

Southwest Microwave, Inc.
9055 South McKemy Street
Tempe, Arizona 85284-2946

June 11, 2004

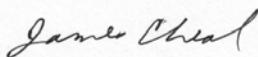
Federal Communication Commission
Office of Engineering and Technology
Attention: Andrew Leimer
Re: FCC ID CA6MTP

Correspondence Reference Number: 26974
731 Confirmation Number: EA669666

Southwest Microwave has a different interpretation of section 15.31(d.) It clearly states "*Field strength measurements shall be made to the extent possible, on an open field site*". This is precisely what we did. It is certainly possible to bury and test leaky cable performance on an open field site as described in the referenced application. 31 acres of flat desert land should qualify as an open field site. We believe the open field tests are preferable to installation sites for the following reasons.

Many installation sites that can be classified as typical, will have chain link fences and large buildings which will block the field inside the 30 meter test distance and result in a lower value than would be measured at the open field site.

Until a large number of systems are installed, how can we demonstrate the three chosen installation are really typical?


We understand the for carrier current systems or for leaky cable systems that are part of the internal wiring of a building, there is no other alternative to the three site testing, but for buried cable, measurements can be done on an open field site.

Section 15.31(d) also states that "*In the case of equipment for which the measurements can be performed only at the installation site*". This provides for alternative measurements at installation sites but does not apply to the Southwest Microwave buried leaky cable system as we have shown it can done on an open field site.

We performed three separate tests at the open field site to provide more detailed performance characteristics of the leaky cable. One cable was buried at 6 inches, another at 9 inches and the third on surface of the ground. We specify system performance only with the cable buried 6 to 9 inches below the surface. We tested the cable on the surface only to determine the worst case condition with respect to the maximum radiation. The attenuation due to the conductivity of the soil will always cause lower field strength. Our tests indicate a decrease of more than 10 db of the maximum field strength between the surface mounted cable and buried cable at a 6 inch depth.

The data we presented in the application provides an accurate profile of the surface wave established by the leaky cable. It is consistent with published data on leaky cable although we have found very little published that matches the same frequency range

Sincerely,

James Cheal
Director of Research
Southwest Microwave, Inc.