

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003

RSS-102 Issue 4, March 2010 RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011

SAR EVALUATION REPORT

For

Tablet with 1 802.11bgn 1x1+BT (Tested inside of TOSHIBA WT310/WT100/WT110)

MODEL: BCM94319SDHMB FCC ID: CJ6UB94319WB IC: 248H-DB94319WB

REPORT NUMBER: 11U13751-1

ISSUE DATE: April 20, 2011

Prepared for

TOSHIBA AMERICA INFORMATION SYSTEMS, INC. 9740 IRVINE BLVD. IRVINE, CA 92618 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	April 20, 2011	Initial Issue	

TABLE OF CONTENTS

1.	ATTES1	TATION OF TEST RESULTS	4
2.	TEST M	ETHODOLOGY	5
3.	FACILIT	TIES AND ACCREDITATION	5
4.	CALIBR	ATION AND UNCERTAINTY	6
4	.1. ME	ASURING INSTRUMENT CALIBRATION	6
4	.2. ME	ASUREMENT UNCERTAINTY	7
5.	EQUIPM	IENT UNDER TEST	8
6.	SYSTEM	// SPECIFICATIONS	9
7.	СОМРО	SITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8.	TISSUE	DIELECTRIC PARAMETERS	11
8	.1. TIS	SUE PARAMETERS CHECK RESULTS	12
9.	SYSTEM	/I VERIFICATION	14
9	.1. SYS	STEM CHECK RESULTS	14
10.	SARI	MEASUREMENT PROCEDURES	15
11.	RF O	JTPUT POWER VERIFICATION	16
12.	SUMN	MARY OF SAR TEST RESULTS	17
1	2.1. S	ummary of SAR test configurations	17
1	2.2. S	ummary of SAR test results	18
13.	ATTA	CHMENTS	21
14.	ANTE	NNA LOCATIONS AND SEPARATION DISTANCES	22
15.	TEST	SETUP PHOTOS	23
16.	EXTE	RNAL PHOTOS	25

REPORT NO: 11U13751-1 FCC ID: CJ6UB94319WB

1. ATTESTATION OF TEST RESULTS

Company name:	TOSHIBA AMERICA INFORMATION SYSTEMS, INC. 9740 IRVINE BLVD. IRVINE, CA 92618 USA					
EUT Description:	Tablet with 1 802.11bgn 1x1+BT (Tested inside of TOSHIBA WT310/WT100/WT110)					
Model number:	BCM94319SDHMB					
Device Category:	Portable					
Exposure category:	General Population/Uncontrolled Exposure					
Date of tested:	April 8 - 11, 2011					
FCC / IC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR	Limit (W/kg)			
15.247 / RSS-102	2400 – 2483.5 1.19 W/kg (Bottom Face) 1.6					
	Applicable Standards Test Results					
OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003, RSS-102 Issue 4, March 2010, RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011						

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Sunay Shih

Sunny Shih Engineering Team Leader

Compliance Certification Services (UL CCS)

Tested By:

Devin Chang EMC Engineer

Compliance Certification Services (UL CCS)

DATE: April 20, 2011 IC: 248H-DB94319WB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528:2003, RSS-102 Issue 4, March 2010, and RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011 and the following KDB Procedures.

- 248227 SAR measurement procedures for 802.11a/b/g transmitters
- 447498 D01 Mobile Portable RF Exposure v04

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com

4. CALIBRATION AND UNCERTAINTY

4.1.MEASURING INSTRUMENT CALIBRATION

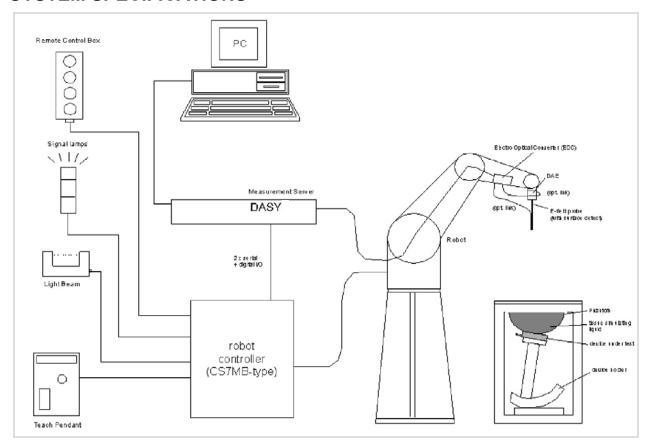
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Engineers	Manufacture	Tour of Mandal	Operial Nia	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	TX90	C01209		N/A		
Robot Remote Control	Stäubli	CS8C	N/A			N/A	
DASY5 Measurement Server	SPEAG	SEUMS014AA	1064			N/A	
Probe Alignment Unit	SPEAG	LB5 / 80	N/A			N/A	
SAM Phantom	SPEAG	QP 000 P40 CC	1602			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 BB	1099			N/A	
Dielectronic Probe kit	HP	85070C	N/A	N/A			
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
E-Field Probe	SPEAG	EX3DV4	3749	11	13	2011	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Data Acquisition Electronics	SPEAG	DAE4	1239	11	17	2011	
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A	
Simulating Liquid	SPEAG	M2450	N/A	Withir	1 24 h	rs of first test	

*Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

4.2. MEASUREMENT UNCERTAINTY


Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

incustrement anostrainty for occiting to o of the averaged over a gram							
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %		
Measurement System							
Probe Calibration (k=1) @ Body 2450 MHz	5.50		1	1	5.50		
Axial Isotropy		Rectangular	1.732	0.7071	0.47		
Hemispherical Isotropy		Rectangular	1.732	0.7071	0.94		
Boundary Effect	0.90	Rectangular	1.732	1	0.52		
Probe Linearity	3.45	Rectangular	1.732	1	1.99		
System Detection Limits		Rectangular	1.732	1	0.58		
Readout Electronics	0.30		1	1	0.30		
Response Time		Rectangular	1.732	1	0.46		
Integration Time		Rectangular	1.732	1	1.50		
RF Ambient Conditions - Noise		Rectangular	1.732	1	1.73		
RF Ambient Conditions - Reflections		Rectangular	1.732	1	1.73		
Probe Positioner Mechanical Tolerance		Rectangular	1.732	1	0.23		
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67		
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58		
Test Sample Related							
Test Sample Positioning	2.90	Normal	1	1	2.90		
Device Holder Uncertainty	3.60	Normal	1	1	3.60		
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89		
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31		
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85		
Liquid Conductivity - measurement	1.61	Normal	1	0.64	1.03		
Liquid Permittivity - deviation from target		Rectangular	1.732	0.6	1.73		
Liquid Permittivity - measurement	-2.72		1	0.6	-1.63		
Combined Standard Uncertainty Uc(y) = 9.64							
Expanded Uncertainty U, Coverage Factor = 2, > 95 % Confidence = 19.27 %							
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	1.53	dB		

5. EQUIPMENT UNDER TEST

Tablet with 1 802.11bgn 1x1+BT						
(Tested inside of TOSHIBA W	(Tested inside of TOSHIBA WT310/WT100/WT110)					
Normal operation:	Tablet bottom face, and	I				
	Tablet edges - Multiple display orientations supporting both portrait and landscape configurations					
Antenna tested:	Manufactured Part number					
	Wha Yu Industrial	Main Antenna: C1335-520063-A				
		Aux/BT Antenna: C1335-520064-A				
	Note: WiFi Aux and sha	red with Bluetooth				
Antenna-to-antenna/user separation distances:	Refer to Sec. 14 for det distances.	ails of antenna locations and separation				
Assessment for SAR	WiFi Main antenna	can transmit simultaneously with Bluetooth.				
evaluation for Simultaneous transmission:	WiFi Aux antenna cannot transmit simultaneously with BT.					
	Due to Bluetooth's maximum output is 1.27 mW <60/ $f_{(GHz)}$ and standalone SAR is not required, thus WiFi Main antenna and Bluetooth are not considered as simultaneous transmission.					

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- · DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 9 of 25

DATE: April 20, 2011 IC: 248H-DB94319WB

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)										
(% by weight)	45	50	83	35	9	15	19	00	24	50		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

8. TISSUE DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body (for 300 – 3000 MHz and 5800 MHz)
The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body (Supplement C 01-01)				
rarget Frequency (MHZ)	$\epsilon_{ m r}$	σ (S/m)			
300	58.20	0.92			
450	56.70	0.94			
835	55.20	0.97			
900	55.00	1.05			
915	55.00	1.06			
1450	54.00	1.30			
1610	53.80	1.40			
1800 – 2000	53.30	1.52			
2450	52.70	1.95			
3000	52.00	2.73			
5800	48.20	6.00			

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

Reference Values of Tissue Dielectric Parameters for Body (for 3000 MHz - 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: deionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz - 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MILIT)	Body ⁻	Reference	
f (MHz)	rel. permitivity	conductivity	Reference
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

8.1. TISSUE PARAMETERS CHECK RESULTS

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
4/8/2011	Body 2450	e'	51.2679	Relative Permittivity (ε_r):	51.27	52.70	-2.72	5
4/0/2011	Body 2450	e"	14.5452	Conductivity (σ):	1.98	1.95	1.61	5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 38%

April 08, 2011 09:05 AM

Frequency	e'	e"
2410000000.	51.4221	14.3931
2415000000.	51.4050	14.4113
2420000000.	51.3847	14.4296
2425000000.	51.3659	14.4496
2430000000.	51.3472	14.4670
2435000000.	51.3270	14.4874
2440000000.	51.3070	14.5055
2445000000.	51.2886	14.5252
2450000000.	51.2679	14.5442
2455000000.	51.2476	14.5643
2460000000.	51.2279	14.5835
2465000000.	51.2078	14.6022
2470000000.	51.1886	14.6250
2475000000.	51.1695	14.6416
2480000000.	51.1519	14.6611
2485000000.	51.1363	14.6812

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Date	Freq. (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit ±(%)
04/11/2011 Boo	Pody 2450	e'	51.4684	Relative Permittivity (ε_r):	51.47	52.70	-2.34	5
	Body 2450	e"	14.5651	Conductivity (σ):	1.98	1.95	1.75	5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

April 11, 2011 09:16 AM

Frequency	e'	e"
2410000000.	51.6408	14.4276
2415000000.	51.6204	14.4430
2420000000.	51.5996	14.4599
2425000000.	51.5790	14.4771
2430000000.	51.5574	14.4958
2435000000.	51.5352	14.5090
2440000000.	51.5097	14.5275
2445000000.	51.4878	14.5446
2450000000.	51.4684	14.5651
2455000000.	51.4458	14.5873
2460000000.	51.4272	14.6100
2465000000.	51.4071	14.6323
2470000000.	51.3953	14.6549
2475000000.	51.3807	14.6800
2480000000.	51.3679	14.7023
2485000000.	51.3573	14.7310

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = \text{target } f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

REPORT NO: 11U13751-1 DATE: April 20, 2011 IC: 248H-DB94319WB FCC ID: CJ6UB94319WB

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field EX3DV4 SN 3749 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm. For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate#	Cal. date	Cal. Freq.	SAR Avg (mW/g)		
validation dipole	Cai. Certificate #	Cai. uale	(GHz)	Tissue:	Head	Body
D2450V2	D2450\/2 706 Apr10	4/19/10	2.4	1g SAR:	51.6	52.4
SN 706	I 112450\/2-706 Δnr10		2.4	10g SAR:	24.4	24.5

9.1. SYSTEM CHECK RESULTS

System	Date Tested	Measured (No	ormalized to 1 W)	Target	Delta (%)	Tolerance	
validation dipole	Date Tested	Tissue:	Body	rarget	Della (70)	(%)	
D2450V2	04/08/11	1g SAR:	54.9	52.4	4.77	.10	
D2450V2	U 4 /U6/11	10g SAR:	25.1	24.5	2.45	±10	
D2450\/2	04/44/44	1g SAR:	55.5	52.4	5.92	.10	
D2450V2	04/11/11	10g SAR:	25.5	24.5	4.08	±10	

REPORT NO: 11U13751-1 FCC ID: CJ6UB94319WB

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

DATE: April 20, 2011 IC: 248H-DB94319WB

11. RF OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, wl_tools, which enable a operator to control the frequency and output power of the module.

Mode	Ch. #	Freq. (MHz)	Target Pwr form EMC report (dBm)	Actual Measured Pwr (dBm)
	1	2412	19.5	19.6
802.11b	6	2437	19.7	19.8
	11	2462	20.5	20.5
	1	2412	14.5	
802.11g	6	2437	19.5	
	11	2462	16.0	
802.11n HT20	1	2412	Covered by	
SISO	6	2437	testing to 11g	
3130	11	2462	Legacy	
802.11n HT40	3	2422	10.5	
SISO	6	2437	16.0	
3130	9	2450	14.5	

Note: The modes with highest output power channel were chosen for the conducted output power measurement. Please refer to original report (FCC ID: QDS-BRCM1057) for Average Power information as documented in 03/31/2011 original filing.

REPORT NO: 11U13751-1 FCC ID: CJ6UB94319WB

12. SUMMARY OF SAR TEST RESULTS

12.1. Summary of SAR test configurations

Configuration	Antenna-to-User distance	SAR Require	Comments
Bottom Face	8 mm From WiFi Main-to- user 8 mm From WiFi Aux/BT-to- user	Yes	SAR evaluation
Edge – Primary Landscape	137 mm From WiFi Main-to- user	No	This is not the most conservative antenna-to- user distance at edge mode. Per According to KDB 447498 4) b) ii) (2)
	181.9 mm From WiFi Aux/BT-to- user	No	This is not the most conservative antenna-to- user distance at edge mode. Per According to KDB 447498 4) b) ii) (2)
Edge – Secondary Landscape	39 mm From WiFi Main-to- user 4.1 mm From WiFi Aux/BT-to- user	Yes	SAR evaluation
Edge – Primary Portrait	282.55 mm From WiFi Main-to- user	No	This is not the most conservative antenna-to- user distance at edge mode. Per According to KDB 447498 4) b) ii) (2)
	51 mm From WiFi Aux/BT-to- user	Yes	SAR evaluation
Edge – Secondary Portrait	3.45 mm From WiFi Main-to- user	Yes	SAR evaluation
	224 mm From WiFi Aux/BT-to- user	No	This is not the most conservative antenna-to- user distance at edge mode. Per According to KDB 447498 4) b) ii) (2)

DATE: April 20, 2011

IC: 248H-DB94319WB

12.2. Summary of SAR test results

Bottom Face

Band Mode		Channal	f (NALIT)	Antenna	Ava Dur (dDm)	Results (mW/g)		
Band	iviode	Channel	f (MHz)	port	Avg Pwr (dBm)	1g-SAR	10g-SAR	
	2.4 GHz 802.11b Legacy	1	2412		19.6	0.803	0.386	
2.4 GHz 8		6	2437	Main	19.8	0.926	0.441	
		11	2462		20.5	1.190	0.569	
		1 2412	2412	Aux/BT	19.6	0.655	0.296	
2.4 GHz 802.	802.11b Legacy	6	2437		19.8	0.660	0.292	
		11	2462		20.5	0.876	0.388	

Secondary Landscape

Dand	Modo	Channel	f (MHz)	Antenna	Aver Diver (dDes)	Results (mW/g)	
Band Mode	Wode			Port	Avg Pwr (dBm)	1g-SAR	10g-SAR
		1	2412		19.6		
2.4 GHz	802.11b Legacy	6	2437	Main	19.8	0.417	0.204
		11	2462		20.5	0.499	0.245
		1	2412	Aux/BT	19.6	0.722	0.346
2.4 GHz	802.11b Legacy	6	2437		19.8	0.767	0.365
		11	2462		20.5	0.857	0.406

Primary Portrait

Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)	
						1g-SAR	10g-SAR
2.4 GHz 802.11b Le		1	2412	Aux/BT	19.6		
	802.11b Legacy	6	2437		19.8	0.098	0.050
		11	2462		20.5	0.118	0.059

Secondary Portrait

Band	Mode	Channel	f (MHz)	Antenna Port	Avg Pwr (dBm)	Results (mW/g)	
		Charine				1g-SAR	10g-SAR
		1	2412	Main	19.6	0.743	0.365
2.4 GHz	802.11b Legacy	6	2437		19.8	0.791	0.385
	11	2462		20.5	0.965	0.472	

WORST-CASE SAR TEST LPOTS

Date/Time: 4/8/2011 5:20:14 PM

Test Laboratory: UL CCS

802.11bgn 1x1

DUT: Broadcom; Type: Tablet; Serial: 90N0-Y11S0Q0

Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.998 \text{ mho/m}$; $\epsilon_r = 51.22$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

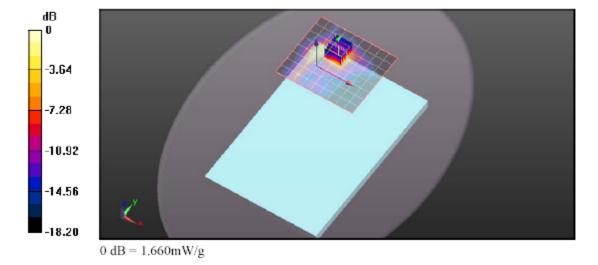
DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(6.86, 6.86, 6.86); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

Bottom face/Main Ant_ch 11/Area Scan (10x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.649 mW/g

Bottom face/Main Ant_ch 11/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 28.892 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.327 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.569 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.661 mW/g

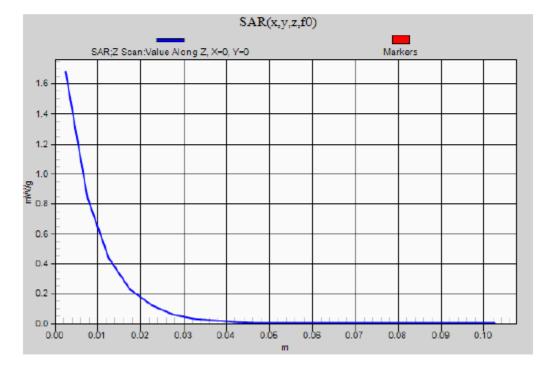
REPORT NO: 11U13751-1 FCC ID: CJ6UB94319WB

Date/Time: 4/8/2011 5:38:04 PM

DATE: April 20, 2011 IC: 248H-DB94319WB

Test Laboratory: UL CCS

802.11bgn 1x1

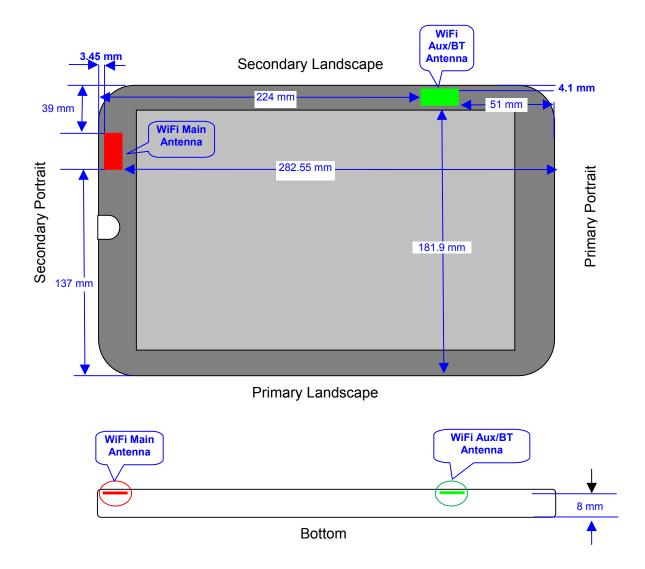

DUT: Broadcom; Type: Tablet; Serial: 90N0-Y11S0Q0

Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Bottom face/Main Ant_ch 11/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.680 mW/g



ENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 6 This report shall not be reproduced except in full, without the written approval of UL CCS.

13. ATTACHMENTS

<u>No.</u>	<u>Contents</u>	No. of page (s)
1	System Check Plots for D2450V2 SN 706	2
2	SAR Test Plots for 2.4 GHz	17
3	Certificate of E-Field Probe - EX3DV4 SN 3686	11
4	Certificate of System Validation Dipole - D2450 SN:706	9

14. ANTENNA LOCATIONS AND SEPARATION DISTANCES

