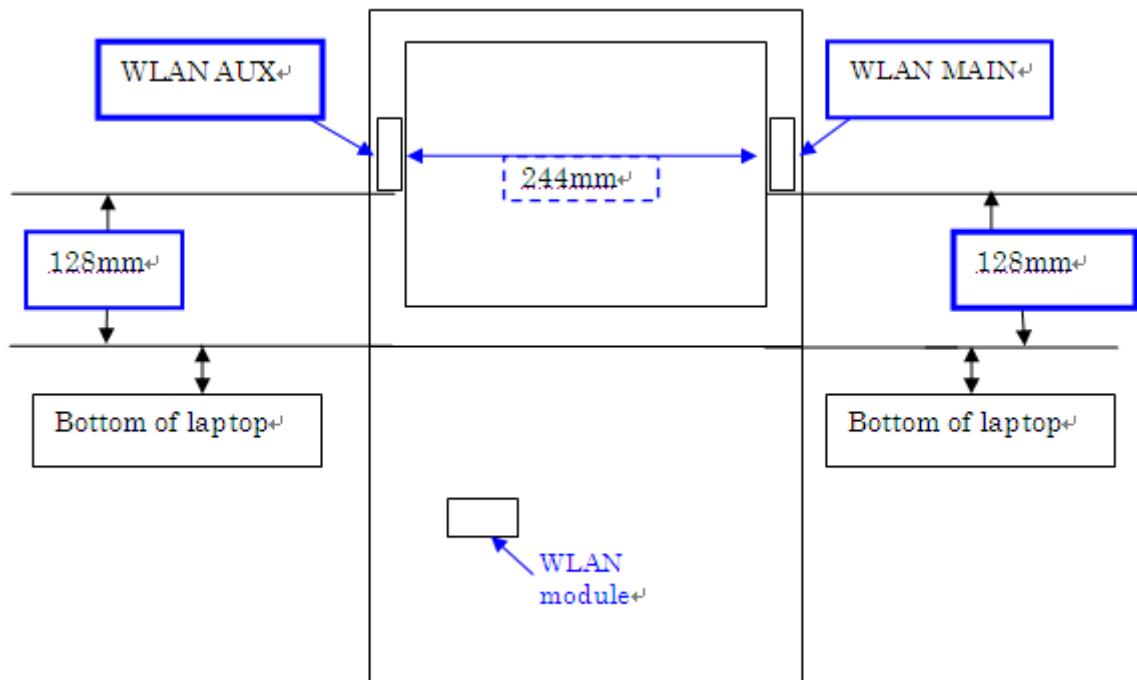
802.11b M-ch Mian Ant/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm

Info: Interpolated medium parameters used for SAR evaluation.
Maximum value of SAR (measured) = 0.034 mW/g

14. ATTACHMENTS


<u>No.</u>	<u>Contents</u>	<u>No. of page (s)</u>
1	Certificate of E-Field Probe - EX3DV3 SN 3531	11
2	Certificate of System Validation Dipole - D2450 SN:706	9

15. ANTENNA LOCATIONS AND SEPARATION DISTANCES


15.1. ANTENNA-TO-USERS

Lap-held configuration

(Separation distance between antenna and user)

15.2. ANTENNA-TO-ANTENNA

