

NVLAP Lab Code 200087-0

SUBMITTAL APPLICATION REPORT FOR FCC And INDUSTRY CANADA GRANT OF CERTIFICATION

FOR

Model: 1100xH and 1100dH Series Transceiver
902 - 928 MHz FHSS Transmitter

FCC ID: CCKPC0114
IC: 5251A-PC0114

FOR

DIGITAL MONITORING PRODUCTS, INC.
2500 North Partnership Boulevard
Springfield, MO 65802-6310

Test Report Number: 080110

Authorized Signatory: *Scot D Rogers*
Scot D. Rogers

ROGERS LABS, INC.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 2

Digital Monitoring Products, Inc.
Model: 1100 dH/xH
Test #: 080110
Test to: FCC 15c (15.247), IC RSS-210
File: DMP 1100dH TstRpt R2

FCC ID#: CCKPC0114
IC: 5251A-PC0114
Page 1 of 33
Date: January 18, 2008

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

**ENGINEERING TEST REPORT
FOR
APPLICATION of
GRANT of CERTIFICATION
FOR
CFR47, PART 15C - INTENTIONAL RADIATORS
Paragraph 15.247 and Industry Canada, RSS-210
Frequency Hopping Spread Spectrum Transmitter
For
DIGITAL MONITORING PRODUCTS, INC.**

2500 North Partnership Boulevard
Springfield, MO 65802-6310
Terry Shelton,

**Model: 1100xH and 1100dH Series Transceiver
Frequency 902-928 MHz
FCC ID#: CCKPC0114, IC: 5251A-PC0114**

Test Date: January 10, 2008

Certifying Engineer:

Scot D. Rogers
ROGERS LABS, INC.
4405 West 259th Terrace
Louisburg, KS 66053
Phone: (913) 837-3214
FAX: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report must not be used by the client to claim product endorsement by NVLAP, NIST, or
any agency of the U.S. Government.

Table of Contents

TABLE OF CONTENTS.....	3
FORWARD	5
OPINION / INTERPRETATION OF RESULTS	5
ENVIRONMENTAL CONDITIONS.....	5
2.1033(B) APPLICATION FOR CERTIFICATION	6
APPLICABLE STANDARDS & TEST PROCEDURES	7
EQUIPMENT TESTED.....	7
EQUIPMENT FUNCTION AND TESTING PROCEDURES	7
EQUIPMENT AND CABLE CONFIGURATIONS	8
Conducted Emission Test Procedure.....	8
Radiated Emission Test Procedure.....	8
UNITS OF MEASUREMENTS	8
TEST SITE LOCATIONS	8
LIST OF TEST EQUIPMENT	9
SUBPART B – UNINTENTIONAL RADIATORS	10
Radiated EMI	10
Figure one Plot of General Radiated Emissions	11
Figure two Plot of General Radiated Emissions	11
Figure three Plot of General Radiated Emissions	12
Figure four Plot of General Radiated Emissions	12
Figure five Plot of General Radiated Emissions.....	13
General Radiated Emissions Data from EUT	13
Summary of Results for Conducted Emissions	14
Summary of Results for Radiated Emissions	14
Statement of Modifications and Deviations	14
SUBPART C - INTENTIONAL RADIATORS	14
15.203 Antenna Requirements	14
15.205 Restricted Bands of Operation.....	14
Radiated Emissions Data in Restricted Bands (15.205)	15
Summary of Results for Radiated Emissions in Restricted Bands	16
15.209 Radiated Emissions Limits; General Requirements	16
Radiated EMI.....	16
General Radiated Emissions Data from EUT (15.209)	17
Summary of Results for Radiated Emissions	17
15.247 Operation in the Band 902-928 MHz	17
Figure six Plot of output Power and number of channels in band.....	20
Figure seven Plot of Occupied Bandwidth low frequency	21

NVLAP Lab Code 200087-0

Figure eight Plot of Occupied Bandwidth middle frequency	21
Figure nine Plot of Occupied Bandwidth high frequency	22
Figure ten Plot of Channel Spacing.....	22
Figure eleven Plot of Dwell Time on channel.....	23
Figure twelve Plot of Channel Occupancy over 20-second period	23
Figure thirteen Plot of lower frequency band edge	24
Figure fourteen Plot of higher frequency band edge	24
Radiated Emissions Data per 15.247.....	25
Summary of Results for Radiated Emissions of Intentional Radiator	26
Statement of Modifications and Deviations	26
ANNEX.....	27
Annex A Measurement Uncertainty Calculations.....	28
Annex B Test Equipment List For Rogers Labs, Inc.....	30
Annex C Qualifications.....	31
Annex D FCC Site Approval Letter	32
Annex E Industry Canada Site Approval Letter	33

NVLAP Lab Code 200087-0

Forward

The following information is submitted for consideration in obtaining a Grant of Certification for a frequency hopping spread spectrum intentional radiator operating under CFR47 Paragraph 15.247 and Industry Canada standard RSS-210.

Name of Applicant:

Digital Monitoring Products, Inc.
2500 North Partnership Boulevard
Springfield, MO 65802-6310

Model: 1100xH and 1100dH Series Transceiver wireless transceiver.

FCC I.D.: CCKPC0114 IC: 5251A-PC0114

Frequency Range: 902-928 MHz.

Operating Power: 123.8 dB μ V/m @ 3-meters (3 meter radiated measurement). Designed as 720 mW antenna conducted power.

Opinion / Interpretation of Results

Tests Performed	Results
Emissions Tests	
Emissions as per CFR47 paragraphs 2 and 15.205	Complies
Emissions as per CFR47 paragraphs 2 and 15.209	Complies
Emissions as per CFR47 paragraphs 2 and 15.247	Complies

Environmental Conditions

Ambient Temperature 22.8° C

Relative Humidity 56%

Atmospheric Pressure 29.99 in Hg

2.1033(b) Application for Certification

(1) Manufacturer: Digital Monitoring Products, Inc.
2500 North Partnership Boulevard
Springfield, MO 65802-6310

(2) Identification: Model: 1100xH and 1100dH Series Wireless Transceiver
FCC I.D.: CCKPC0114
IC: 5251A-PC0114

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) No Peripheral Equipment was Necessary.

(9) Transition Provisions of 15.37 are not being requested.

(10) Equipment is not a scanning receiver and this section is not applicable.

(11) The equipment does not operate in the 59 – 64 GHz frequency band and this section is not applicable.

(12) The equipment is not software defined and this section is not applicable.

Applicable Standards & Test Procedures

a) In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2006, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.247, and Industry Canada standard RSS-210 the following information is submitted.

b) Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI 63.4-2003 Document FCC, documents DA00-1407 and DA00-705 and/or TIA/EIA 603-1.

Equipment Tested

<u>Equipment</u>	<u>Model</u>	<u>FCC I.D.</u>	<u>IC</u>
EUT	1100xH and 1100dH	CCKPC0114	5251A-PC0114

Equipment Function and Testing Procedures

The EUT is a 902-928 MHz radio transmitter used to transmit alarm conditions for use in an alarm panel installation. The 1100xH and 1100dH Series Transceiver wireless transmitter is a wireless link used for transmitting alarm conditions in installation environments. The device signals the alarm panel or initiates a contact point based on operational conditions. The unit is marketed for use to incorporate a wireless link in an alarm system solution. Test software was installed in the test sample allowing for special testing purposes. The modified software allowed the transmitter to be set to transmit channels dependant on activation of a switch attached to the relay point contact. The unit operates from external DC battery power only and has no other power options available. For testing purposes a battery, supplied by the manufacturer, was used to power the EUT during testing. The Equipment offers two configurations depending on software functions required at the installation. The unit has provision to connect to external auxiliary equipment through a relay point contact.

Equipment and Cable Configurations

Conducted Emission Test Procedure

The unit operates solely from direct current battery power and has no provision to connect to utility AC power system. Therefore, no AC line conducted emissions testing was performed or required.

Radiated Emission Test Procedure

Testing for the unintentional radiated emissions was performed as defined in section 13.1.4 of ANSI C63.4. The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to photographs in the exhibits for EUT placement.

Units of Measurements

Conducted EMI Data is in dB μ V; dB referenced to one microvolt.

Radiated EMI Data is in dB μ V/m; dB/m referenced to one microvolt per meter.

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Site Approval Refer to Annex for FCC Site Registration Letter, # 90910, and Industry Canada Site Registration Letter, IC3041-1.

List of Test Equipment

A Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

HP 8591 EM ANALYZER SETTINGS		
CONDUCTED EMISSIONS		
RBW	AVG. BW	DETECTOR FUNCTION
9 kHz	30 kHz	Peak / Quasi Peak
RADIATED EMISSIONS		
RBW	AVG. BW	DETECTOR FUNCTION
120 kHz	300 kHz	Peak / Quasi Peak
HP 8562A ANALYZER SETTINGS		
RBW	VIDEO BW	DETECTOR FUNCTION
100 kHz	100 kHz	PEAK
1 MHz	1 MHz	Peak / Average

EQUIPMENT	MFG.	MODEL	CAL. DATE	DUE.
LISN	Comp. Design	FCC-LISN-2-MOD.CD	10/07	10/08
LISN	Comp. Design	1762	2/07	2/08
Antenna	ARA	BCD-235-B	10/07	10/08
Antenna	EMCO	3147	10/07	10/08
Antenna	EMCO	3143	5/07	5/08
Analyzer	HP	8591EM	5/07	5/08
Analyzer	HP	8562A	2/07	2/08

Subpart B – Unintentional Radiators

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminary testing. Refer to figures one through five showing plots of the radiated emissions spectrum taken in a screen room. The highest radiated emission was then re-maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 10,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 5 GHz and or, pyramidal horns and mixers from 4 GHz to 10 GHz, notch filters and appropriate amplifiers were utilized.

MARKER
94.0 MHz
41.88 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 94.0 MHz
41.88 dB μ V

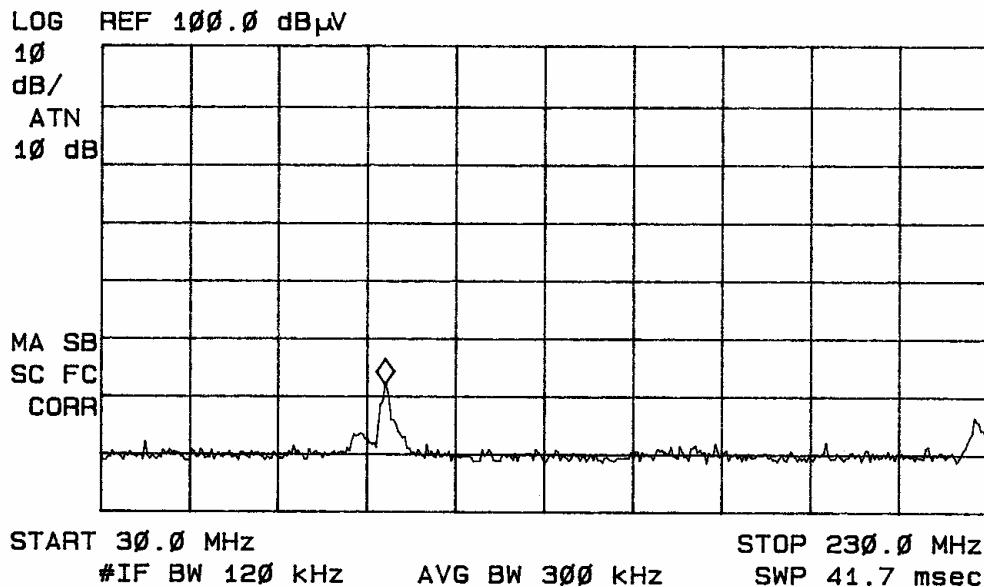


Figure one Plot of General Radiated Emissions

MARKER
908 MHz
101.78 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 908 MHz
101.78 dB μ V

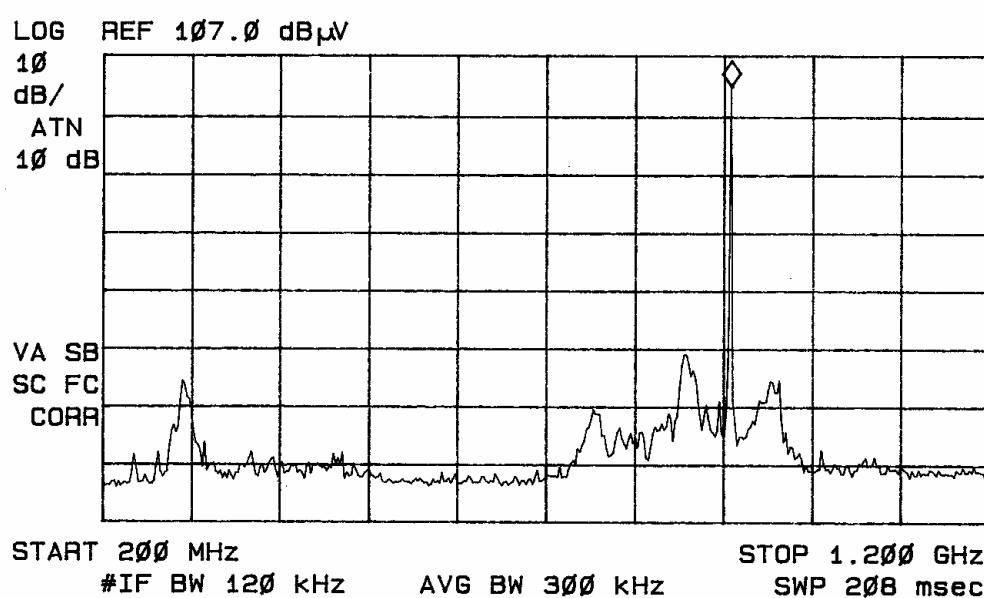
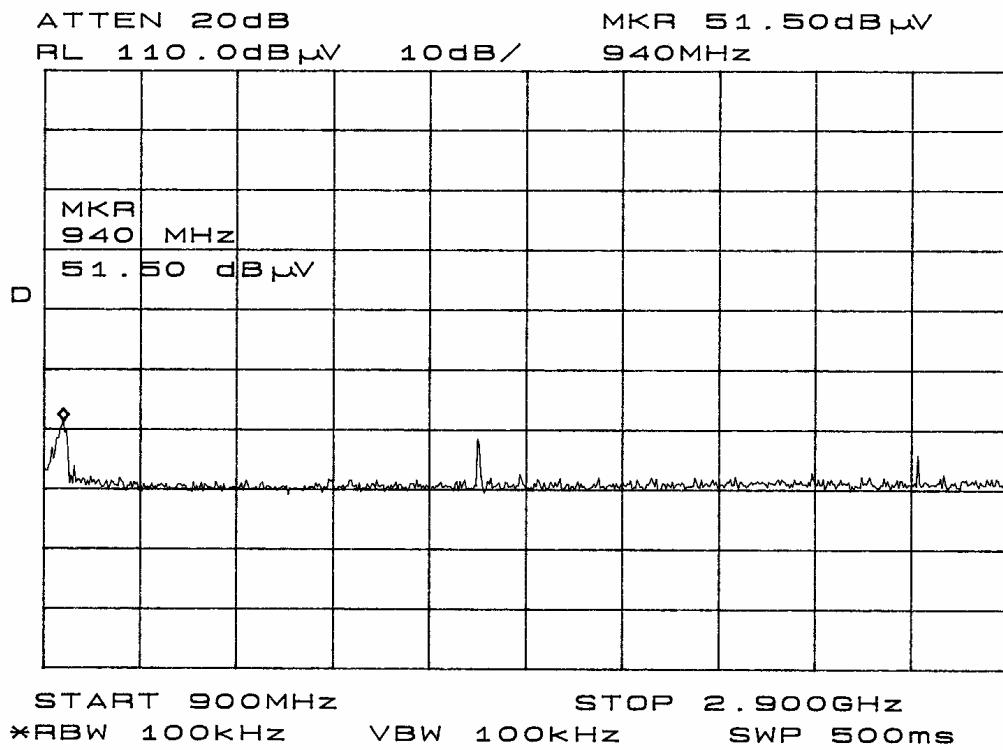
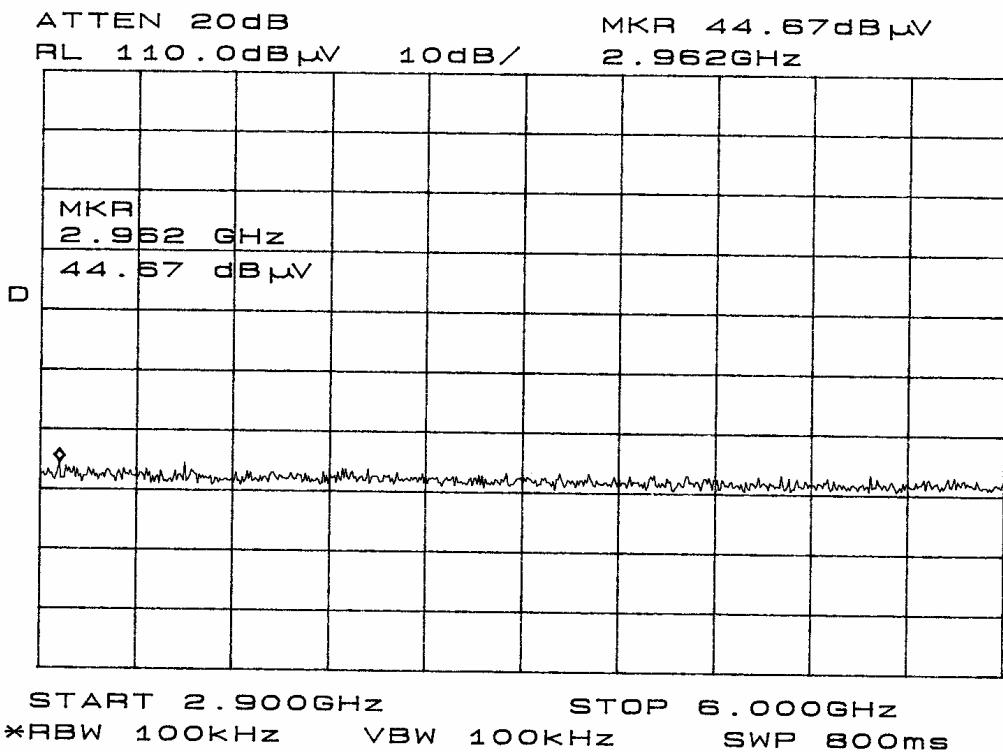




Figure two Plot of General Radiated Emissions


Figure three Plot of General Radiated Emissions

Figure four Plot of General Radiated Emissions

ROGERS LABS, INC. Digital Monitoring Products, Inc.
4405 W. 259th Terrace Model: 1100 dH/xH
Louisburg, KS 66053 Test #: 080110
Phone/Fax: (913) 837-3214 Test to: FCC 15c (15.247), IC RSS-210
Revision 2 File: DMP 1100dH TstRpt R2

FCC ID#: CCKPC0114
IC: 5251A-PC0114
Page 12 of 33
Date: January 18, 2008

Figure five Plot of General Radiated Emissions

General Radiated Emissions Data from EUT

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
93.1	43.7	45.9	7.5	30	21.2	23.4	43.5
93.5	38.1	42.2	7.5	30	15.6	19.7	43.5
860.0	25.5	31.2	22.6	30	18.1	23.8	46.0
877.4	28.7	35.3	23.0	30	21.7	28.3	46.0

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for Conducted Emissions

The unit operates solely from direct current battery power and has no provision to connect to utility power system. Therefore, no AC line conducted emissions testing was performed or required. The conducted emissions for the EUT meet the requirements for CISPR 22, CFR47, and Industry Canada requirements.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CISPR 22, CFR47, and Industry Canada requirements. The EUT had at least a 20.1 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the CISPR 22, CFR47, and Industry Canada requirements. There were no deviations or exceptions to the specifications.

Subpart C - Intentional Radiators

As per CFR47 Part 15, Subpart C, paragraph 15.247 and RSS-210 the following information is submitted.

15.203 Antenna Requirements

The unit is produced with a permanently attached antenna and has no provision for user service, replacement, or antenna modification. The requirements of 15.203 are fulfilled and there are no deviations or exceptions to the specification.

15.205 Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at a distance of three meters at the OATS. The EUT utilizes frequency determining circuitry, which generates harmonics falling in the restricted bands. Emissions were checked at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other significant emission was observed which fell into the restricted bands of operation.

NVLAP Lab Code 200087-0

Sample Calculations:

$$\begin{aligned} \text{RFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM(dB}\mu\text{V)} + \text{A.F.(dB)} - \text{Gain(dB)} \\ &= 40.0 + 34.4 - 30 \\ &= 44.1 \end{aligned}$$

Radiated Emissions Data in Restricted Bands (15.205)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
2710.0	40.0	46.8	34.4	30	44.1	51.2	54.0
2745.0	41.1	47.1	34.3	30	45.4	51.4	54.0
2781.6	40.2	41.2	34.3	30	44.5	45.5	54.0
3613.4	30.5	31.0	37.5	30	38.0	38.5	54.0
3660.0	31.8	37.2	38.0	30	39.8	45.2	54.0
3708.6	33.3	38.6	30.5	30	33.8	39.1	54.0
4516.5	35.0	35.3	41.1	30	46.1	46.4	54.0
4575.0	36.5	35.0	41.7	30	48.2	46.7	54.0
4635.7	36.3	33.1	41.9	30	48.2	45.0	54.0

Other emissions present had amplitudes at least 20 dB below the margin.

Summary of Results for Radiated Emissions in Restricted Bands

The radiated emissions for the EUT meet the requirements for FCC Part 15C Intentional Radiators. The EUT had a 2.6 dB minimum margin below the limits. Both average and peak amplitudes were checked for compliance with the regulations. No other emissions were found in the restricted frequency bands. Other emissions were present with amplitudes at least 20 dB below the FCC Limits.

15.209 Radiated Emissions Limits; General Requirements**Radiated EMI**

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Emissions were checked in the screen room from 30 to 10,000 MHz and plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminary testing. The highest radiated emission was then re-maximized at this location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the open area test site at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 12,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna polarization between horizontal and vertical. Antennas used were Broadband Biconical from 30 MHz to 200 MHz, Biconilog from 30 MHz to 1000 MHz, Log Periodic from 200 MHz to 5 GHz, and/or Pyramidal Horns from 4 GHz to 12 GHz.

General Radiated Emissions Data from EUT (15.209)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
93.1	43.7	45.9	7.5	30	21.2	23.4	43.5
93.5	38.1	42.2	7.5	30	15.6	19.7	43.5
860.0	25.5	31.2	22.6	30	18.1	23.8	46.0
877.4	28.7	35.3	23.0	30	21.7	28.3	46.0

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CFR47 Part 15C, and Industry Canada requirements. The EUT had at least a 20.1 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

15.247 Operation in the Band 902-928 MHz

The power output was measured on an Open Area Test Site at a 3 meters distance. The EUT was placed on a wooden turntable 0.8 meters above the ground plane and at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of the carrier frequency was measured using a spectrum analyzer. The peak and average amplitude of the spurious emissions above 1000 MHz were measured using a spectrum analyzer then data was recorded from the analyzer display. Refer to figures six through fourteen for plots of the spectrum analyzer display demonstrating compliance to the specifications. The EUT is a frequency hopping spread spectrum intentional radiator utilizing at least 50 hopping channels. Figure six demonstrates power output and number of channels used in 902-928 MHz. Figures seven through nine demonstrate occupied bandwidth at three frequencies in the 902-928 MHz band. The 20-dB bandwidth of 93 kHz complies with the requirement of less than 250 kHz wide and utilizing at least 50 hopping frequencies. Figure ten demonstrates the 450 kHz channel spacing in the 902-928 MHz band. The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a twenty-second-time period. Figures eleven and twelve demonstrate dwell time

on channel and number of times on channel in a 20-second period. These plots demonstrate the 30.25 mS dwell time and twelve times on channel in a 20-second period. The dwell time on channel in a 20-second period may then be calculated as 363 mS (30.25ms x 12 = 363 mS). Alternatively, the pseudo random lookup table moves through the 53 channels taking a calculated 1.75 seconds (53 x 31 mS = 1.643 S). The table will repeat after completion of one full cycle thus allowing the channel to be occupied 12.173 times in any twenty second period (20/1.75). This allows a channel to be occupied a maximum of 377 mS in any twenty second time interval. Information showing compliance for time of channel occupancy and hopping sequence are displayed below.

Pseudorandom hopping sequence

The system uses 53 hop channels. They are evenly spaced between 902.9729 MHz and 927.0271 MHz. They are listed, in order, below:

0	903.3257	18	911.4079	36	919.4901
1	903.7747	19	911.8569	37	919.9391
2	904.2237	20	912.3059	38	920.3881
3	904.6727	21	912.7549	39	920.8372
4	905.1217	22	913.2040	40	921.2862
5	905.5707	23	913.6530	41	921.7352
6	906.0198	24	914.1020	42	922.1842
7	906.4688	25	914.5510	43	922.6332
8	906.9178	26	915.0000	44	923.0822
9	907.3668	27	915.4490	45	923.5312
10	907.8158	28	915.8980	46	923.9802
11	908.2648	29	916.3470	47	924.4293
12	908.7138	30	916.7960	48	924.8783
13	909.1628	31	917.2451	49	925.3273
14	909.6119	32	917.6941	50	925.7763
15	910.0609	33	918.1431	51	926.2253
16	910.5099	34	918.5921	52	926.6743
17	910.9589	35	919.0411		

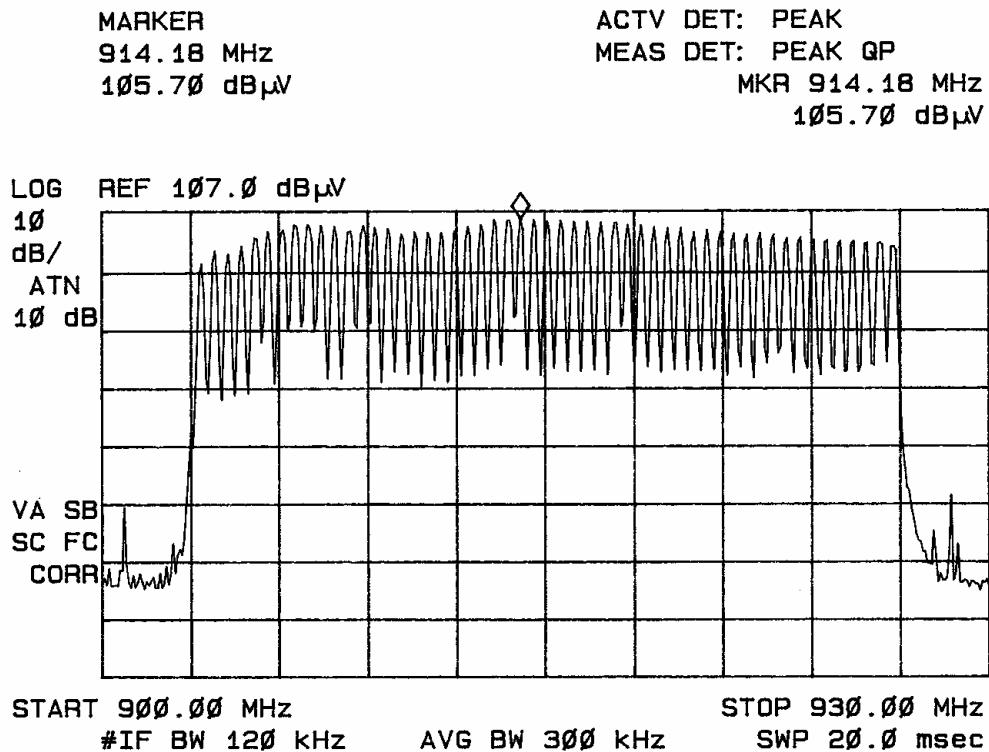
The order is determined by cycling through the numbers 0-60 in order, and generating a channel number to use with the following equation:

Channel # = Hop XOR (Hop * 8) AND 0x3F
If Channel > 52, try again

Where Hop is the sequence 0,1,2,3,4,5,6,7,8,9,10,11...5,52,0,1...

This generates the channel numbers 0, 9, 18, 27, 36, 45, 6, 7, 8, 1, 26, 19...

A complete cycle is as follows:


0	903.3257	2	904.2237	4	905.1217
9	907.3668	11	908.2648	13	909.1628
18	911.4079	52	926.6743	22	913.204
27	915.449	21	912.7549	31	917.2451
36	919.4901	38	920.3881	40	921.2862
45	923.5312	47	924.4293	33	918.1431
6	906.0198	24	914.102	42	922.1842
7	906.4688	17	910.9589	51	926.2253
8	906.9178	10	907.8158	12	908.7138
1	903.7747	3	904.6727	5	905.5707
26	915	28	915.898	30	916.796
19	911.8569	29	916.347	23	913.653
44	923.0822	46	923.9802	48	924.8783
37	919.9391	39	920.8372	49	925.3273
14	909.6119	32	917.6941	34	918.5921
15	910.0609	41	921.7352	43	922.6332
16	910.5099	50	925.7763	20	912.3059
25	914.551	35	919.0411		

The maximum peak output power of the unit was measured at the OATS at a distance of three meters. The amplitudes of each emission and spurious emission were measured at a distance of 3 meters from the FSM antenna at the OATS. The amplitude of each emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, Log Periodic Antenna for 200 to 5000 MHz, and Pyramidal Horn Antennas from 4 GHz to 10 GHz. Emissions were measured in dB μ V/m at three-meters. For multiple systems to coexist properly, each system within range of another is assigned a unique number between 1 and 52. That number is multiplied by the hop sequence is modified by multiplying each hop number by a system number (1-52) and using that value modulo 61 as the hop number. For example, rather than hopping 0,1,2,3,4, a system with a system number of 3 would use hop sequence 0,3,6,9,12..., which would lead to the channel sequence 0, 27, 6, 1, 44... This allows up to 52 systems to coexist because of the unique hopping sequence of each. The amplitude of each measured emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, a Log Periodic Antenna for 200 to 5000 MHz, and Pyramidal Horn Antennas from 4 GHz to 25 GHz. Emissions were measured in dB μ V/m @ 3 meters. The power output was measured at the open area test site at a three-meter distance. Data was taken per Paragraph 2.1046(a), 15.247 and RSS-210. The 902 and 928 MHz band edges are protected due to the 903 – 927 MHz channels used for frequency

of operation. The band edges are protected due to the frequency of operation of the EUT. Figures thirteen and fourteen demonstrate band edge compliance.

Sample Calculation

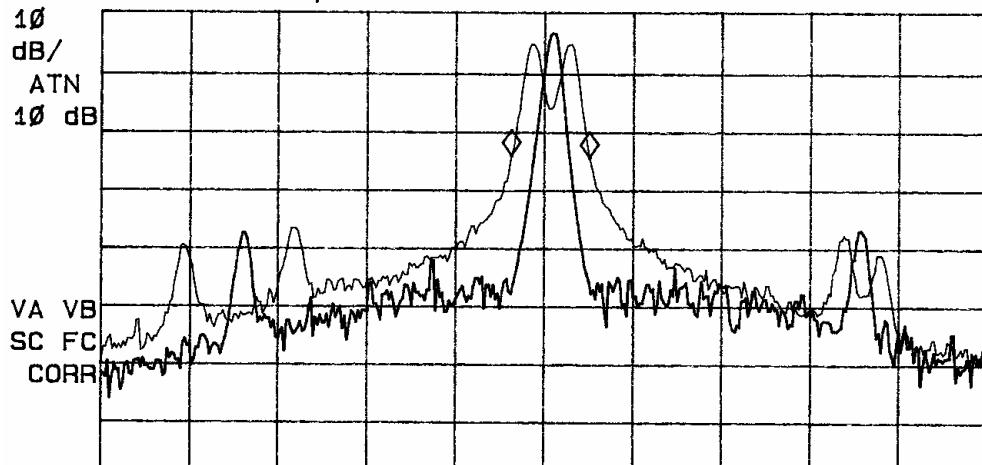

$$\begin{aligned}
 \text{RFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM(dB}\mu\text{V)} + \text{A.F.(dB)} - \text{Gain(dB)} \\
 &= 100.5 + 23.3 - 0 \\
 &= 123.8
 \end{aligned}$$

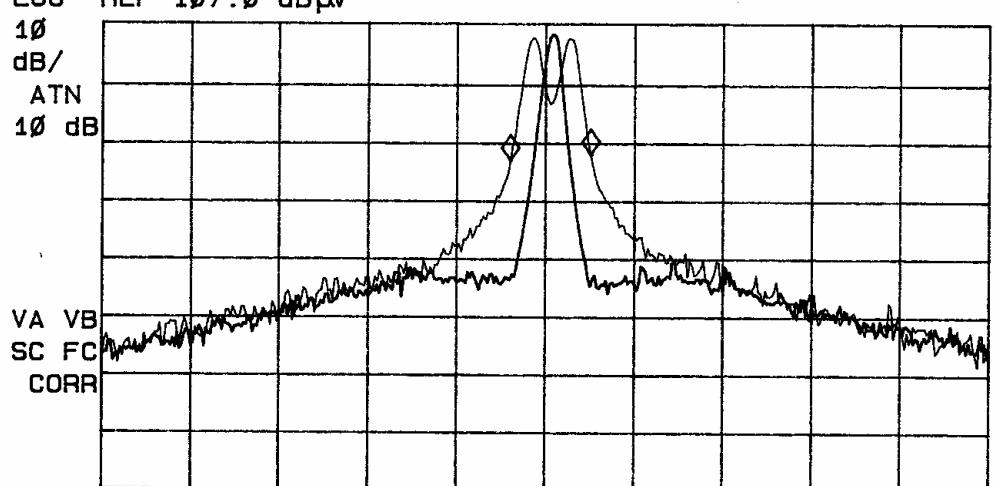
Figure six Plot of output Power and number of channels in band

MARKER Δ
88 kHz
-.35 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 88 kHz
-.35 dB

LOG REF 107.0 dB μ V

CENTER 903.325 MHz
#IF BW 10 kHz


AVG BW 10 kHz

SPAN 1.000 MHz
SWP 30.0 msec

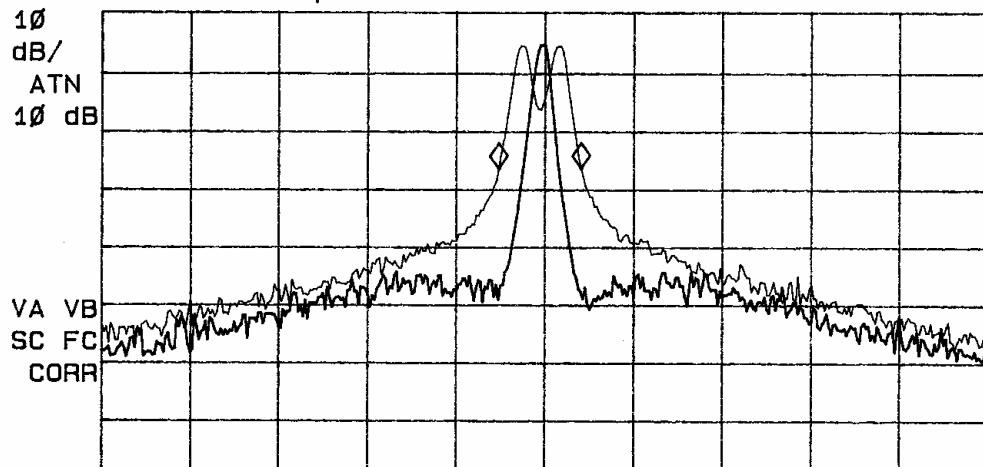
Figure seven Plot of Occupied Bandwidth low frequency

MARKER Δ
90 kHz
1.01 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 90 kHz
1.01 dB

LOG REF 107.0 dB μ V

CENTER 915.000 MHz
#IF BW 10 kHz


AVG BW 10 kHz

SPAN 1.000 MHz
SWP 30.0 msec

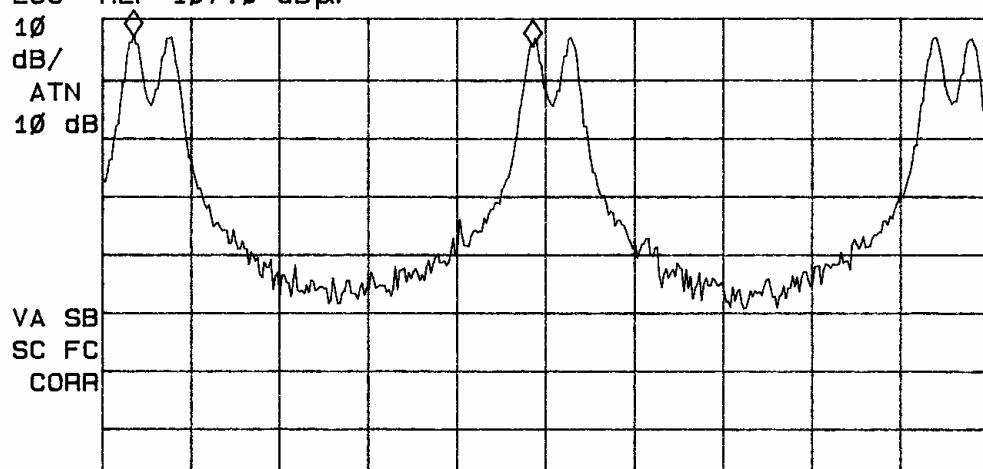
Figure eight Plot of Occupied Bandwidth middle frequency

MARKER Δ
93 kHz
.08 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 93 kHz
.08 dB

LOG REF 107.0 dB μ V

CENTER 927.140 MHz
#IF BW 10 kHz


AVG BW 10 kHz

SPAN 1.000 MHz
SWP 30.0 msec

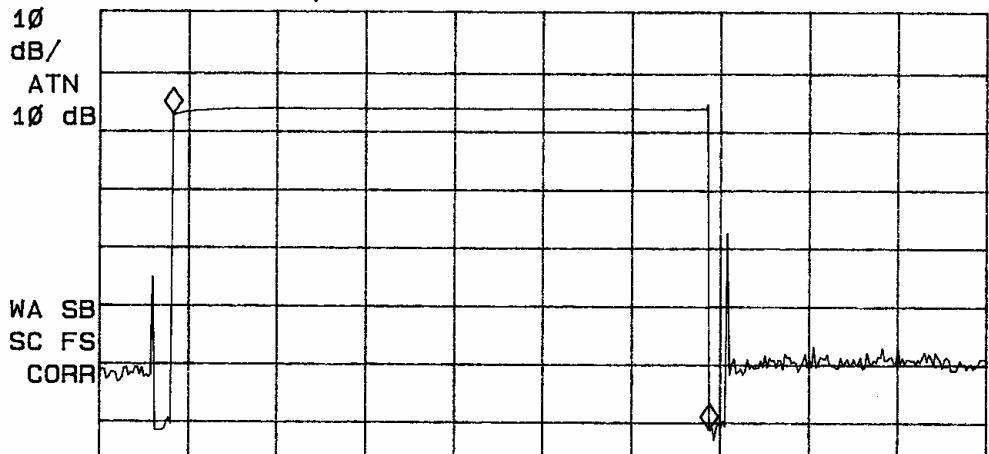
Figure nine Plot of Occupied Bandwidth high frequency

MARKER Δ
450 kHz
-1.69 dB

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 450 kHz
-1.69 dB

LOG REF 107.0 dB μ V

CENTER 915.000 MHz
#IF BW 10 kHz


AVG BW 10 kHz

SPAN 1.000 MHz
SWP 30.0 msec

Figure ten Plot of Channel Spacing

MARKER Δ
 30.250 msec
 -53.67 dB

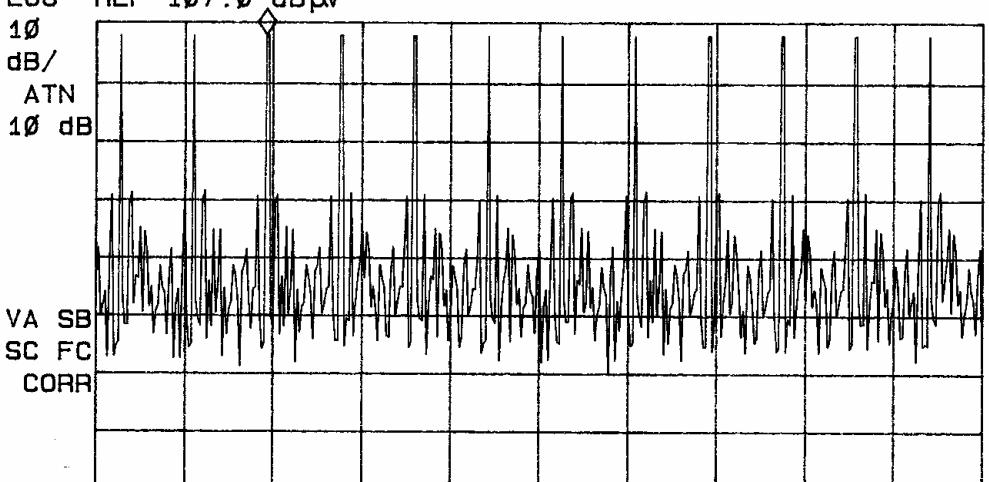
ACTV DET: PEAK
 MEAS DET: PEAK QP
 MKR 30.250 msec
 -53.67 dB

LOG REF 107.0 dB μ V

CENTER 915.000 MHz

#IF BW 1.0 MHz

AVG BW 300 kHz


SPAN 0 Hz

SWP 50.0 msec

Figure eleven Plot of Dwell Time on channel

MARKER
 3.8500 sec
 104.84 dB μ V

ACTV DET: PEAK
 MEAS DET: PEAK QP
 MKR 3.8500 sec
 104.84 dB μ V

LOG REF 107.0 dB μ V

CENTER 915.000 MHz

#IF BW 120 kHz

AVG BW 300 kHz

SPAN 0 Hz

#SWP 20.0 sec

Figure twelve Plot of Channel Occupancy over 20-second period

MARKER
903.328 MHz
103.82 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 903.328 MHz
103.82 dB μ V

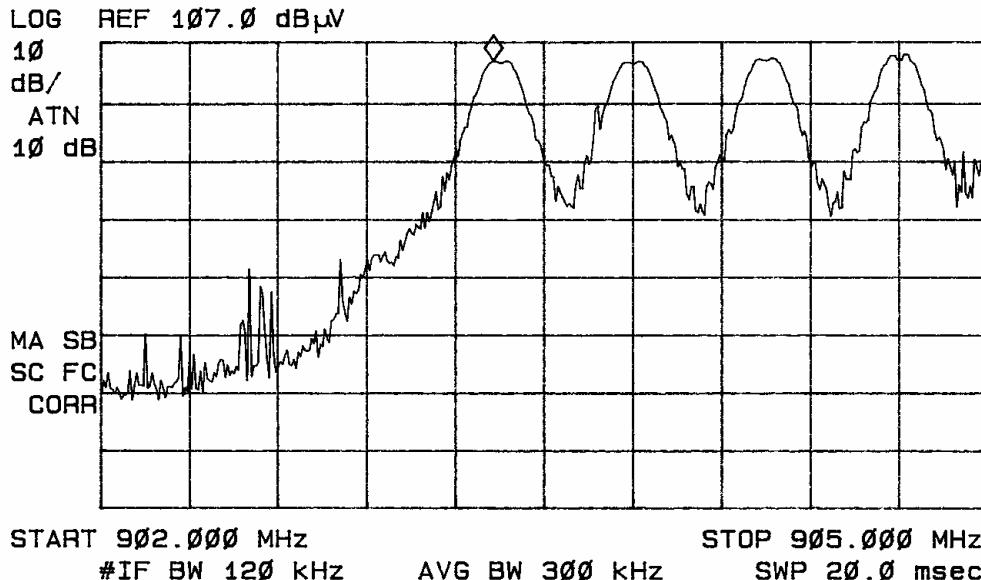


Figure thirteen Plot of lower frequency band edge

MARKER
926.680 MHz
99.93 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 926.680 MHz
99.93 dB μ V

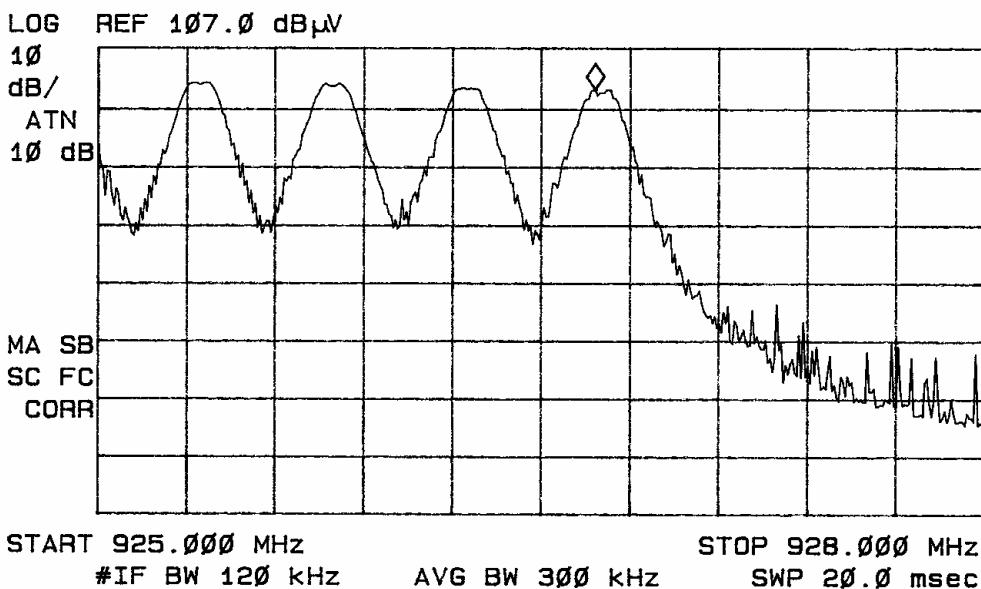


Figure fourteen Plot of higher frequency band edge

NVLAP Lab Code 200087-0

Radiated Emissions Data per 15.247

Emission Frequency (MHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	Limit @ 3m (dB μ V/m)
903.3	100.5	97.8	23.3	0	123.8	121.1	
1806.7	33.8	42.0	29.3	30	33.1	41.3	54
2710.0	40.0	46.8	34.4	30	44.4	51.2	54
3613.4	30.5	31.0	37.5	30	38.0	38.5	54
4516.8	35.0	35.3	41.1	30	46.1	46.4	54
915.0	99.5	96.8	23.3	0	122.8	120.1	
1830.0	31.8	41.5	29.5	30	31.3	41.0	54
2745.0	41.1	47.1	34.3	30	45.4	51.4	54
3660.0	31.8	37.2	38.0	30	39.8	45.2	54
4575.0	36.5	35.0	41.7	30	48.2	46.7	54
927.2	97.7	95.2	23.4	0	121.1	118.6	
1854.4	34.0	35.8	29.3	30	33.3	35.1	54
2781.6	40.2	41.2	34.3	30	44.5	45.5	54
3708.8	33.3	38.6	30.5	30	33.8	39.1	54
4636.0	36.3	33.1	41.9	30	48.2	45.0	54

Other emissions present had amplitudes at least 20 dB below the margin.

NVLAP Lab Code 200087-0

Summary of Results for Radiated Emissions of Intentional Radiator

The EUT had the highest emission of 123.8 dB μ V/m at 3 meters at the fundamental frequency of operation. The EUT had a worst-case of 2.6 dB margin below the limit for the harmonic emissions. The radiated emissions for the EUT meet the requirements for CFR47 Part 15.247 Intentional Radiators and RSS-210. There are no measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits. The specifications of 15.247 and RSS-210 were met; there are no deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the CFR47 Part 15C or RSS-210 emissions standards. There were no deviations to the specifications.

NVLAP Lab Code 200087-0

Annex

- Annex A, Measurement Uncertainty Calculations
- Annex B, Test Equipment List.
- Annex C, Rogers Qualifications.
- Annex D, FCC Site Approval Letter.
- Annex E, Industry Canada Approval Letter.

ROGERS LABS, INC.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 2

Digital Monitoring Products, Inc.
Model: 1100 dH/xH
Test #: 080110
Test to: FCC 15c (15.247), IC RSS-210
File: DMP 1100dH TstRpt R2

FCC ID#: CCKPC0114
IC: 5251A-PC0114
Page 27 of 33
Date: January 18, 2008

Annex A Measurement Uncertainty Calculations

Radiated Emissions Measurement Uncertainty Calculation

Measurement of vertically polarized radiated field strength over the frequency range 30 MHz to 1 GHz on an open area test site at 3m and 10m includes following uncertainty:

Contribution	Probability Distribution	Uncertainty (dB)
Antenna factor calibration	normal (k = 2)	±0.58
Cable loss calibration	normal (k = 2)	±0.2
Receiver specification	rectangular	±1.0
Antenna directivity	rectangular	±0.1
Antenna factor variation with height	rectangular	±2.0
Antenna factor frequency interpolation	rectangular	±0.1
Measurement distance variation	rectangular	±0.2
Site Imperfections	rectangular	±1.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{1.0}{2}\right]^2 + \left[\frac{0.2}{2}\right]^2 + \left[\frac{1.0^2 + 0.1^2 + 2.0^2 + 0.1^2 + 0.2^2 + 1.5^2}{3}\right]}$$

$$U_c(y) = \pm 1.6 \text{ dB}$$

It is probable that $u_c(y) / s(q_k) > 3$, where $s(q_k)$ is estimated standard deviation from a sample of n readings unless the repeatability of the EUT is particularly poor, and a coverage factor of $k = 2$ will ensure that the level of confidence will be approximately 95%, therefore:

$$s(q_k) = \sqrt{\frac{1}{(n-1)} \sum_{k=1}^n (q_k - \bar{q})^2}$$

$$U = 2 U_c(y) = 2 \times \pm 1.6 \text{ dB} = \pm 3.2 \text{ dB}$$

Notes:

- 1.1 Uncertainties for the antenna and cable were estimated, based on a normal probability distribution with $k = 2$.
- 1.2 The receiver uncertainty was obtained from the manufacturer's specification for which a rectangular distribution was assumed.
- 1.3 The antenna factor uncertainty does not take account of antenna directivity.
- 1.4 The antenna factor varies with height and since the height was not always the same in use as when the antenna was calibrated an additional uncertainty is added.
- 1.5 The uncertainty in the measurement distance is relatively small but has some effect on the received signal strength. The increase in measurement distance as the antenna height is increased is an inevitable consequence of the test method and is therefore not considered a contribution to uncertainty.
- 1.6 Site imperfections are difficult to quantify but may include the following contributions:

- Unwanted reflections from adjacent objects.
- Ground plane imperfections: reflection coefficient, flatness, and edge effects.
- Losses or reflections from "transparent" cabins for the EUT or site coverings.
- Earth currents in antenna cable (mainly effect biconical antennas).

The specified limits for the difference between measured site attenuation and the theoretical value (± 4 dB) were not included in total since the measurement of site attenuation includes uncertainty contributions already allowed for in this budget, such as antenna factor.

Conducted Measurements Uncertainty Calculation

Measurement of conducted emissions over the frequency range 9 kHz to 30 MHz includes following uncertainty:

Contribution	Probability	Uncertainty (dB)
Receiver specification	rectangular	± 1.5
LISN coupling specification	rectangular	± 1.5
Cable and input attenuator calibration	normal (k=2)	± 0.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{0.5}{2}\right]^2 + \frac{1.5^2 + 1.5^2}{3}}$$

$$U_c(y) = \pm 1.2 \text{ dB}$$

As with radiated field strength uncertainty, it is probable that $u_c(y) / s(qk) > 3$ and a coverage factor of $k = 2$ will suffice, therefore:

$$U = 2 U_c(y) = 2 \times \pm 1.2 \text{ dB} = \pm 2.4 \text{ dB}$$

NVLAP Lab Code 200087-0

Annex B Test Equipment List For Rogers Labs, Inc.

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

List of Test Equipment	Calibration Date
Oscilloscope Scope: Tektronix 2230	2/07
Wattmeter: Bird 43 with Load Bird 8085	2/07
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/07
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/07
R.F. Generator: HP 606A	2/07
R.F. Generator: HP 8614A	2/07
R.F. Generator: HP 8640B	2/07
Spectrum Analyzer: HP 8562A,	2/07
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W	
HP Adapters: 11518, 11519, 11520	
Spectrum Analyzer: HP 8591EM	5/07
Frequency Counter: Leader LDC825	2/07
Antenna: EMCO Biconilog Model: 3143	5/07
Antenna: EMCO Log Periodic Model: 3147	10/07
Antenna: Antenna Research Biconical Model: BCD 235	10/07
Antenna: EMCO Dipole Set 3121C	2/07
Antenna: C.D. B-101	2/07
Antenna: Solar 9229-1 & 9230-1	2/07
Antenna: EMCO 6509	2/07
Audio Oscillator: H.P. 201CD	2/07
R.F. Power Amp 65W Model: 470-A-1010	2/07
R.F. Power Amp 50W M185- 10-501	2/07
R.F. PreAmp CPPA-102	2/07
LISN 50 μ Hy/50 ohm/0.1 μ f	10/07
LISN Compliance Eng. 240/20	2/07
LISN Fischer Custom Communications FCC-LISN-50-16-2-08	2/07
Peavey Power Amp Model: IPS 801	2/07
Power Amp A.R. Model: 10W 1010M7	2/07
Power Amp EIN Model: A301	2/07
ELGAR Model: 1751	2/07
ELGAR Model: TG 704A-3D	2/07
ESD Test Set 2010i	2/07
Fast Transient Burst Generator Model: EFT/B-101	2/07
Current Probe: Singer CP-105	2/07
Current Probe: Solar 9108-1N	2/07
Field Intensity Meter: EFM-018	2/07
KEYTEK Ecat Surge Generator	2/07

Annex C Qualifications**SCOT D. ROGERS, ENGINEER****ROGERS LABS, INC.**

Mr. Rogers has approximately 17 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

POSITIONS HELD:

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

EDUCATIONAL BACKGROUND:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

NVLAP Lab Code 200087-0

Annex D FCC Site Approval Letter

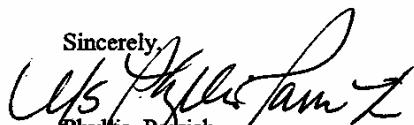
FEDERAL COMMUNICATIONS COMMISSION

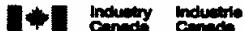
**Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046**

May 16, 2006

Registration Number: 90910

**Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053**


Attention: Scot Rogers


**Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Renewal: May 16, 2006**

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parish
Information Technician

Annex E Industry Canada Site Approval LetterMay 23rd, 2006OUR FILE: 46405-3041
Submission No: 115252

Rogers Labs Inc.
4405 West 259th Terrace
Louisburg, KY
USA 66053

Dear Sir/Madame:

The Bureau has received your application for the Alternate Test Site or OATS and the filing is satisfactory to Industry Canada.

Please reference to the file number (3041-1) in the body of all test reports containing measurements performed on the site.

In the future, to obtain or renew a unique registration number, you may demonstrate that the site has been accredited to ANSI C63.4-2003 or later.

If the site is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating conformance with the ANSI standard. The Department will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed two years.

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca
Please reference our file number above for all correspondence.

Yours sincerely,

Robert Corey
Manager Certification
Certification and Engineering Bureau
3701 Carling Ave., Building 94
Ottawa, Ontario K2H 8S2

Canada

ROGERS LABS, INC.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 2

Digital Monitoring Products, Inc.
Model: 1100 dH/xH
Test #: 080110
Test to: FCC 15c (15.247), IC RSS-210
File: DMP 1100dH TstRpt R2

FCC ID#: CCKPC0114
IC: 5251A-PC0114
Page 33 of 33
Date: January 18, 2008