

Testing Tomorrow's Technology

Application

For

Part 2, Subpart J, Paragraph 2.907 Equipment Authorization of Certification for an Intentional Radiator per Part 15, Subpart C, paragraphs 15.207, 15.209 and 15.247

And

**Innovation, Science, and Economic Development Canada
Certification per
RSS Gen (15) General Requirements for Radio Apparatus
and
RSS-247 Digital Transmission Systems (DTSs), Frequency Hopping Systems
(FHSs) and License-Exempt Local Area Network (LE-LAN) Devices**

For the

Digital Monitoring Products, Inc.

Model: 1112

**FCC ID: CCKPC0260
IC: 5251A-PC0260**

**UST Project: 25-0096
Issue Date: May 7, 2025**

Total Pages in This Report: 40

**3505 Francis Circle Alpharetta, GA 30004
PH: 770-740-0717 Fax: 770-740-1508
www.ustech-lab.com**

Testing Tomorrow's Technology

I certify that I am authorized to sign for the Test Agency and that the statements in this report and in the Exhibits attached hereto are true and correct to the best of my knowledge and belief:

US TECH (Agent Responsible For Test):

By: Alan Ghasiani

Name: Alan Ghasiani

Title: Compliance Engineer – President

Date May 7, 2025

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the U.S. Government.

3505 Francis Circle Alpharetta, GA 30004
PH: 770-740-0717 Fax: 770-740-1508
www.ustech-lab.com

US Tech Test Report: FCC Part 15 Certification/RSS 247
FCC ID: CCKPC0260
IC: 5251A-PC0260
Test Report Number: 25-0096
Issue Date: May 7, 2025
Customer: Digital Monitoring Products, Inc.
Model: 1112

MEASUREMENT TECHNICAL REPORT

COMPANYS NAME: Digital Monitoring Products, Inc.

MODEL: 1112

FCC ID: CCKPC0260

IC: 5251A-PC0260

DATE: May 7, 2025

This report concerns (check one): Original grant Class II change

Equipment type: FHSS Transmitter Module

Technical:

903.32 – 926.68 MHz (Channels 0-52)

Type of modulation:

2-FSK

Data/Bit Rate: N/A

Antenna Gain: -1.0 dBi (Dipole Antenna)

Maximum Output Power: +13.36 dBm (measured)

Software used to program EUT: proprietary software.

EUT firmware number: proprietary software.

Power setting: default value selected.

Report prepared by:

US Tech

3505 Francis Circle

Alpharetta, GA30004

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

Table of Contents

<u>Paragraph</u>	<u>Title</u>	<u>Page</u>
1 General Information		7
1.1 Purpose of this Report.....		7
1.2 Characterization of Test Sample		7
1.3 Product Description		7
1.4 Configuration of Tested System		7
1.5 Test Facility		7
1.6 Related Submittals		8
1.6.1 The EUT is subject to the following FCC authorizations:		8
1.6.2 Verification of the Digital apparatus		8
2 Tests and Measurements		9
2.1 Test Equipment		9
2.2 Modifications to EUT Hardware		10
2.3 Number of Measurements for Intentional Radiators (15.31(m), RSS-Gen 6.8) 10		
2.4 Frequency Range of Radiated Measurements (Part 15.33, RSS-Gen 6.13).....		11
2.4.1 Intentional Radiator.....		11
2.4.2 Unintentional Radiator		11
2.5 Measurement Detector Function and Bandwidth (CFR 15.35, RSS-Gen 6.9, 6.13)		11
2.5.1 Detector Function and Associated Bandwidth		11
2.5.2 Corresponding Peak and Average Requirements.....		11
2.5.3 Pulsed Transmitter Averaging.....		11
2.6 EUT Antenna Requirements (CFR 15.203, RSS-Gen 6.7).....		12
2.7 Restricted Bands of Operation (Part 15.205, RSS-Gen 8.10)		13
2.8 Transmitter Duty Cycle (CFR 35 (c), RSS-Gen 6.10)		13
2.9 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207, RSS-247 5.1 & 5.2).....		14
2.10 Intentional Radiator, Radiated Emissions (CFR 15.209, 15.247(d), RSS 247 5.1 & 5.2).....		14
2.11 Band Edge Measurements – (CFR 15.247 (d))		20
2.12 99% Occupied Bandwidth (IC RSS 247 5.1 & 5.2,CFR 15.247 (a) (1)).....		25
2.13 Number of Hopping Frequencies (CFR 15.247 (a)(1)) (CRF 15.247(b)(1)).....		29
2.14 Maximum Peak Conducted Output Power (CFR 15.247 (b) (3))		30
2.15 Frequency Separation (CRF 15.247(a)(1))		34
2.16 Average Time of Occupancy (CFR 15.247(a)(1))		35
2.17 Intentional Radiator Power Lines Conducted Emissions (CFR 15.207, RSS- Gen 8.8)		36
2.18 Intentional Radiator, Radiated Emissions (CFR 15.209, RSS-Gen, 8.9)		36

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

2.19 Measurement Uncertainty	38
2.19.1 Conducted Emissions Measurement Uncertainty	38
2.19.2 Radiated Emissions Measurement Uncertainty	38
3 Conclusions.....	38

List of Figures

<u>Figures</u>	<u>Title</u>	<u>Page</u>
Figure 1. Test Configuration	12	
Figure 2. Duty Cycle 100ms Sweep	13	
Figure 3. Antenna Conducted Emissions, Low Channel 30 MHz to 1000 MHz	15	
Figure 4. Antenna Conducted Emissions, Low Channel 1000 MHz to 9300 MHz	15	
Figure 5. Antenna Conducted Emissions, Middle Channel 30 MHz to 1000 MHz	16	
Figure 6. Antenna Conducted Emissions, Middle Channel 1000 MHz – 9300 MHz	16	
Figure 7. Antenna Conducted Emissions, High Channel 30 MHz to 1000 MHz....	17	
Figure 8. Antenna Conducted Emissions, High Channel 1000 MHz – 9300 MHz.	17	
Figure 9. Band Edge Compliance, Low Channel Delta – Hopping Off	21	
Figure 10. Band Edge Compliance, Low Channel Delta – Hopping On	22	
Figure 11. Band Edge Compliance, High Channel Delta – Hopping Off	23	
Figure 12. Band Edge Compliance, High Channel Delta – Hopping On	24	
Figure 13. Twenty dB Bandwidth – Low Channel	26	
Figure 14. Twenty dB Bandwidth – Mid Channel	27	
Figure 15. Twenty dB Bandwidth – High Channel.....	28	
Figure 16. Hopping Channels 0 through 52	29	
Figure 17. Peak Antenna Conducted Output Power, Low Channel	31	
Figure 18. Peak Antenna Conducted Output Power, Mid Channel	32	
Figure 19. Peak Antenna Conducted Output Power, High Channel	33	
Figure 20. Channel Separation	34	
Figure 21. Average Time of Occupancy.....	35	

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

List of Tables

<u>Table</u>	<u>Title</u>	<u>Page</u>
Table 1.	EUT and Peripherals.....	8
Table 2.	Test Instruments	9
Table 3.	Number of Test Frequencies for Intentional Radiators.....	10
Table 4.	Allowed Antenna(s)	12
Table 5.	Peak Radiated Fundamental & Harmonic Emissions.....	18
Table 6.	Average Radiated Fundamental & Harmonic Emissions	19
Table 7.	20 dB Bandwidth and 99% Occupied Bandwidth	25
Table 8.	Peak Antenna Conducted Output Power per Part 15.247 (b) (3)	30
Table 9.	Spurious Radiated Emissions (9 kHz- 30 MHz)	36
Table 10.	Spurious Radiated Emissions 30 MHz to 1000 MHz.....	37
Table 11.	Spurious Radiated Emissions 1 GHz to 10 GHz	37

List of Attachments

Agency Agreement	Internal Photographs
Application Forms	External Photographs
Letter of Confidentiality	Antenna Photographs
Equipment Label(s)	Theory of Operation
Block Diagram(s)	RF Exposure
Schematic(s)	User's Manual
Test Configuration Photographs	

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

1 General Information

1.1 Purpose of this Report

This report means to convey test results and information concerning the suitability of this exact product for public distribution according to the FCC Rules and Regulations Part 15, Section 247 and ISED RSS 247 Issue 3.

1.2 Characterization of Test Sample

The sample used for testing was received by US Tech on April 24, 2025 in good operating condition.

1.3 Product Description

The Equipment under Test (EUT) is the Digital Monitoring Products, Inc. model 1112. The EUT is a wireless water and temperature detector. It is designed to protect areas from temperature fluctuations. The transmitter has an internal temperature sensor that detects cold, hot or warm temperature ranges or flood detection. The transmitter can be programmed with up to four zones for temperature sensing, flood detection or both.

1.4 Configuration of Tested System

The Test Sample was tested per ANSI C63.10:2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices for the intentional radiator aspect of the device and ANSI C63.4:2014, Methods of Measurement of Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (2014) for the unintentional radiator aspect of the device as well as FCC subpart B and C of Part 15 and per FCC KDB Publication number 558074 v05r02 for Frequency Hopping Spread Spectrum Operating Under section 15.247.

A list of EUT and Peripherals is found in Table 1. A block diagram of the tested system is shown in Figure 1. Test configuration photographs are provided in separate Appendices.

1.5 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC. Its designation number is 186022. Additionally, this site has also been fully

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

described and submitted to Industry Canada (IC), and has been approved under file number 9900A-1.

1.6 Related Submittals

1.6.1 The EUT is subject to the following FCC authorizations:

- a) Certification under section 15.247 as a transmitter.
- b) Verification under 15.101 as a digital device and receiver.

1.6.2 Verification of the Digital apparatus

The Verification requirement shares many common report elements with the Certification report. Therefore, though this report is mostly intended to provide data for the Certification process, the Verification authorization report (part 15.107 and 15.109) for the EUT is included herein.

Table 1. EUT and Peripherals

PERIPHERAL MANUFACTURER.	MODEL NUMBER	SERIAL NUMBER	FCC ID:	CABLES P/D
Digital Monitoring Products, Inc.	1112	Engineering Sample	FCC ID: CCKPC0260 (Pending) IC: 5251A-PC0260 (Pending)	PU
Antenna See antenna details	--	--		

U= Unshielded

S= Shielded

P= Power

D= Data

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

2 Tests and Measurements

2.1 Test Equipment

The table below lists test equipment used to evaluate this product. Model numbers, serial numbers and their calibration status are indicated.

Table 2. Test Instruments

TEST INSTRUMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	DATE OF NEXT CALIBRATION
Spectrum Analyzer	Agilent	E4440A	MY45304803	7/21/2025 2 yr.
Loop Antenna	ETS Lindgren	6502	9810-3246	11/15/2026 2 yr.
Biconlog	AAronia A.G	BicoLOG* 20100E	20400600036	9/25/2025 2 yr.
Horn Antenna	A.H. Systems	SAS-571	605	3/18/2027 2 yr.
Pre-Amplifier	Hewlett-Packard	8449B	3008A00914	3/10/2026
Pre-Amplifier	Hewlett-Packard	8447D	1937A01611	6/17/2025
High Pass Filter	Microwave Circuits Inc.	H3R020G2	001DC9528	7/2/2025
High Pass Filter	Mini-Circuits Inc.	VHF-1320 15542	N/A	7/2/2025
Attenuator	PE	47-20	59078	3/14/2026
Cable	USTech	N/A	CA411	1/23/2026
Cable	Time Microwave Systems	LMR400	CA413	3/7/2026
Cable	BRACKE M	BM96603.6	CA414	3/11/2026
Cable	Time Microwave Systems	LMR400	CA415	4/3/2026

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

Cable	Time Microwave Systems	LMR400	CA191	7/23/2025
Cable	US Tech	SMA 60cm	CA291	7/23/2025

Note: The calibration interval of the above test instruments are 12 months unless stated otherwise. All calibrations are traceable to NIST/USA.

2.2 Modifications to EUT Hardware

No physical modifications were made by US Tech in order to bring the EUT into compliance with FCC Part 15, Subpart C Intentional Radiator Limits for the transmitter portion of the EUT or the Subpart B Unintentional Radiator Limits (Receiver and Digital Device) Requirements.

2.3 Number of Measurements for Intentional Radiators (15.31(m), RSS-Gen 6.8)

Measurements of intentional radiators or receivers shall be performed and reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in Table 3 below.

Table 3. Number of Test Frequencies for Intentional Radiators

Frequency Range over which the device operates	Number of Frequencies	Location in the Range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near the top 1 near the bottom
Greater than 10 MHz	3	1 near top 1 near middle 1 near bottom

Because the EUT operates at 903.326 MHz to 926.679 MHz, 3 test frequencies were used.

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

2.4 Frequency Range of Radiated Measurements (Part 15.33, RSS-Gen 6.13)

2.4.1 Intentional Radiator

The spectrum shall be investigated for the intentional radiator from the lowest RF signal generated in the EUT, without going below 9 kHz to the 10th harmonic of the highest fundamental frequency generated or 40 GHz, whichever is the lowest.

2.4.2 Unintentional Radiator

For the digital device, an unintentional radiator, the frequency range shall be 30 MHz to 1000 MHz, or to 5 times the highest internal clock frequency.

2.5 Measurement Detector Function and Bandwidth (CFR 15.35, RSS-Gen 6.9, 6.13)

The radiated and conducted emissions limits shown herein are based on the following:

2.5.1 Detector Function and Associated Bandwidth

On frequencies below 1000 MHz, the limits herein are based upon measurement equipment employing a CISPR Quasi-peak detector function and related measurement bandwidths (i.e. 9 kHz from 150 kHz to 30 MHz and 120 kHz from 30 MHz to 1000 MHz). Alternatively, measurements may be made with equipment employing a peak detector function as long as the same bandwidths specified for the Quasi-peak device are used.

2.5.2 Corresponding Peak and Average Requirements

Above 1000 MHz, radiated limits are based on measuring instrumentation employing an average detector function. When average radiated emissions are specified, there is also a corresponding Peak requirement, as measured using a peak detector, of 20 dB greater than the average limit. For all measurements above 1000 MHz the Resolution Bandwidth shall be at least 1 MHz.

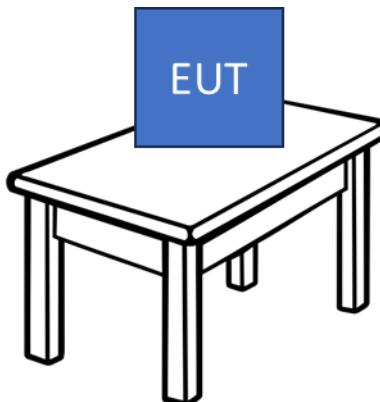
2.5.3 Pulsed Transmitter Averaging

When the radiated emissions limit is expressed as an average value, and the transmitter is pulsed, the measured field strength shall be determined by applying a Duty Cycle Correction Factor based upon dividing the total ON time during the first

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

100 ms period by 100 ms (or by the period if less than 100 ms). The duty cycle may be expressed logarithmically in dB.


NOTE: If the transmitter was programmed to transmit at >98% duty cycle, then, wherever applicable (where the detection mode was AVG) the duty cycle factor calculated will be applied.

2.6 EUT Antenna Requirements (CFR 15.203, RSS-Gen 6.7)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. Only the antenna(s) listed in Table 4 will be used with this module.

Table 4. Allowed Antenna(s)

REPORT REFERENCE	MANUFACTURER	TYPE OF ANTENNA	MODEL	GAIN dB _i	TYPE OF CONNECTOR
Antenna	Johanson Technology	Chip Antenna	0915AT43A0026	-1.0	Soldered

Figure 1. Test Configuration

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

2.7 Restricted Bands of Operation (Part 15.205, RSS-Gen 8.10)

Only spurious emissions can fall in the frequency bands of CFR 15.205. The field strength of these spurious emissions cannot exceed the limits of 15.209. Radiated harmonics and other spurious emissions are examined for this requirement see paragraph 2.1

2.8 Transmitter Duty Cycle (CFR 35 (c), RSS-Gen 6.10)

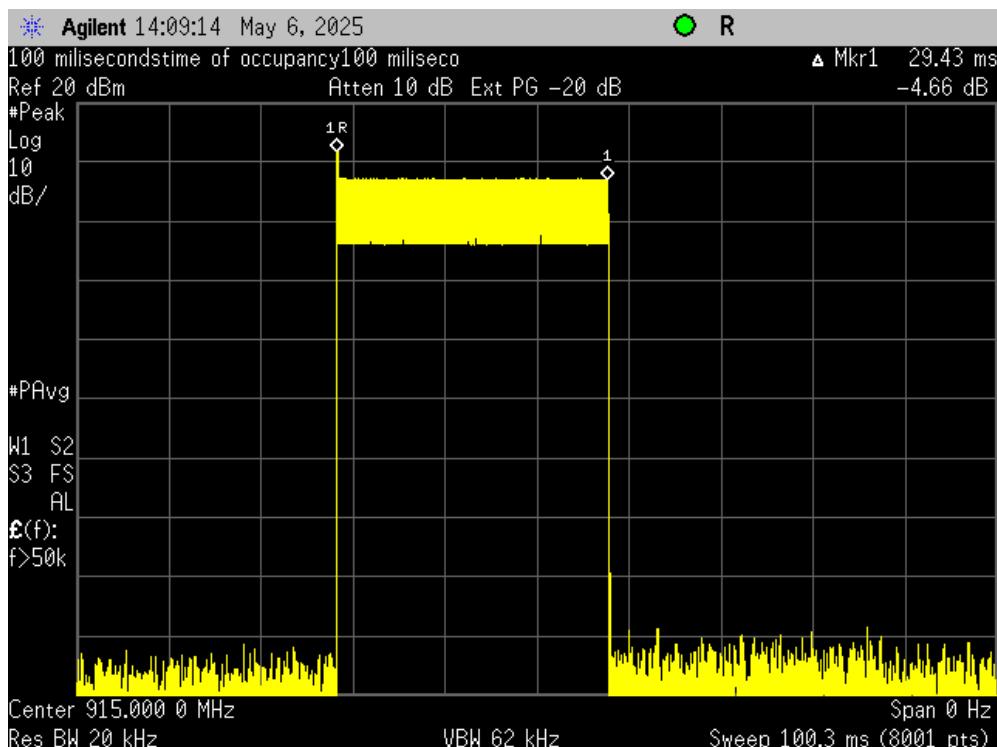


Figure 2. Duty Cycle 100ms Sweep

Total Time On from Figure 2 = 29.43 ms (Transmitter Pulse Width)

Total Pulse Train from Figure 2 = 100 ms (Pulse Train)

Total Time On (A)/Total Pulse Train (B) = 29.43 ms/100 ms Numeric Duty Cycle

$$\text{Duty Cycle} = 20 \log (A/B) = \boxed{-10.6 \text{ dB}}$$

NOTE: The transmitter was programmed to transmit at >98% duty cycle, therefore the duty cycle factor calculated above will be applied wherever applicable (where the detection mode was AVG).

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

2.9 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207, RSS-247 5.1 & 5.2)

The EUT is battery operated from two coin cell batteries. The EUT is not designed to be directly or indirectly connected to the AC mains therefore the power line emissions testing of this paragraph is not applicable to this device. Testing was not performed.

2.10 Intentional Radiator, Radiated Emissions (CFR 15.209, 15.247(d), RSS 247 5.1 & 5.2)

Radiated Spurious measurements: The EUT was placed into a continuous transmit mode of operation (>98% duty cycle) and tested per ANSI 63.10:2013 and ANSI C63.10:2013. A preliminary scan was performed on the EUT to find signal frequencies that were caused by the transmitter part of the device. A preliminary scan was performed on the EUT to find the worst-case results. The EUT was tested in X, Y, and Z axes or in the orientation of normal operation if the device is designed to operate in a fixed position.

Radiated measurements were then conducted between the frequency range of 9 kHz (or lowest frequency used/generated by the device) up to the tenth harmonic of the device (no greater than 40 GHz). In the band below 30 MHz, a resolution bandwidth (RBW) of 9 kHz was used. Emissions below 1 GHz were tested with a RBW of 120 kHz, and emissions above 1 GHz were tested with a RBW of 1 MHz. All video bandwidth settings were at least three times the RBW value.

The EUT was investigated with CFR 15.209, General requirements for unwanted spurious emissions. The conducted spurious method as described below was used to investigate all other emissions emanating from the antenna port.

Conducted Spurious measurements: The EUT was put into a Frequency Hopping mode tested per ANSI C63.10:2013 for conducted out-of-band emissions emanating from the antenna port over the frequency range of 30 MHz to 10 GHz. A conducted scan was performed on the EUT to identify and record the spurious signals that were related to the transmitter.

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

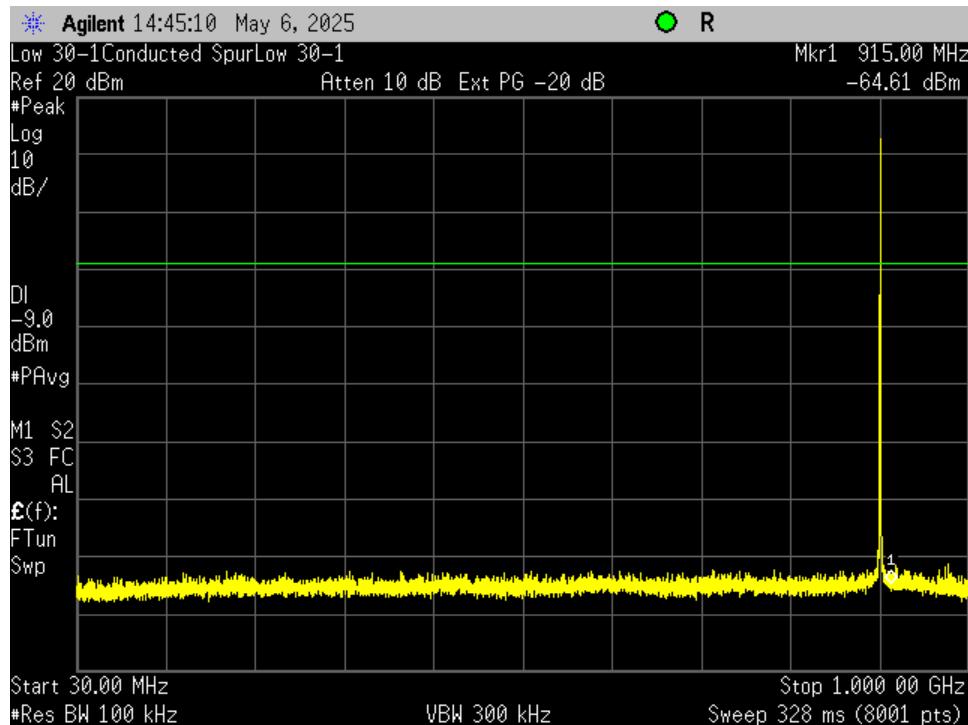
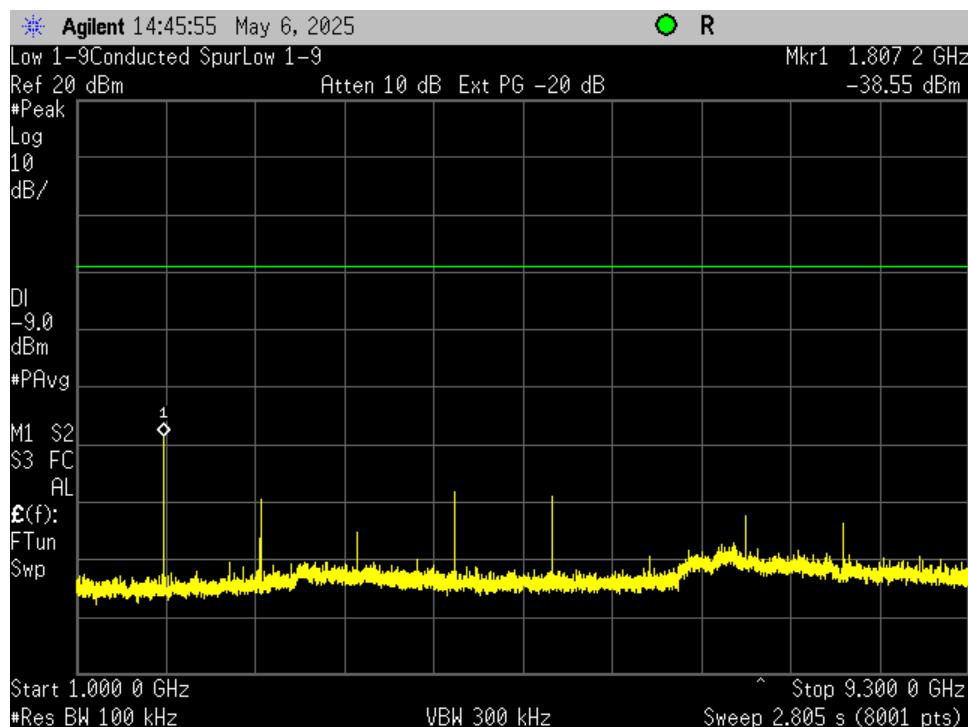
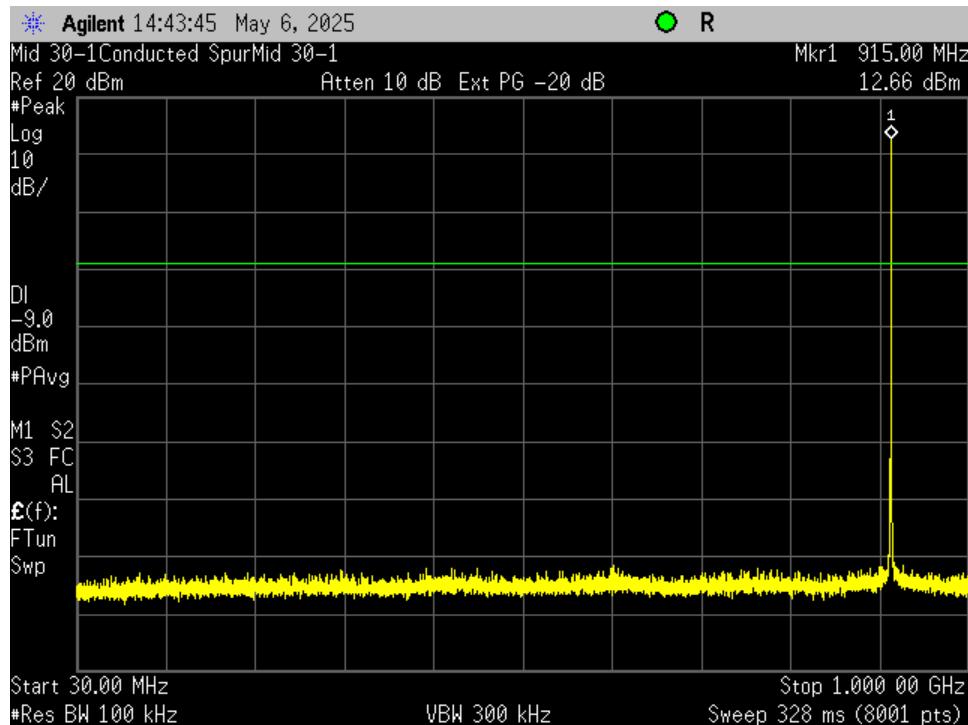
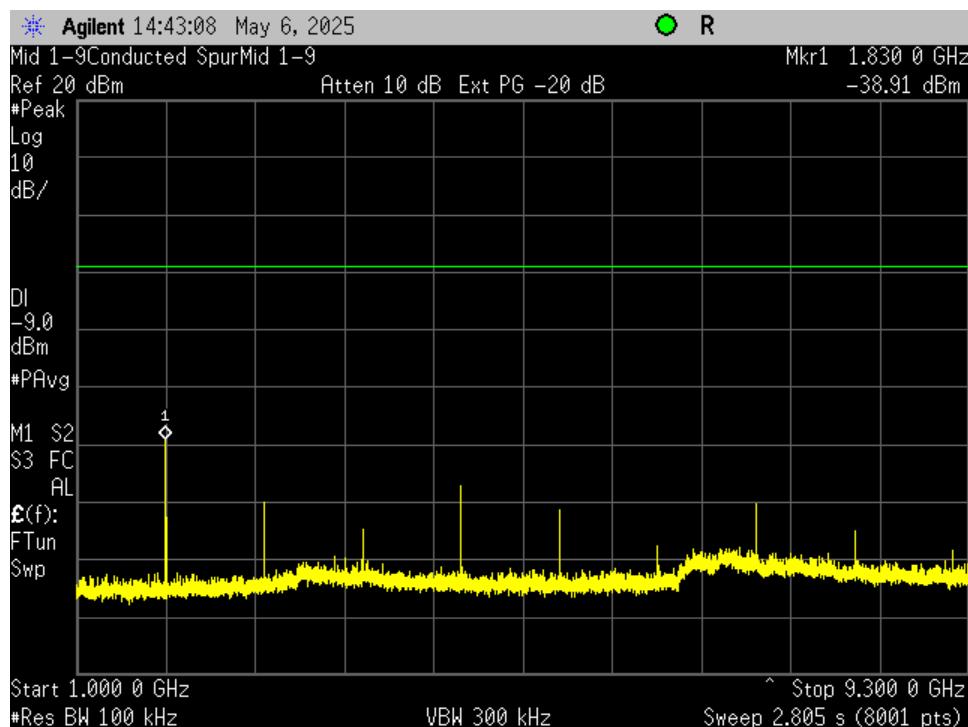


Figure 3. Antenna Conducted Emissions, Low Channel 30 MHz to 1000 MHz


Figure 4. Antenna Conducted Emissions, Low Channel 1000 MHz to 9300 MHz

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

Figure 5. Antenna Conducted Emissions, Middle Channel 30 MHz to 1000 MHz

Figure 6. Antenna Conducted Emissions, Middle Channel 1000 MHz – 9300 MHz

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

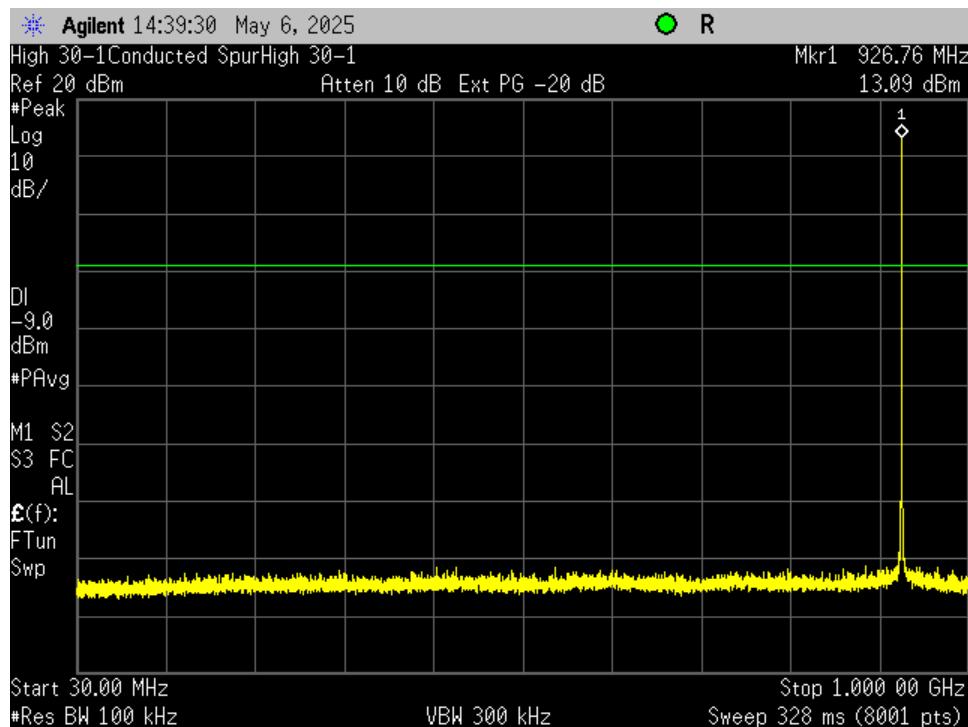


Figure 7. Antenna Conducted Emissions, High Channel 30 MHz to 1000 MHz

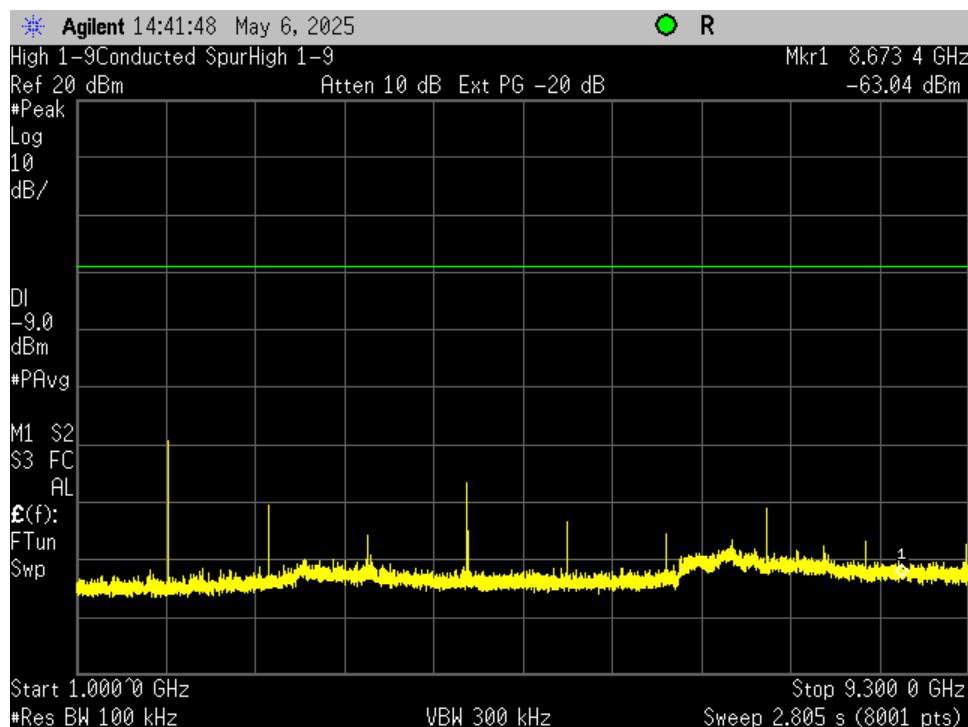


Figure 8. Antenna Conducted Emissions, High Channel 1000 MHz – 9300 MHz

US Tech Test Report:
 FCC ID:
 IC:
 Test Report Number:
 Issue Date:
 Customer:
 Model:

FCC Part 15 Certification/RSS 247
 CCKPC0260
 5251A-PC0260
 25-0096
 May 7, 2025
 Digital Monitoring Products, Inc.
 1112

Table 5. Peak Radiated Fundamental & Harmonic Emissions

Test: FCC Part 15, Para 15.209, 15.247(d)								
Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/Polarization	Margin (dB)	Detector Mode
Low Channel								
903.30	90.17	0.00	10.09	100.26	--	3m./HORZ	--	PK
1806.60	69.89	0.00	-7.59	62.30	80.3	3.0m./HORZ	18.0	PK
2709.00	53.20	0.00	-5.23	47.97	80.3	3.0m./HORZ	32.3	PK
4516.00	42.19	0.00	0.19	42.38	74.0*	3.0m./HORZ	31.6	PK
5419.00	30.31	0.00	3.38	33.69	74.0*	3.0m./HORZ	40.3	PK
8129.00	36.63	0.00	6.22	42.85	74.0*	3.0m./HORZ	31.2	PK
Mid Channel								
915.00	92.12	0.00	10.51	102.63	--	3m./HORZ	--	PK
1830.65	62.39	0.00	-7.15	55.24	82.6	3.0m./HORZ	27.4	PK
2745.02	52.42	0.00	-5.12	47.30	82.6	3.0m./HORZ	35.3	PK
4575.16	44.48	0.00	0.21	44.69	74.0*	3.0m./HORZ	29.3	PK
5489.67	30.14	0.00	3.52	33.66	82.6	3.0m./HORZ	48.9	PK
8234.00	35.62	0.00	6.44	42.06	74.0*	3.0m./HORZ	31.9	PK
High Channel								
926.60	91.11	0.00	10.75	101.86	--	3m./HORZ	--	PK
1853.00	71.21	0.00	-7.03	64.18	81.9	3.0m./HORZ	17.7	PK
2780.00	54.28	0.00	-5.14	49.14	81.9	3.0m./HORZ	32.8	PK
4633.00	44.23	0.00	0.67	44.90	74.0*	3.0m./HORZ	29.1	PK
5559.00	44.04	0.00	3.25	47.29	81.9	3.0m./HORZ	34.6	PK
8340.00	51.27	0.00	6.65	57.92	74.0*	3.0m./HORZ	16.1	PK

1. (*) Falls within the restricted bands of CFR 15.205.

2. The EUT was placed in three orthogonal positions, and the transmitter was in constant broadcast mode with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst-case.

Sample Calculation at 903.30 MHz:

Magnitude of Measured Frequency	90.17	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain	10.09	dB/m
Corrected Result	100.26	dBuV/m

Test Date: April 25, 2025 and May 6, 2025

Tested By

Signature: Gabriel Medina Name: Gabriel Medina

US Tech Test Report:
 FCC ID:
 IC:
 Test Report Number:
 Issue Date:
 Customer:
 Model:

FCC Part 15 Certification/RSS 247
 CCKPC0260
 5251A-PC0260
 25-0096
 May 7, 2025
 Digital Monitoring Products, Inc.
 1112

Table 6. Average Radiated Fundamental & Harmonic Emissions

Test: FCC Part 15, Para 15.209, 15.247(d)								
Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/Polarization	Margin (dB)	Detector Mode
Low Channel								
903.30	90.00	-10.6	10.09	89.49	--	3.0m./HORZ	--	QP
1806.00	38.49	0.00	-7.59	30.90	69.5	3.0m./HORZ	38.6	AVG
2709.00	42.82	0.00	-5.23	37.59	69.5	3.0m./HORZ	31.9	AVG
4516.00	43.55	0.00	0.19	43.74	54.0*	3.0m./HORZ	10.3	AVG
5419.00	32.15	0.00	3.38	35.53	54.0*	3.0m./HORZ	18.5	AVG
8129.00	33.54	0.00	6.22	39.76	54.0*	3.0m./HORZ	14.2	AVG
Mid Channel								
915.00	91.10	-10.6	10.51	91.01	--	3m./HORZ	--	QP
1830.65	40.56	0.00	-6.51	34.05	71.0	3.0m./HORZ	36.9	AVG
2745.02	44.59	0.00	-4.74	39.86	71.0	3.0m./HORZ	31.1	AVG
4575.16	41.29	0.00	1.54	42.83	54.0*	3.0m./HORZ	11.2	AVG
5489.67	29.14	0.00	6.47	35.61	71.0	3.0m./HORZ	35.4	AVG
8234.00	41.66	0.00	7.93	49.59	54.0*	3.0m./HORZ	4.4	AVG
High Channel								
926.60	89.56	-10.6	10.75	89.71	--	3m./HORZ	--	QP
1853.00	38.99	0.00	-6.41	32.58	69.7	3.0m./HORZ	37.1	AVG
2780.00	45.66	0.00	-4.74	40.92	69.7	3.0m./HORZ	28.8	AVG
4633.00	41.91	0.00	2.36	44.27	54.0*	3.0m./HORZ	9.7	AVG
5559.00	31.42	0.00	5.92	37.34	69.7	3.0m./HORZ	32.4	AVG
8340.00	38.07	0.00	12.15	50.22	54.0*	3.0m./HORZ	3.8	AVG

- (*) Falls within the restricted bands of CFR 15.205.
- The EUT was placed in three orthogonal positions, and the transmitter was in constant broadcast mode with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 903.30 MHz:

Magnitude of Measured Frequency	90.00	dBuV
+Duty Cycle Factor	-10.60	
+Antenna Factor + Cable Loss+ Amplifier Gain	10.09	dB/m
Corrected Result	89.49	dBuV/m

Test Date: April 25, 2025 and May 6, 2025

Tested By

Signature: Gabriel Medina Name: Gabriel Medina

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

2.11 Band Edge Measurements – (CFR 15.247 (d))

Band Edge measurements are made following the guidelines in FCC KDB 558074 D01 with the EUT initially operating on the Lowest Channel and then operating on the Highest Channel within its band of operation. Antenna port conducted measurements are performed to demonstrate compliance with the requirement of 15.247(d) that all emissions outside of the band edges be attenuated by at least 20 dB when compared to its highest in-band value (contained in a 100 kHz band).

To capture the band edge, the Spectrum Analyzer frequency was set to span large enough (usually around 3 MHz) to capture the peak level of the emission operating on the channel closest to the band edge as well as any modulation products falling outside of the authorized band of operation. Conducted measurements are performed with $RBW \geq 1\%$ of the frequency span. In all cases, the VBW is set $\geq RBW$. See figure and calculations below for more detail. This measurement was performed with the EUT continuously transmitting on the low and high channels as well as in normal use mode (frequency hopping ON).

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

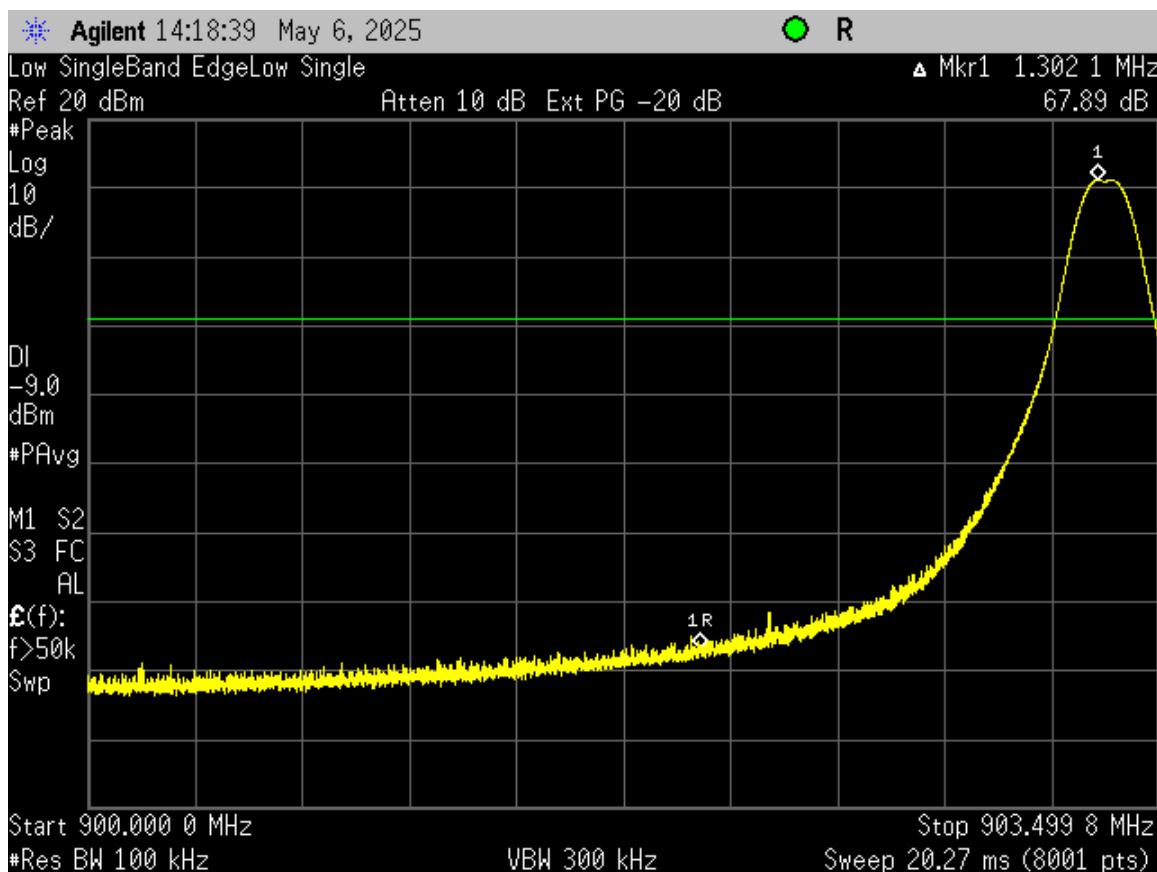


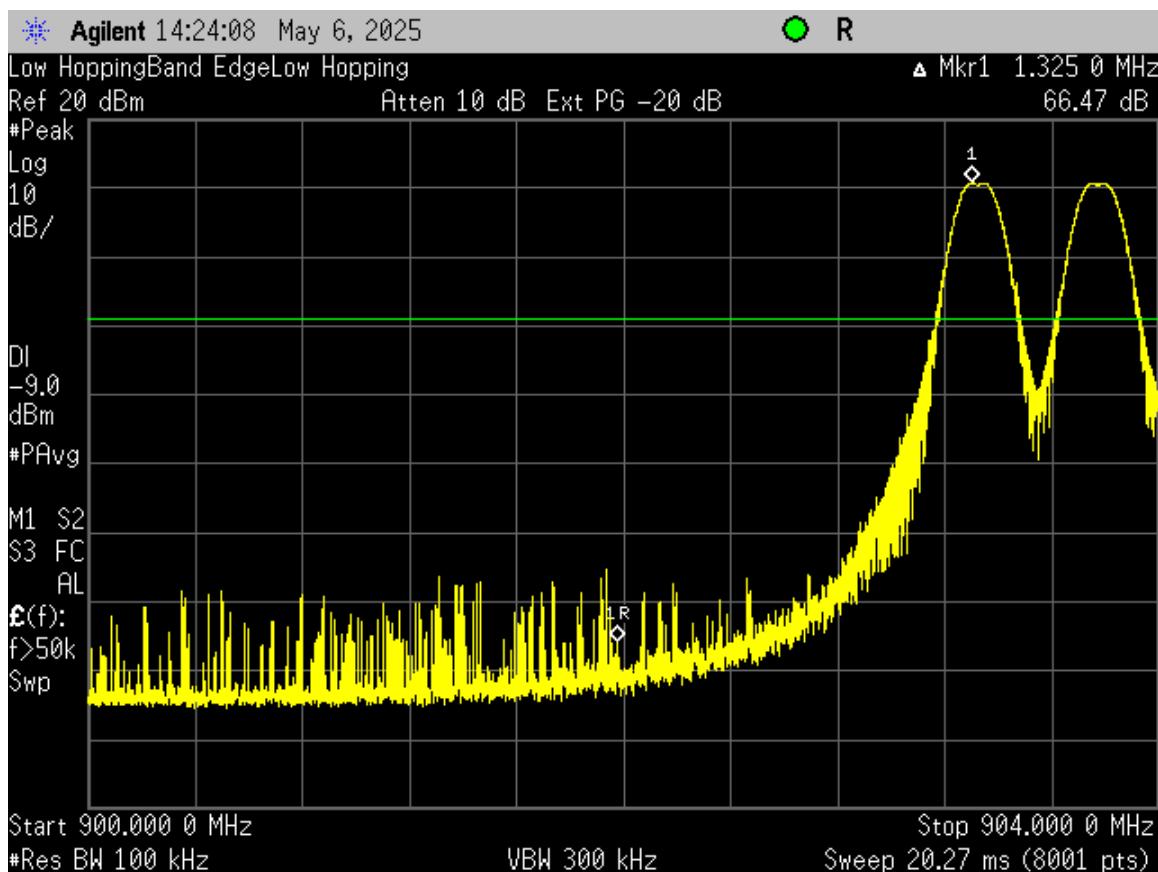
Figure 9. Band Edge Compliance, Low Channel Delta – Hopping Off

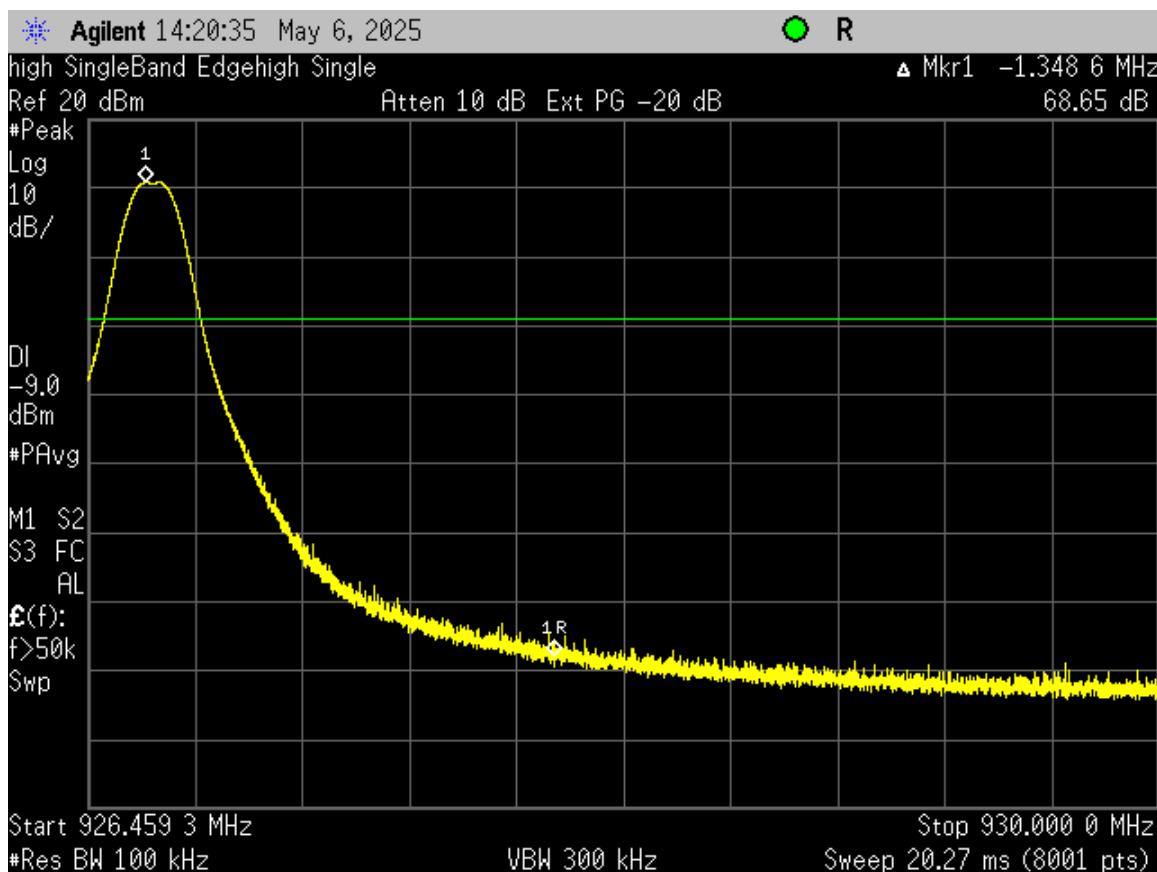
Calculation of worst-case lower band edge measurement:

Measured Result	67.89 dB
Band Edge Limit	20.00 dB
Band Edge Margin	47.89 dB

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112



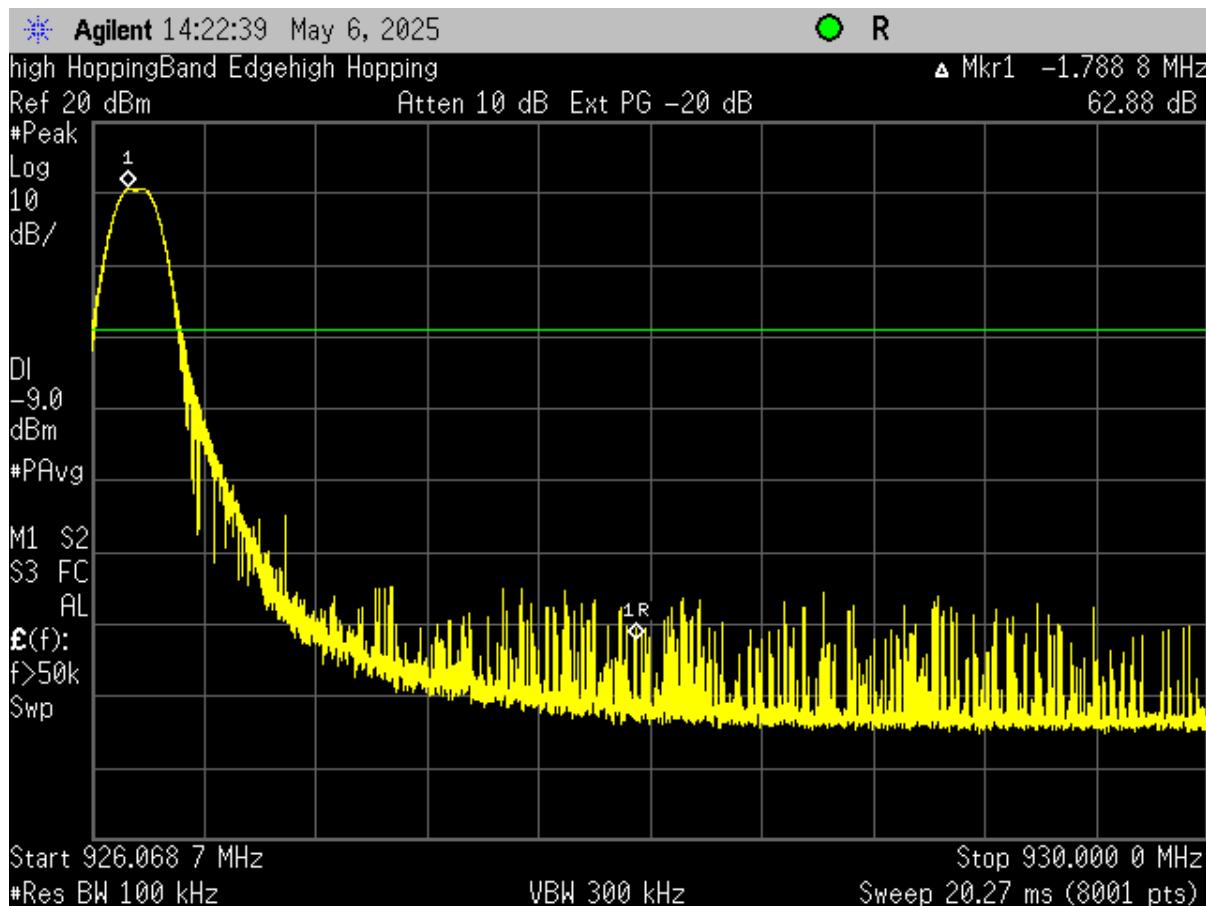

Figure 10. Band Edge Compliance, Low Channel Delta – Hopping On

Calculation of worst-case lower band edge measurement:

Measured Result	66.47 dB
Band Edge Limit	20.00 dB
Band Edge Margin	46.47 dB

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112


Figure 11. Band Edge Compliance, High Channel Delta – Hopping Off

Calculation of worst-case upper band edge measurement:

Measured Result	68.65 dB
Band Edge Limit	20.00 dB
Band Edge Margin	48.65 dB

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

Figure 12. Band Edge Compliance, High Channel Delta – Hopping On

Calculation of worst-case upper band edge measurement:

Measured Result	62.88 dB
Band Edge Limit	20.00 dB
Band Edge Margin	42.88 dB

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

2.12 99% Occupied Bandwidth (IC RSS 247 5.1 & 5.2, CFR 15.247 (a) (1))

For frequency hopping systems operating in the 902-928 MHz band the maximum allowed 20 dB bandwidth is 500 kHz.

These measurements were performed while the EUT was in a constant transmit mode. A method similar to the marker delta method was used to capture the points. The RBW was set to approximately 1/100 of the manufacturers claimed RBW and with the VBW \geq RBW.

Table 7. 20 dB Bandwidth and 99% Occupied Bandwidth

Frequency (MHz)	20 dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)
903.32	71.458	71.960
915.00	71.421	71.833
926.68	71.415	71.789

Test Date: May 6, 2025

Tested By

Signature:

Name: Gabriel Medina

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112



Figure 13. Twenty dB Bandwidth – Low Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

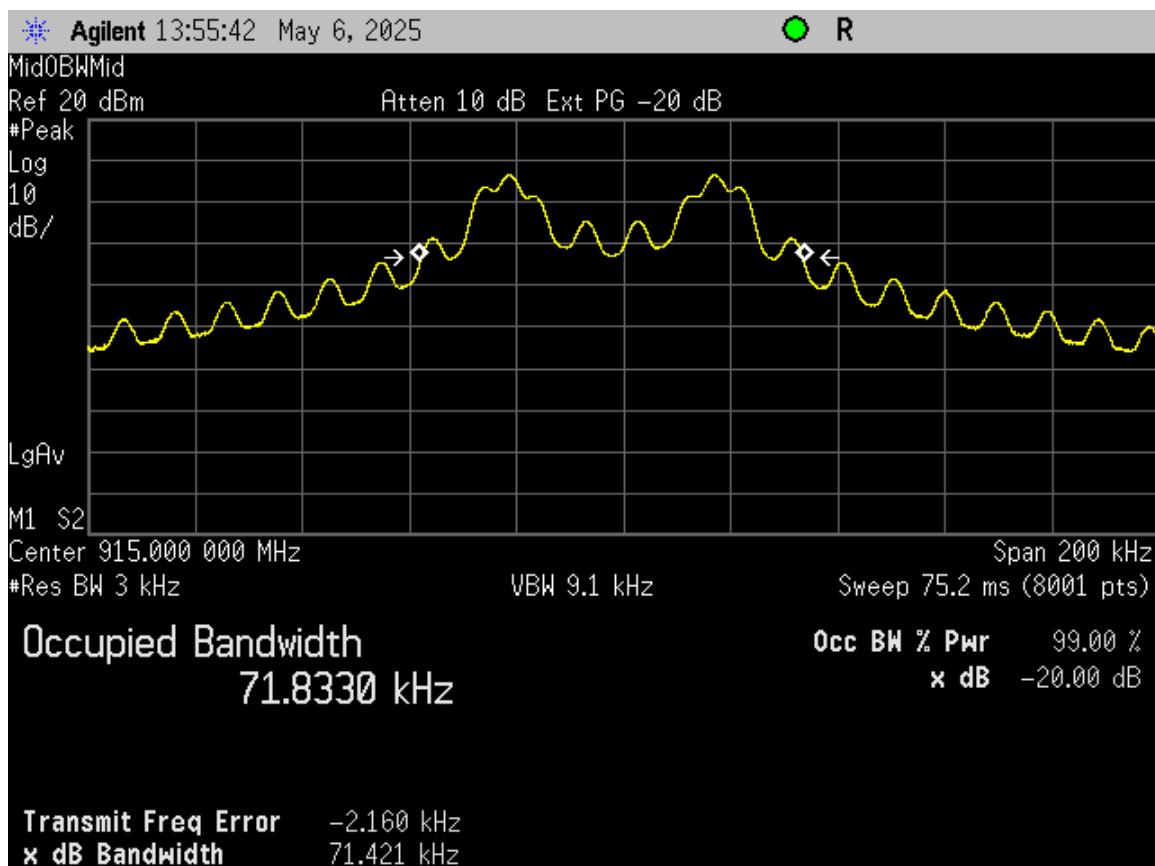


Figure 14. Twenty dB Bandwidth – Mid Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

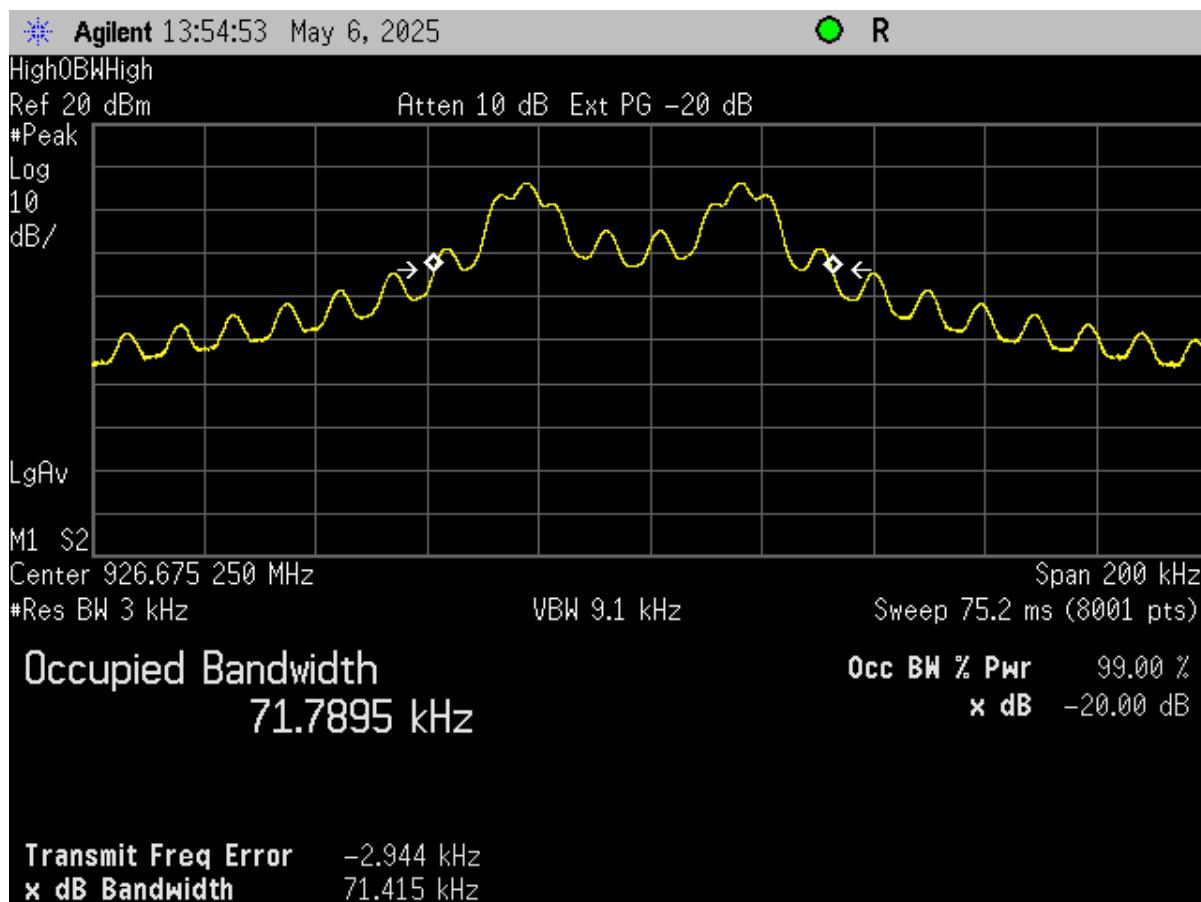


Figure 15. Twenty dB Bandwidth – High Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

2.13 Number of Hopping Frequencies (CFR 15.247 (a)(1)) (CRF 15.247(b)(1))

Frequency hopping systems in the 902-928 MHz band shall have at least 50 hopping frequencies if the 20 dB bandwidth is less than 250 kHz. If the 20 dB bandwidth is 250 kHz or greater, then the system shall have at least 25 hopping frequencies. Since the EUT has a 20 dB bandwidth less than 250 kHz, then at least 50 hopping frequencies shall be used.

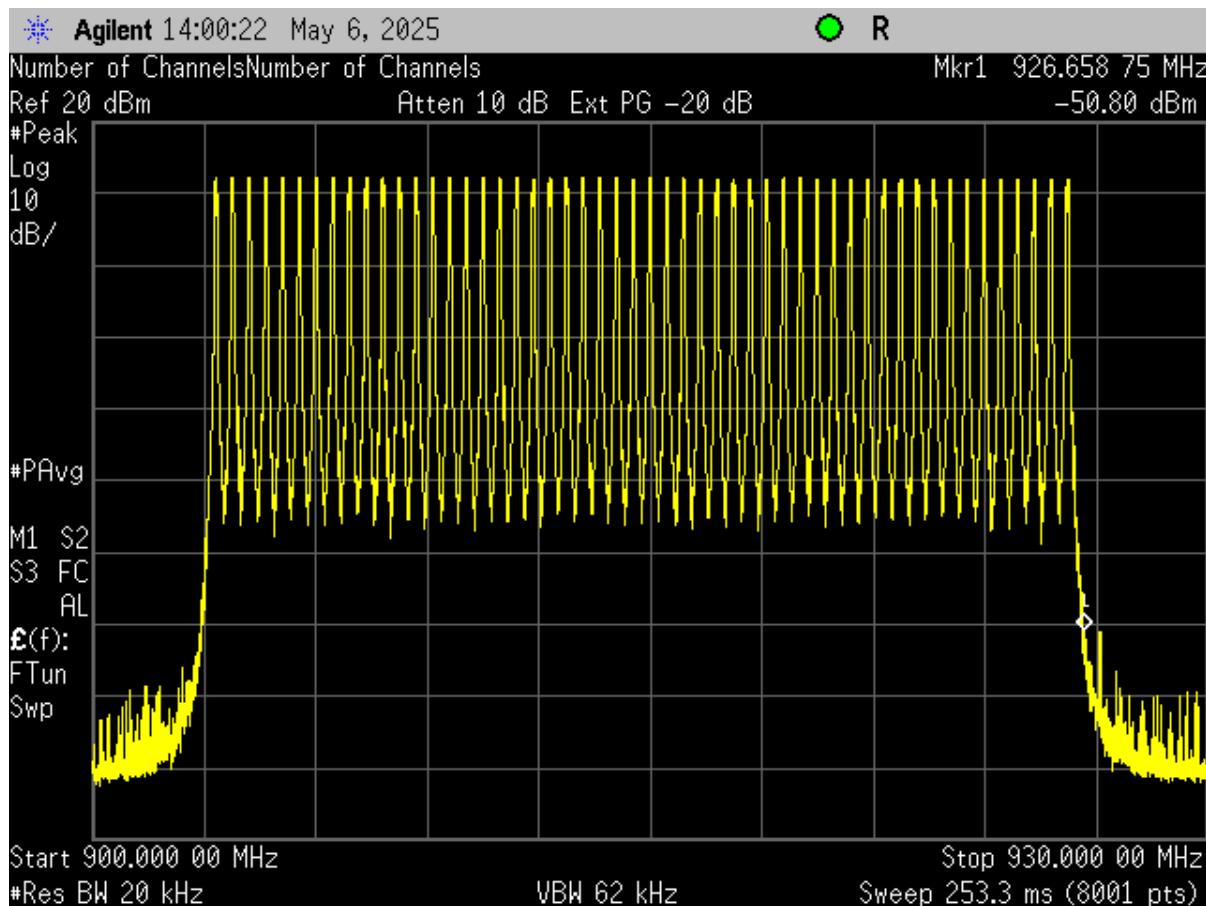


Figure 16. Hopping Channels 0 through 52

The EUT uses more than 50 channels.

Test Date: May 6, 2025

Tested By

Signature:

Name: Gabriel Medina

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

2.14 Maximum Peak Conducted Output Power (CFR 15.247 (b) (3))

For frequency hopping systems in the 902-928 MHz band with at least 50 hopping channels, the maximum peak conducted output power of the intentional radiator shall not exceed 1 watt. For systems with less than 50 hopping channels, but at least 25 hopping channels, the maximum peak conducted output power of the intentional radiator shall not exceed .25 watts. Since the EUT has 52 hopping channels, the maximum peak conducted output power shall not exceed 1 watt (30 dBm).

Peak power within the band 903.32 MHz to 926.67 MHz was measured per ANSI C63.10:2013 as an Antenna Conducted test with a spectrum analyzer by connecting the spectrum analyzer directly, via a short RF cable, and attenuators to the antenna output terminals on the EUT.

Table 8. Peak Antenna Conducted Output Power per Part 15.247 (b) (3)

Frequency of Fundamental (MHz)	Raw Test Data dBm	Converted Data (mW)	FCC Limit (mW Maximum)
903.32	13.36	21.67	1000
915.00	13.20	20.89	1000
926.66	13.09	20.37	1000

Test Date: May 6, 2025

Tested By

Signature: Gabriel Medina Name: Gabriel Medina

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

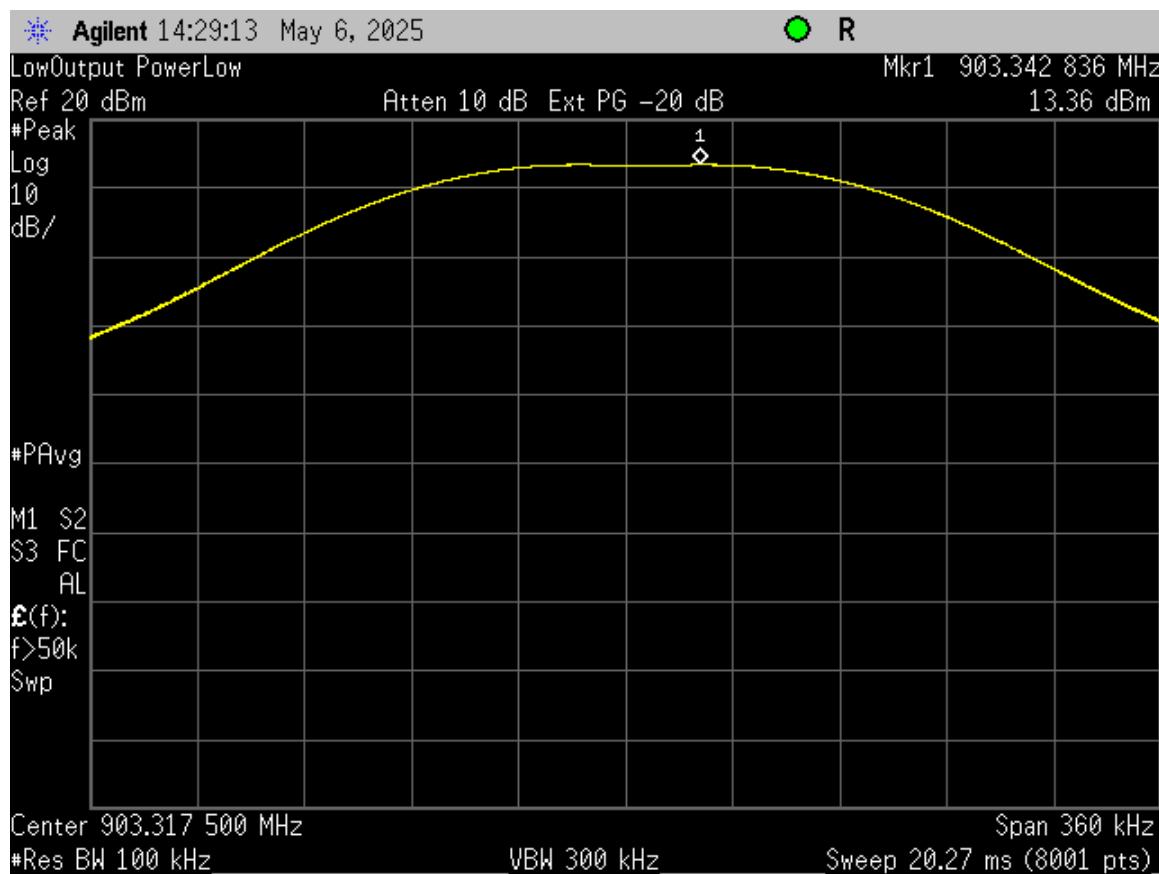
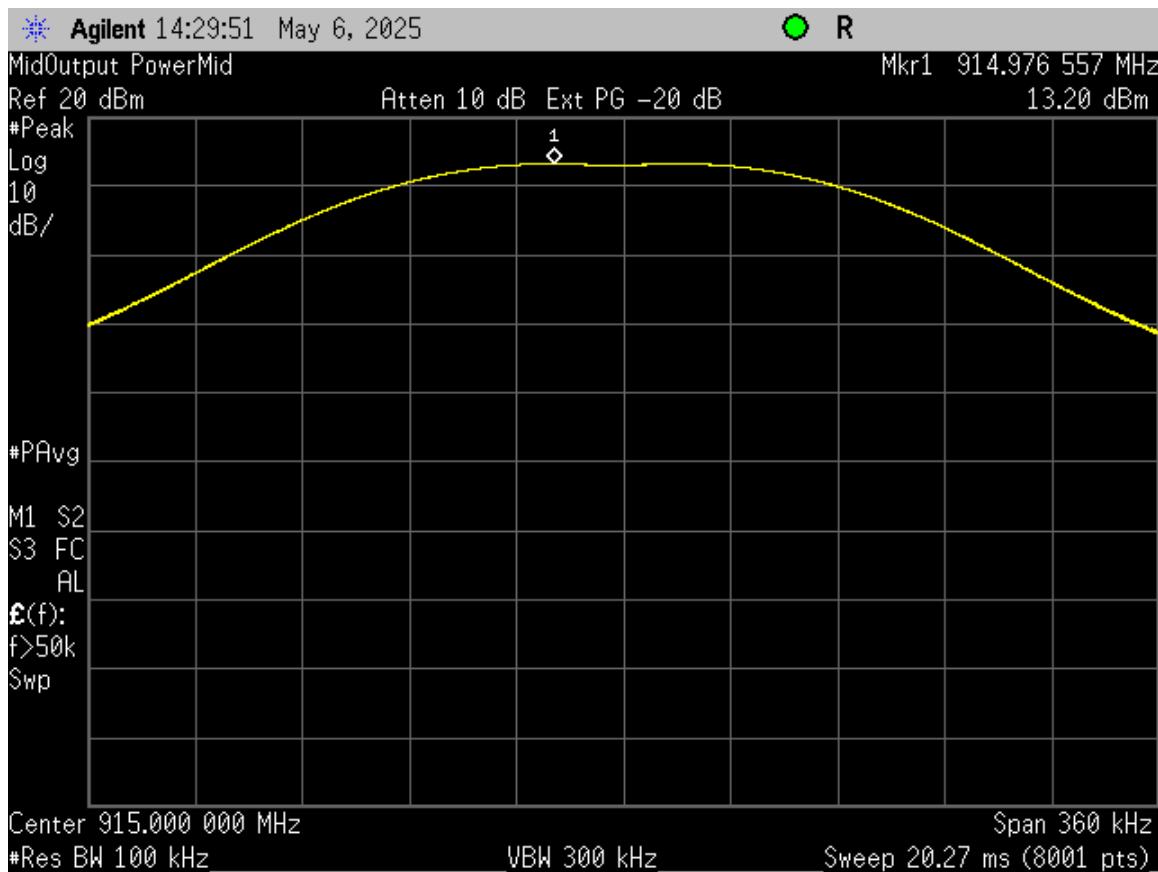



Figure 17. Peak Antenna Conducted Output Power, Low Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

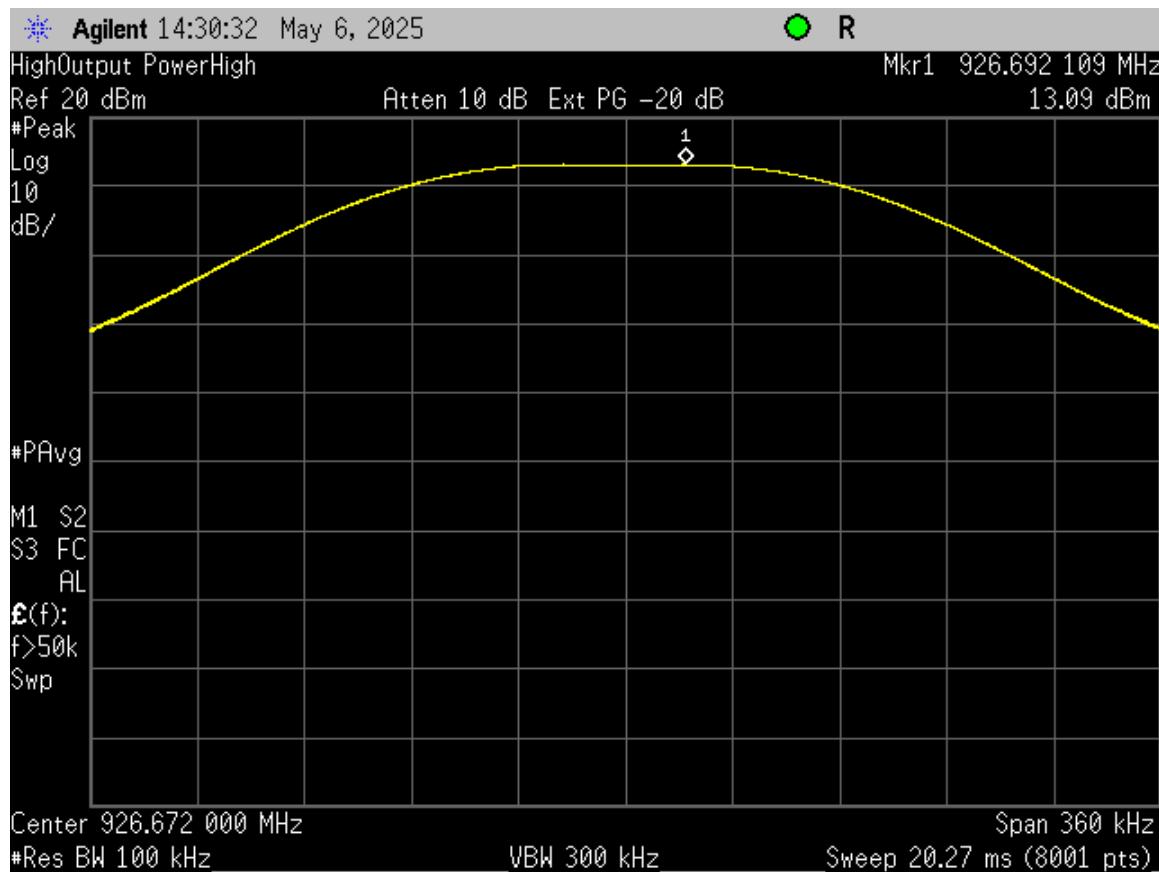

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

Figure 18. Peak Antenna Conducted Output Power, Mid Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

Figure 19. Peak Antenna Conducted Output Power, High Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

2.15 Frequency Separation (CRF 15.247(a)(1))

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. In this case, the 20 dB bandwidth of the hopping channel is greater than the 25 kHz, so the minimum requirement used was the 71.45 kHz

The test procedures outlined in ANSI 63.10:2013 were used to conduct measurements. The EUT hopping function was enabled during the testing.

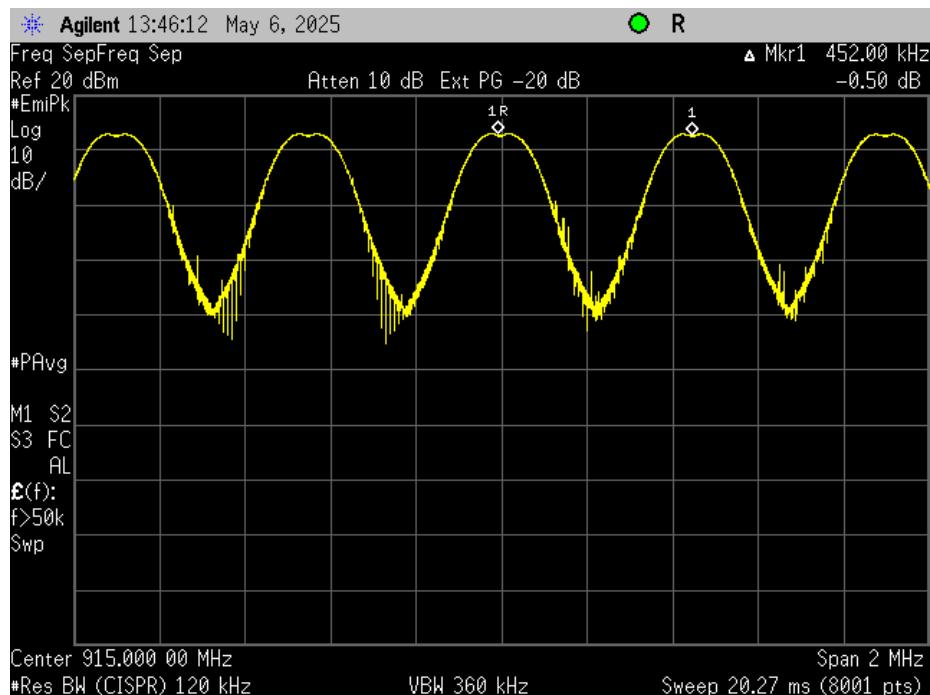


Figure 20. Channel Separation

Measured Delta (Figure 27)	452.00 kHz
-Limit (20 dB Bandwidth or 25 kHz)	71.45 kHz
Margin	380.55 kHz

Test Date: May 6, 2025

Tested By

Signature: Gabriel Medina Name: Gabriel Medina

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/RSS 247
CCKPC0260
5251A-PC0260
25-0096
May 7, 2025
Digital Monitoring Products, Inc.
1112

2.16 Average Time of Occupancy (CFR 15.247(a)(1))

Frequency hopping systems in the 902-928 MHz bands with a 20 dB bandwidth less than 250 kHz shall have an average time occupancy that is not greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channels is 250 kHz or greater, than the average time of occupancy shall not be greater than 0.4 seconds within a 10 second period. In this case, since the 20 dB bandwidth was less than 250 kHz, the average time of occupancy shall not be greater than 0.4 seconds within a 20 second period.

The test procedures outline in the ANSI 63.10:2013 was used to conduct measurements.

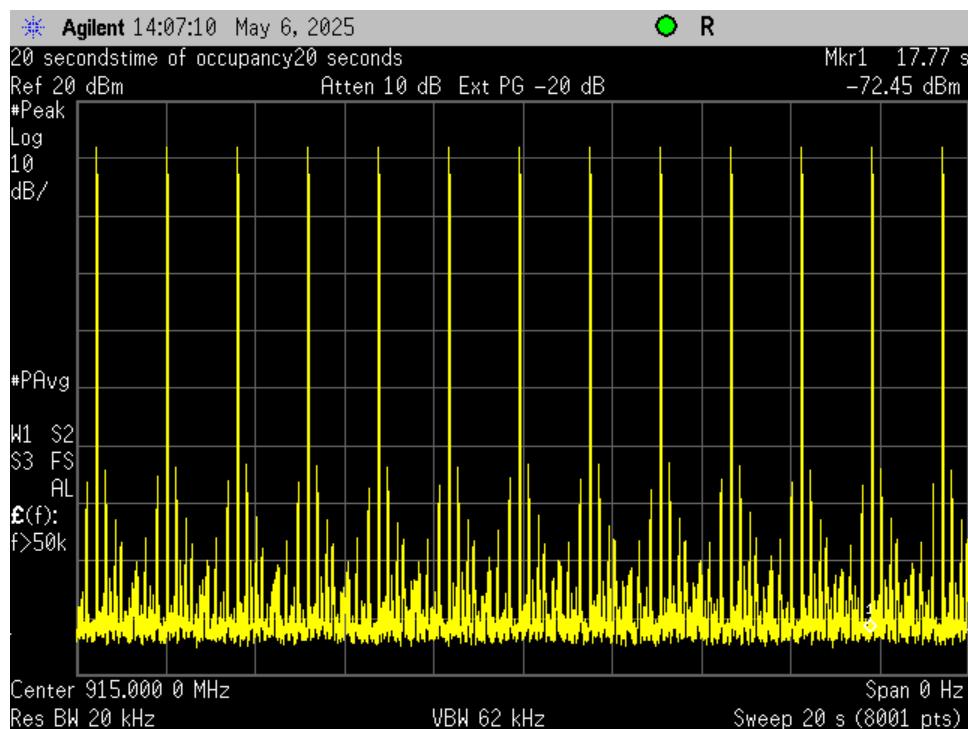


Figure 21. Average Time of Occupancy

Times on	On time (Figure 2) (ms)	Total Time (time on * times on) (ms)
13	29.43	382.59

Limit 400.00 ms
-Total Time on 382.59 ms
Margin 17.41 ms

Test Date: May 7, 2025

Tested By

Signature:

Name: Gabriel Medina

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

2.17 Intentional Radiator Power Lines Conducted Emissions (CFR 15.207, RSS-Gen 8.8)

The EUT is battery powered; Therefore, this test is not applicable

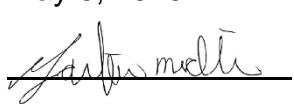
2.18 Intentional Radiator, Radiated Emissions (CFR 15.209, RSS-Gen, 8.9)

The test data provided herein is to support the verification requirement for radiated emissions coming from the EUT in a transmitting state per 15.209. Emissions were investigated from 9kHz or the lowest operating clock frequency to 10 GHz and tested as detailed in ANSI C63.10:2013, Clause 6.4-6.6.

Radiated emissions within the band of 9 kHz to 30 MHz were investigated using a calibrated Loop Antenna and per the requirements of ANSI C63.10:2013.

Measurements were made with the analyzer's resolution bandwidth set to 120 kHz for measurements made below 1 GHz and 1 MHz for measurements made above 1 GHz. The video bandwidth was set to three times the resolution bandwidth; 1 MHz RBW and 3 MHz VBW. The test data was maximized for magnitude by rotating the turntable through 360 degrees and raising and lowering the receiving antenna between 1 to 4 meters as a part of the measurement procedure.

The worst-case radiated emission was greater than 20.0 dB below the specification limit. The results are shown in the following table. These results are meant to show that this EUT has met the intentional transmitter requirements of CFR Part 15.209.


Table 9. Spurious Radiated Emissions (9 kHz- 30 MHz)

Test: FCC Part 15.209							
Frequency (MHz)	Test Data (dBuV)	AF+CL-PA (dB)	Results (dBuV/m)	Limits (dBuV/m)	Distance / Polarization	Margin (dB)	DETECTOR PK / QP/AVG
All emissions were more than 20 dB below the applicable limit.							

Sample Calculation: N/A

Test Date: May 6, 2025

Tested By

Signature:

Name: Gabriel Medina

US Tech Test Report:
 FCC ID:
 IC:
 Test Report Number:
 Issue Date:
 Customer:
 Model:

FCC Part 15 Certification/RSS 247
 CCKPC0260
 5251A-PC0260
 25-0096
 May 7, 2025
 Digital Monitoring Products, Inc.
 1112

Table 10. Spurious Radiated Emissions 30 MHz to 1000 MHz

Test: FCC Part 15.109/15.209							
Frequency (MHz)	Test Data (dBuv)	AF+CA-AMP (dB/m)	Results (dBuV/m)	QP Limits (dBuV/m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or QP
All Emissions were at least 20 dB below the limit excluding the fundamental							

Sample Calculation: N/A

Test Date: May 6, 2025

Tested By

Signature: Gabriel Medina

Name: Gabriel Medina

Table 11. Spurious Radiated Emissions 1 GHz to 10 GHz

Test: FCC Part 15.109/15.209							
Frequency (MHz)	Test Data (dBuv)	AF+CA-AMP (dB/m)	Results (dBuV/m)	AVG Limits (dBuV/m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or AVG
All emissions other than harmonics of the intentional radiator were more than 20 dB below the applicable limit.							

Sample Calculation: N/A

Test Date: May 6, 2025

Tested By

Signature: Gabriel Medina

Name: Gabriel Medina

US Tech Test Report:	FCC Part 15 Certification/RSS 247
FCC ID:	CCKPC0260
IC:	5251A-PC0260
Test Report Number:	25-0096
Issue Date:	May 7, 2025
Customer:	Digital Monitoring Products, Inc.
Model:	1112

2.19 Measurement Uncertainty

The measurement uncertainties given were calculated using the method detailed in CISPR 16-4. A coverage factor of $k=2$ was used to give a level of confidence of approximately 95%.

2.19.1 Conducted Emissions Measurement Uncertainty

Measurement Uncertainty (within a 95% confidence level) for this test is ± 2.8 dB.

The data listed in this test report does have sufficient margin to negate the effects of uncertainty. Therefore, the EUT unconditionally meets this requirement.

2.19.2 Radiated Emissions Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for this test using a Broadband Biconical Antenna (30 MHz to 1000 MHz) is ± 5.0 dB.

The measurement uncertainty (with a 95% confidence level) for this test using a Horn Antenna (1 GHz to 18 GHz) is ± 5.2 dB.

3 Conclusions

The EUT is deemed to have met the requirements of the standards cited within the test report when tested as detailed in the present test report.