Digital Game Caller Model: PB1

FCC PART 15, SUBPART B and C TEST REPORT

for

DIGITAL GAME CALLER

MODEL: PB1

Prepared for

FOXPRO, INC. 14 FOX HOLLOW DRIVE LEWISTOWN, PENNSYLVNIA 17044

Prepared by:

O gyonwa

KYLE FUJIMOTO

Approved by: James Rom

JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: AUGUST 31, 2009

	REPORT	APPENDICES			TOTAL		
	BODY	A	В	C	D	E	
PAGES	17	2	2	2	19	16	58

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Report Number: **B90814A1 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report *Digital Game Caller*

ntal Game Caller Model: PB1

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
1. PURPOSE	6
2. ADMINISTRATIVE DATA 2.1 Location of Testing 2.2 Traceability Statement 2.3 Cognizant Personnel 2.4 Date Test Sample was Received 2.5 Disposition of the Test Sample 2.6 Abbreviations and Acronyms	7 7 7 7 7 7 7
3. APPLICABLE DOCUMENTS	8
 4. DESCRIPTION OF TEST CONFIGURATION 4.1 Description of Test Configuration - EMI 4.1.1 Cable Construction and Termination 	9 9 10
 5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT 5.1 EUT and Accessory List 5.2 EMI Test Equipment 	11 11 12
 6. TEST SITE DESCRIPTION 6.1 Test Facility Description 6.2 EUT Mounting, Bonding and Grounding 	13 13 13
 7. TEST PROCEDURES 7.1 RF Emissions 7.1.1 Conducted Emissions Test 7.1.2 Radiated Emissions (Spurious and Harmonics) Test 	14 14 14 15
8 CONCLUSIONS	17

Model: PB1

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated and Conducted Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site – 3 Meters
3	Plot Map And Layout of Test Site – 10 Meters

Model: PB1

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

Digital Game Caller

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: Digital Game Caller

Model: PB1 S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was not modified in order to meet the specifications.

Manufacturer: Foxpro, Inc.

14 Fox Hollow Drive

Lewistown, Pennsylvania 17044

Test Dates: August 10 and 14, 2009

Test Specifications: EMI requirements

CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249

Test Procedure: ANSI C63.4: 2003

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, section 15.207 Highest reading in relation to spec limit: 49.50 dBuV @ 0.155 MHz (*Uc = 0.63 dB)
2	Radiated RF Emissions 10 kHz – 9300 MHz (Transmitter Portion)	Complies with the limits of CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.249 Highest reading in relation to spec limit: 93.00 dBuV @ 904.29 MHz (*Uc = 1.85 dB)
3	Radiated RF Emissions 10 kHz – 9300 MHz (Digital and Receiver Portion)	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B and the limits of EN 55022 Class B. Highest reading in relation to spec limit: 28.53 dBuV @ 123.469 MHz (*Uc = 1.81 dB)

Model: PB1

Report Number: **B90814A1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report
Digital Game Caller

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Digital Game Caller, Model: PB1. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249.

Note: For the USB portion of the test, the EUT was within the <u>Class B specification limits defined</u> by C.I.S.P.R. Publication 22 for Information Technology Equipment for radiated emissions, and the <u>Class B</u> specification limits defined by CFR Title 47, Part 15, Subpart B for conducted emissions. Under paragraph G of section 15.109 of the Code of Federal Regulations Title 47, Part 15 of the FCC rules, FCC accepts the international standards set forth in C.I.S.P.R. Publication 22.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Foxpro, Inc.

John Dillon President

Compatible Electronics Inc.

Alex Benitez Test Technician Kyle Fujimoto Test Engineer James Ross Test Engineer

2.4 Date Test Sample was Received

The test sample was received prior to the date of testing.

2.5 Disposition of the Test Sample

The test sample has not yet been returned as of the date of this report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

N/A Not Applicable

3.

APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 2003	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators
EN 55022: 2006	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
CISPR 22: 1997	Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

USB Mode: The Digital Game Caller, Model: PB1 (EUT) was connected to a computer, left speaker, and right speaker via its USB, L Ext, and R Ext ports, respectively. The auxiliary port of the EUT also had an un-terminated cable connected to it. The computer was also connected to a monitor, keyboard, mouse, and modem via its video, keyboard, mouse, and serial ports, respectively. The EUT was transferring files to and from the computer.

Transmit and Receive Mode: The Digital Game Caller, Model: PB1 (EUT) was connected to the left speaker and right speaker via its L Ext and R Ext ports, respectively. The auxiliary port of the EUT also had an un-terminated cable connected to it. The EUT was continuously transmitting and receiving.

Note: The EUT is battery powered only for Transmit and Receive mode. However, when the USB cable is connected, the EUT can be powered up via the USB cable that supplies power from the computer. Conducted emissions were performed on the power supply of the computer when the EUT was in USB mode.

It was determined that the emissions were at their highest level when the EUT was operating in the above configurations. The final emissions data was taken in these modes of operation and any cables were maximized. All initial investigations were performed with the measurement receiver in manual mode scanning the frequency range continuously. Photographs of the test setup are in Appendix D of this report.

4.1.1 Cable Construction and Termination

Cable 1 USB Mode Only

This is a 2-meter braid and foil shielded cable connecting the monitor to the computer. The cable has a high density D-15 pin metallic connector at the computer end and is hard wired into the monitor. The cable was bundled to a length of 1 meter. The shield of the cable was grounded to the chassis via the connector. The cable has a molded ferrite at both ends.

Cable 2 USB Mode Only

This is a 1.2-meter foil shielded cable connecting the keyboard to the computer. The cable has a metallic 6 pin mini DIN connector at the computer end and is hard wired into the keyboard. The shield of the cable was grounded to the chassis via the connector.

Cable 3 USB Mode Only

This is a 2-meter foil shielded cable connecting the mouse to the computer. The cable has a metallic 6 pin mini DIN connector at the computer end and is hard wired into the mouse. The shield of the cable was grounded to the chassis via the connector.

Cable 4 USB Mode Only

This is a 0.75-meter braid shielded cable connecting the card reader to the computer. The cable has a USB type 'A' connector at the computer end and a mini-USB connector at the card reader end. The shield of the cable was grounded to the chassis via the connectors.

Cable 5 USB Mode Only

This is a 1.5-meter braid shielded cable connecting the EUT to the computer. The cable has a USB type 'A' connector at the computer end and a USB type 'B' connector at the EUT end. The cable was bundled to a length of 1 meter. The shield of the cable was grounded to the chassis via the connectors.

- <u>Cable 6</u>
 This is a 2-meter unshielded cable connecting the speaker to the EUT. The cable has a 1/8 inch mono connector at the EUT end and is hard wired into the speaker. The cable was bundled to a length of 1 meter.
- <u>Cable 7</u> This is a 2-meter unshielded cable connecting the speaker to the EUT. The cable has a 1/8 inch mono connector at the EUT end and is hard wired into the speaker. The cable was bundled to a length of 1 meter.
- <u>Cable 8</u> This is a 2-meter unshielded, un-terminated cable connected to the auxiliary port of the EUT. The cable has a 1/8 inch mono connector at the EUT end. The cable was bundled to a length of 40 centimeters.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
DIGITAL GAME CALLER (EUT)	FOXPRO, INC.	PB1	N/A	C6M631
(2) SPEAKERS	WORKMAN	THP-53FP	N/A	N/A
MOUSE	COMPAQ	MOAFKC	PM0824013971	DoC
KEYBOARD	COMPAQ	5137	B090807736	E5XUB5137
MONITOR	GATEWAY	FPD1730	TL819A422038384	DoC
COMPUTER	COMPAQ	SR57104	MKX910087V	N/A
CARD READER	IDOT CONNECT	N/A	0Н070 4011186	N/A

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE	
	GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS					
Computer	Hewlett Packard	4530	US91912319	N/A	N/A	
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08768	August 22, 2008	Aug. 22, 2009	
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22262	August 22, 2008	Aug. 22, 2009	
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	August 22, 2008	Aug. 22, 2009	
EMI Receiver	Rohde & Schwarz	ESIB40	100194	September 17, 2008	Sept. 17, 2010	
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A	
	RF RA	DIATED EMIS	SIONS TEST EQ	QUIPMENT		
Biconical Antenna	Com Power	AB-900	15227	February 23, 2009	Feb. 23, 2010	
Log Periodic Antenna	Com Power	AL-100	16252	June 15, 2009	June 15, 2010	
Preamplifier	Com-Power	PA-103	1582	January 12, 2009	Jan. 12, 2010	
Biconical Antenna	Com Power	AB-900	15250	February 23, 2009	Feb. 23, 2010	
Log Periodic Antenna	Com Power	AL-100	16060	June 15, 2009	June 15, 2010	
Preamplifier	Com-Power	PA-102	1017	January 12, 2009	Jan. 12, 2010	
Loop Antenna	Com-Power	AL-130	17089	September 29, 2008	Sept. 29, 2009	
Horn Antenna	Com-Power	AH-118	071175	June 27, 2008	June 27, 2010	
Microwave Preamplifier	Com Power	PA-122	181921	March 12, 2009	March 12, 2010	
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A	
	RF RA	DIATED EMIS	SIONS TEST EQ	QUIPMENT		
Emissions Program	Compatible Electronics	2.3 (SR19)	N/A	N/A	N/A	
LISN	Com Power	LI-215	12076	September 29, 2008	Sept. 29, 2009	
LISN	Com Power	LI-215	12090	September 29, 2008	Sept. 29, 2009	
Transient Limiter	Com Power	252A910	1	September 26, 2008	Sept. 26, 2009	

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

USB Mode: The EUT was grounded to the chassis of the computer via the shield of the USB cable.

Transmit and Receive Mode: The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2003. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B.

7.1.2 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer and EMI Receiver were used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Models: PA-102 and PA-103 were used for frequencies from 30 MHz to 1 GHz and the Com Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer and EMI Receiver were used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the EMI Receiver to keep the amplitude reading calibrated.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2003. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 10-meter test distance for the USB mode, and at a 3-meter test distance for the Transmit and Receive mode to obtain the final test data.

Test Results:

The EUT complies with the Class B limits of EN 55022; the Class B Limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.249.

8. CONCLUSIONS

The Digital Game Caller Model: PB1, as tested, meets all of the specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249.

Note: For the USB portion of the test, the EUT was within the <u>Class B specification limits defined</u> by C.I.S.P.R. Publication 22 for Information Technology Equipment for radiated emissions, and the <u>Class B specification limits defined by CFR Title 47</u>, Part 15, Subpart B for conducted emissions. <u>Under paragraph G of section 15.109 of the Code of Federal Regulations Title 47</u>, Part 15 of the FCC rules, FCC accepts the international standards set forth in C.I.S.P.R. Publication 22.

APPENDIX A

LABORATORY RECOGNITIONS

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.249 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

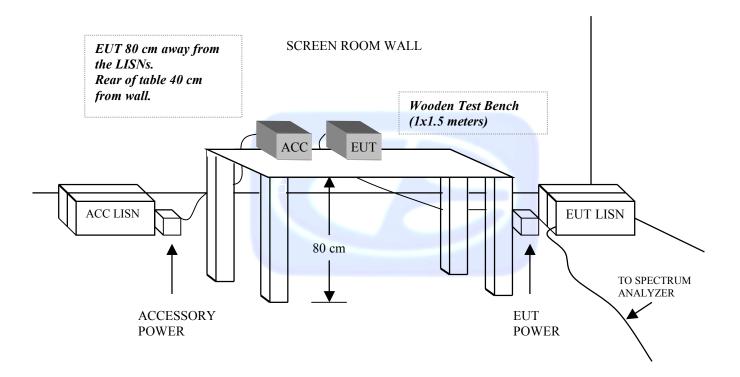
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Digital Game Caller Model: PB1 S/N: N/A

No additional models were covered under this report.



APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

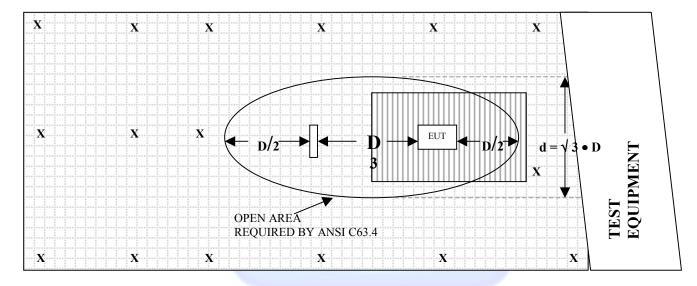
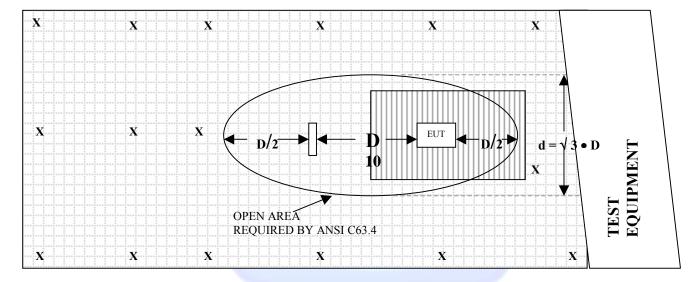

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE – 3 METERS

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS


X = GROUND RODS = GROUND SCREEN

D = TEST DISTANCE (meters) = WOOD COVER

FIGURE 3: PLOT MAP AND LAYOUT OF RADIATED SITE – 10 METERS

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND SCREEN

D = TEST DISTANCE (meters) = WOOD COVER

Model: PB1

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15227

CALIBRATION DATE: FEBRUARY 23, 2009

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	13.4	100	10.6
35	10.4	120	13.0
40	10.1	140	11.8
45	11.2	160	12.6
50	11.6	180	15.7
60	8.9	200	16.8
70	8.5	250	16.5
80	5.9	275	18.1
90	7.9	300	20.5

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16252

CALIBRATION DATE: JUNE 15, 2009

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
300	12.8	700	20.4
400	15.3	800	21.7
500	17.5	900	22.0
600	19.8	1000	22.7

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15250

CALIBRATION DATE: FEBRUARY 23, 2009

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	13.0	100	11.1
35	11.1	120	13.6
40	10.2	140	12.4
45	11.2	160	12.9
50	11.6	180	16.5
60	9.1	200	17.0
70	8.4	250	16.3
80	6.2	275	18.2
90	8.5	300	17.9

gital Game Caller Model: PB1

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16060

CALIBRATION DATE: JUNE 15, 2009

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	14.2	700	20.1
400	15.9	800	21.2
500	17.1	900	21.3
600	18.8	1000	22.3

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: JUNE 27, 2008

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	24.5	10.0	39.4
1.5	25.4	10.5	39.7
2.0	28.3	11.0	39.0
2.5	28.9	11.5	40.0
3.0	29.7	12.0	39.7
3.5	30.8	12.5	41.7
4.0	31.4	13.0	42.7
4.5	32.6	13.5	41.2
5.0	33.7	14.0	41.6
5.5	34.4	14.5	43.2
6.0	34.7	15.0	42.3
6.5	35.4	15.5	39.3
7.0	37.0	16.0	41.7
7.5	37.4	16.5	39.6
8.0	37.6	17.0	43.0
8.5	37.6	17.5	47.1
9.0	38.5	18.0	46.2
9.5	38.6		

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: JANUARY 12, 2009

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	33.6	300	33.4
40	33.7	350	33.2
50	33.6	400	33.2
60	33.5	450	33.1
70	33.6	500	32.9
80	33.6	550	33.0
90	33.7	600	32.8
100	33.7	650	33.0
125	33.5	700	32.7
150	33.6	750	32.9
175	33.7	800	32.6
200	33.4	850	32.6
225	33.4	900	32.6
250	33.4	950	32.4
275	33.3	1000	32.7

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 12, 2009

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	39.0	300	38.8
40	39.0	350	38.8
50	38.8	400	38.7
60	38.7	450	38.6
70	38.8	500	38.3
80	38.8	550	38.9
90	39.1	600	38.4
100	39.1	650	38.8
125	38.9	700	38.4
150	38.9	750	38.5
175	38.9	800	38.3
200	38.8	850	38.4
225	39.0	900	38.1
250	38.9	950	37.4
275	38.8	1000	38.1

COM-POWER PA-122

PREAMPLIFIER

S/N: 181921

CALIBRATION DATE: MARCH 12, 2009

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	36.46	10.0	35.06
1.5	35.36	10.5	34.82
2.0	34.76	11.0	33.12
2.5	34.94	11.5	34.33
3.0	34.59	12.0	34.75
3.5	34.55	12.5	33.94
4.0	34.25	13.0	35.50
4.5	33.89	13.5	34.89
5.0	34.22	14.0	36.56
5.5	34.81	14.5	36.06
6.0	35.74	15.0	36.67
6.5	36.51	15.5	36.84
7.0	36.66	16.0	34.31
7.5	35.72	16.5	35.11
8.0	33.28	17.0	35.35
8.5	33.11	17.5	34.11
9.0	34.71	18.0	33.88
9.5	35.50	18.5	32.20

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: SEPTEMBER 29, 2008

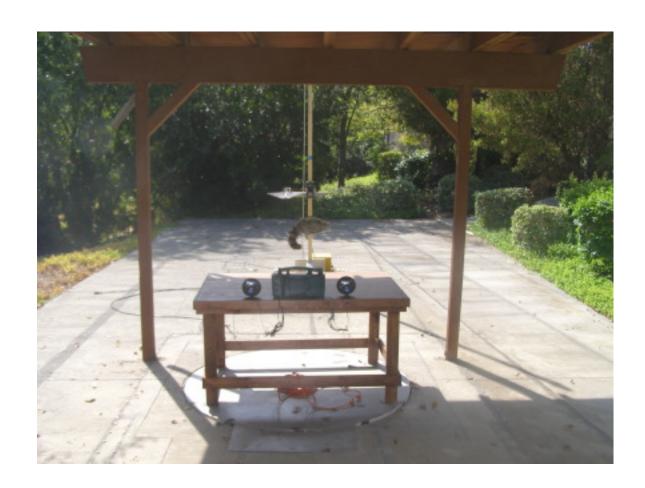
EDECHENCY	MACNETIC	FIECTRIC
FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-41.57	9.93
0.01	-42.06	9.44
0.02	-42.43	9.07
0.05	-42.50	9.00
0.07	-42.10	9.40
0.1	-42.03	9.47
0.2	-44.50	7.00
0.3	-41.93	9.57
0.5	-41.90	9.60
0.7	-41.73	9.77
1	-41.23	10.27
2	-40.90	10.60
3	-41.20	10.30
4	-41.30	10.20
5	-40.70	10.80
10	-41.10	10.40
15	-42.17	9.33
20	-42.00	9.50
25	-42.20	9.30
30	-43.10	8.40

FRONT VIEW

FOXPRO, INC.
DIGITAL GAME CALLER
MODEL: PB1
FCC SUBPART B – USB MODE – RADIATED EMISSIONS

REAR VIEW

FOXPRO, INC.
DIGITAL GAME CALLER
MODEL: PB1
FCC SUBPART B – USB MODE – RADIATED EMISSIONS



FRONT VIEW

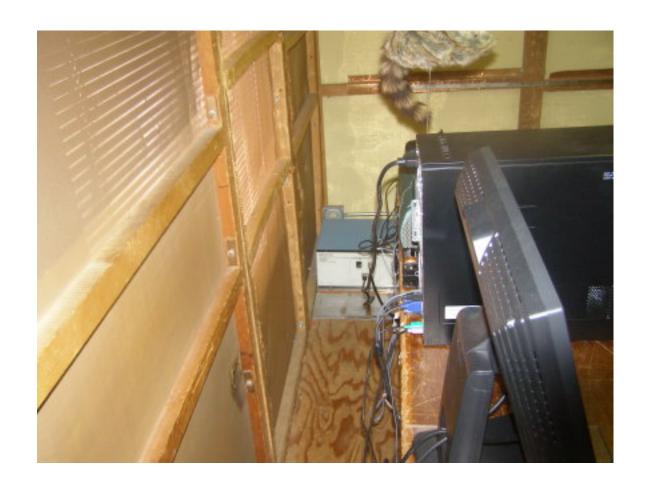
FOXPRO, INC.
DIGITAL GAME CALLER
MODEL: PB1

FCC SUBPART B AND C - TRANSMIT AND RECEIVE MODE - RADIATED EMISSIONS

REAR VIEW

FOXPRO, INC.
DIGITAL GAME CALLER
MODEL: PB1

FCC SUBPART B AND C - TRANSMIT AND RECEIVE MODE - RADIATED EMISSIONS


Digital Game Caller
Model: PB1

FRONT VIEW

FOXPRO, INC.
DIGITAL GAME CALLER
MODEL: PB1
FCC SUBPART B – USB MODE – CONDUCTED EMISSIONS

REAR VIEW

FOXPRO, INC.
DIGITAL GAME CALLER
MODEL: PB1
FCC SUBPART B – USB MODE – CONDUCTED EMISSIONS

APPENDIX E

DATA SHEETS

RADIATED EMISISONS

DATA SHEETS

FCC 15.249

Foxpro, Inc. Date: 08/10/09 Digital Game Caller Model: PB1 Labs: B and D

Tested By: Kyle Fujimoto

Transmit Mode

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
904.29	93.41	V	94	-0.59	Peak	1	90	
904.29	93	V	94	-1	QP	1	90	
1816.8	50.75	V	74	-23.25	Peak	1.25	225	
1816.8	47.09	V	54	-6.91	Avg	1.25	225	
2725.2	44.09	V	74	-29.91	Peak	1.35	150	
2725.2	36.76	V	54	-17.24	Avg	1.35	150	
00000	00.44			0.4.50	Б.	4.05	400	
3633.6	39.41	V	74	-34.59	Peak	1.25	160	
3633.6	27.24	V	54	-26.76	Avg	1.25	160	
4542								No Emission
4542								Detected
4542								Detected
5450.4								No Emission
5450.4								Detected
0.00								
6358.8								No Emission
6358.8								Detected
7267.2								No Emission
7267.2								Detected
8175.6								No Emission
8175.6								Detected
9084								No Emission
9084								Detected

FCC 15.249

Foxpro, Inc.
Digital Game Caller
Model: PB1

Labs: B and D Tested By: Kyle Fujimoto

Transmit Mode

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
904.29	90.59	Н	94	-3.41	Peak	1	180	
1808.58	53.06	Н	74	-20.94	Peak	1.25	135	
1808.58	50.52	Н	54	-3.48	Avg	1.25	135	
2712.87	43.79	Н	74	-30.21	Peak	1.35	150	
2712.87	35.49	Н	54	-18.51	Avg	1.35	150	
3617.16	40.07	Н	74	-33.93	Peak	1.25	150	
3617.16	27.61	Н	54	-26.39	Avg	1.25	150	
4521.45	41.41	Н	74	-32.59	Peak	1.35	175	
4521.45	30.02	Н	54	-23.98	Avg	1.35	175	
5425.74								No Emission
5425.74								Detected
6330.03								No Emission
6330.03								Detected
7004.00								No Fortaction
7234.32								No Emission
7234.32								Detected
8138.61								No Emission
8138.61								=
0130.01								Detected
9042.9								No Emission
9042.9								Detected
3042.3								Detected

Date: 08/10/09

FCC Class B and RSS-210

Foxpro, Inc. Digital Game Caller Model: PB1

Tested By: Kyle Fujimoto

Date: 08/10/09

Labs: B and D

Receive Mode - 10 kHz to 5000 MHz

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)		Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
896.96	34.57	Н	46	-11.43	Peak	1.35	180	
921.54	35.79	Н	46	-10.21	Peak	1.35	45	
933.82	31.57	Н	46	-14.43	Peak	1.35	45	
946.11	31.46	Н	46	-14.54	Peak	1.35	50	
958.39	30.16	Н	46	-15.84	Peak	1.55	160	
896.96	32.61	V	46	-13.39	Peak	1.35	45	
921.54	36.07	V	46	-9.93	Peak	1.35	45	
933.82	31.88	V	46	-14.12	Peak	1.35	45	
946.11	32.52	V	46	-13.48	Peak	1.35	45	
958.39	33.72	V	46	-12.28	Peak	1.35	45	
								No Emissions from
		_						the EUT in Receive Mode
								Above 1 GHz
								for Both the Vertical
								and Horizontal Polarizations

FCC 15.249 and FCC Class B

Date: 08/10/09 Foxpro, Inc. Digital Game Caller Model: PB1 Labs: B and D

Tested By: Kyle Fujimoto

Non-Harmonic Emissions From the Transmitter above 1 GHz and Digital Portion in Transmit Mode above 1 GHz

Level				Peak / QP /	Ant. Height	Table Angle	
	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
							No Non-Harmonic Emissions
							Found for the EUT Above
							1 GHz for both
							Vertical and Horizontal
							Polarizations
							No Emissions
							Found for the EUT
							Above 1 GHz for both
							Vertical and Horizontal
							Polarizations
							For the Digital Portion in
							Transmit Mode
			,				
	Level (dBuV)				Level QP /	Level QP / Height	Level QP / Height Angle

Test Location : Compatible Electronics Page : 1/1

Customer : Foxpro, Inc. Date: 8/14/2009 Manufacturer : Foxpro, Inc. Ti me : 10:53:50

Eut name : Digital Game Caller Lab: A : **PB1** Test Distance: 10.0 Model

: N/A Serial #

Specification : EN 55022 Class B

Distance correction factor (20 * log(test/spec) 0.00

: Horizontal and Vertical Polarization Test Mode

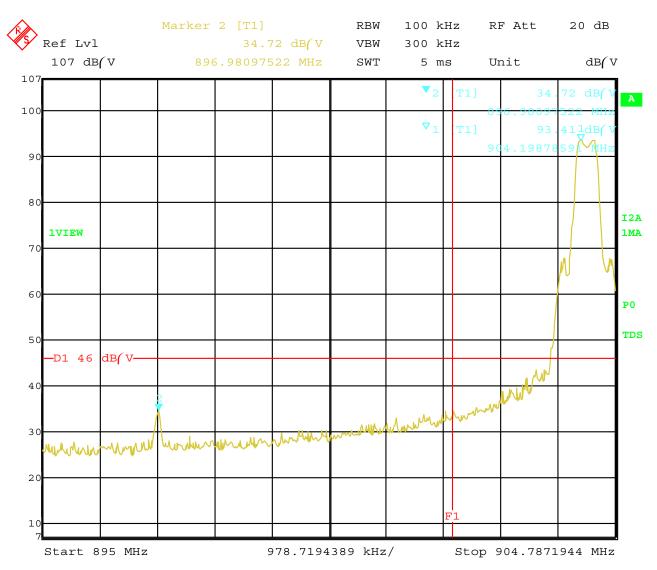
Radiated Emissions

10 kHz to 2000 MHz - USB Mode Tested By: Alex Benitez

Pol	Freq	Rdng	Cabl e	Ant	Amp	Cor' d_	Li m <u>i</u> t	Delta
	MHz	dBuV	loss dB	factor dB	gai n dB	rdg = R dBuV	= L dBuV/m	R- L dB
	IVIIIZ.	abav	uБ	uБ	uв	aba v	dbu v / III	uБ
1H	116. 789	40. 10	2.65	12.64	33. 56	21.83	30.00	- 8. 17
2V	123. 468	47. 40	2.77	12. 78	33. 51	29. 44	30. 00	- 0. 56
3Н	123. 469Qp	46. 49	2.77	12. 78	33. 51	28. 53	30. 00	- 1. 47
4V	123. 477	39. 40	2. 77	12. 78	33. 51	21. 44	30.00	- 8. 56
5V	246. 920	45. 30	4. 06	16. 52	33. 40	32. 48	37. 00	- 4. 52
6Н	246. 947	44. 10	4. 07	16. 52	33. 40	31. 28	37. 00	- 5. 72
7H	267. 486	40. 50	4. 24	17.63	33. 33	29. 05	37. 00	- 7. 95
8H	274. 343	38. 60	4. 29	18. 06	33. 30	27.65	37. 00	- 9. 35
9V	281. 212	42.60	4. 48	18. 72	33. 33	32. 47	37. 00	- 4. 53
10H	281. 227	40.60	4. 48	18. 72	33. 33	30. 47	37. 00	- 6. 53
11H	294. 927	39. 70	4. 86	20. 03	33. 38	31. 21	37. 00	- 5. 79
12V	294. 928	40. 70	4. 86	20. 03	33. 38	32. 21	37. 00	- 4. 79
13V	301. 780	41. 20	5. 01	12.85	33. 39	25. 67	37.00	- 11. 33
14H	301. 782	39. 60	5. 01	12.85	33. 39	24. 07	37. 00	- 12. 93
15H	308. 640	38. 90	5. 04	13. 05	33. 36	23. 62	37. 00	- 13. 38
16V	308. 650	40. 70	5. 04	13. 05	33. 36	25. 42	37. 00	- 11. 58
17H	336. 082	41. 30	5. 15	13. 79	33. 25	26. 98	37.00	- 10. 02
18V	336. 109	42. 10	5. 15	13. 79	33. 25	27. 78	37. 00	- 9. 22
19H	342. 938	39. 50	5. 17	13. 96	33. 23	25. 41	37. 00	- 11. 59
20V	377. 184	37. 40	5. 26	14. 79	33. 20	24. 25	37. 00	- 12. 75
21V	384. 091	37. 90	5. 27	14. 95	33. 20	24. 92	37. 00	- 12. 08
22V	432.090	37. 70	5. 63	16.06	33. 13	26. 25	37. 00	- 10. 75
23H	432.090	41.00	5. 63	16.06	33. 13	29. 55	37. 00	- 7. 45
24V	582. 792	42. 90	7. 03	19. 43	32.87	36. 50	37. 00	- 0. 50
25V	582. 792Qp	37. 75	7. 03	19. 43	32. 87	31. 35	37. 00	- 5. 65
26H	582. 858	42. 20	7. 03	19. 43	32. 87	35. 80	37. 00	- 1. 20
27H	582. 860Qp	37. 95	7. 03	19. 43	32.87	31. 55	37.00	- 5. 45
28H	644. 350 ¹	42.40	7. 03	20. 08	32. 98	36. 53	37. 00	- 0. 47
29H	644. 351Qp	38. 02	7. 03	20.08	32. 98	32. 15	37. 00	- 4. 85
30V	644. 389 ¹	40. 90	7. 03	20. 08	32. 98	35. 03	37. 00	- 1. 97
31V	644. 389Qp	37. 90	7. 03	20. 08	32. 98	32. 03	37. 00	- 4. 97
	VI							

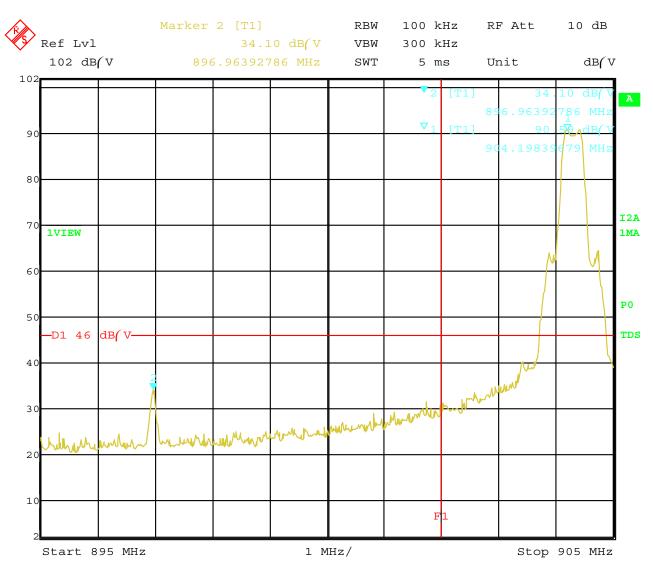
BAND EDGES

DATA SHEETS


FCC 15.249

Date: 08/10/09 Foxpro, Inc. Digital Game Caller Model: PB1 Labs: B and D

Tested By: Kyle Fujimoto


Band Edges - Transmit Mode

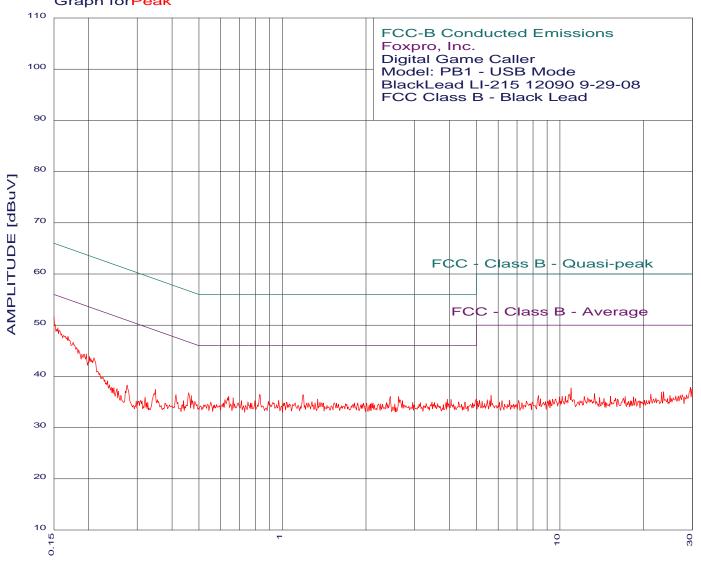
Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
904.29	93.41	V	94	-0.59	Peak	1	90	Fundamental
904.29	93	V	94	-1	QP	1	90	Fundamental
896.98	34.72	V	46	-11.28	Peak	1	90	Band Edge
904.29	90.59	Н	94	-3.41	Peak	1	180	Fundamental
896.96	34.1	Н	46	-11.9	Peak	1	180	Band Edge
	, and the second					, and the second		

Date: 10.AUG.2009 08:50:22

Band Edges - Vertical Polarization

Date: 10.AUG.2009 08:58:18

Band Edges - Horizontal Polarization



CONDUCTED EMISSIONS

DATA SHEETS

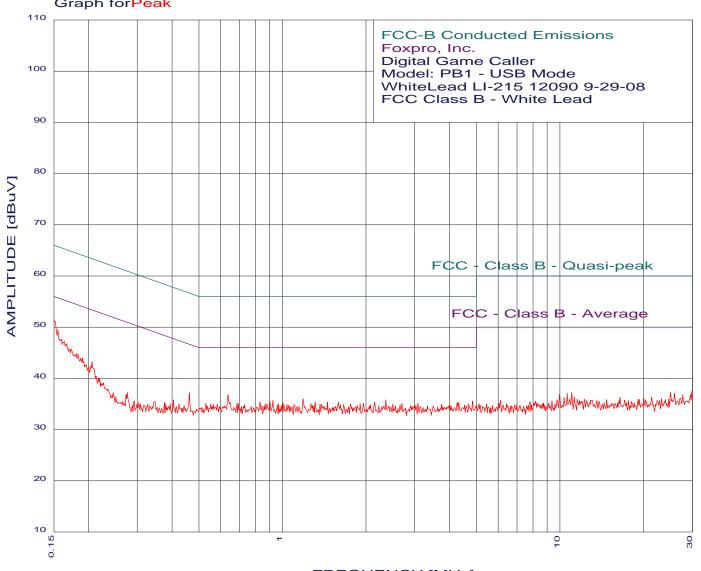
8/14/2009 17:10:21

FREQUENCY [MHz]

Foxpro, Inc. Digital Game Caller

Model: PB1 - USB Mode FCC Class B - Black Lead TEST ENGINEER : Alex Benitez

49 highest peaks above -50.00 dB of FCC - Class B - Average limit line


Peak criteria: 1.00 dB, Curve: Peak

			uVLimit(dB)	Delta(dB)
1	0.197	44.37	53.75	-9.38
2	1.184	36.40	46.00	-9.60
3	0.831	36.40	46.00	-9.60
4	0.210	43.57	53.23	-9.65
5	0.202	43.87	53.53	-9.66
6	2.449	36.12	46.00	-9.88
7	0.641	36.12	46.00	-9.90
8	0.459	36.79	46.71	-9.92
9				
9 10	2.624	36.02	46.00	-9.98 -10.20
	0.665	35.80	46.00	
11	0.469	36.19	46.53	-10.34
12	3.924	35.55	46.00	-10.45
13	1.338	35.50	46.00	-10.50
14	4.050	35.45	46.00	-10.55
15	0.969	35.30	46.00	-10.70
16	2.707	35.22	46.00	-10.78
17	0.796	35.20	46.00	-10.80
18	0.713	35.20	46.00	-10.80
19	0.890	35.10	46.00	-10.90
20	1.276	35.00	46.00	-11.00
21	0.751	35.00	46.00	-11.00
22	0.552	34.99	46.00	-11.01
23	4.552	34.96	46.00	-11.04
24	4.316	34.96	46.00	-11.04
25	3.456	34.94	46.00	-11.06
26	2.948	34.93	46.00	-11.07
27	1.367	34.90	46.00	-11.10
28	1.038	34.90	46.00	-11.10
29	3.882	34.85	46.00	-11.15
30	3.529	34.84	46.00	-11.16
31	3.141	34.83	46.00	-11.17
32	0.484	35.09	46.27	-11.18
33	2.371	34.82	46.00	-11.18
34	2.100	34.81	46.00	-11.19
35	1.869	34.81	46.00	-11.19
36	1.820	34.81	46.00	-11.19
37	1.544	34.81	46.00	-11.19
38	1.311	34.80	46.00	-11.20
39	1.243	34.80	46.00	-11.20
40	1.112	34.80	46.00	-11.20
41	1.016	34.80	46.00	-11.20
42	0.413	36.39	47.59	-11.20
43	2.013	34.71	46.00	-11.29
44	1.960	34.71	46.00	-11.29
45	3.624	34.64	46.00	-11.36
46	3.294	34.64	46.00	-11.36
46 47	2.540	34.62	46.00 46.00	-11.38
47 48	2.262	34.62	46.00	-11.38
49	2.226	34.61	46.00	-11.39

8/14/2009 17:14:27

FREQUENCY [MHz]

Foxpro, Inc. Digital Game Caller

Model: PB1 - USB Mode FCC Class B - White Lead TEST ENGINEER : Alex Benitez

49 highest peaks above -50.00 dB of FCC - Class B - Average limit line

Peak criteria: 1.00 dB, Curve: Peak

Peak	# Freq(MH	lz)Amp(dBı	uVILimit(dB)	Delta(dE
1	0.155	49.50	55.73	-6.24 [°]
2	0.637	36.78	46.00	-9.22
3	0.461	37.18	46.67	-9.49
4	1.184	35.96	46.00	-10.04
5	0.206	43.20	53.35	-10.15
6	2.358	35.77	46.00	-10.23
7	0.924	35.65	46.00	-10.35
8	0.899	35.65	46.00	-10.35
9	4.851	35.52	46.00	-10.48
10	2.145	35.37	46.00	-10.63
11	1.456	35.36	46.00	-10.64
12	1.311	35.36	46.00	-10.64
13	0.831	35.35	46.00	-10.65
14	1.594	35.26	46.00	-10.74
15	4.316	35.21	46.00	-10.79
16	4.272	35.21	46.00	-10.79
17	1.000	35.15	46.00	-10.85
18	0.686	35.15	46.00	-10.85
19	3.075	35.08	46.00	-10.92
20	2.693	35.08	46.00	-10.92
21	0.530	35.07	46.00	-10.93
22	1.960	35.06	46.00	-10.94
23	1.908	35.06	46.00	-10.94
24	1.269	35.06	46.00	-10.94
25	1.011	35.05	46.00	-10.95
26	0.867	35.05	46.00	-10.95
27	0.694	35.05	46.00	-10.95
28	4.696	35.02	46.00	-10.98
29	2.501	34.97	46.00	-11.03
30	0.552	34.96	46.00	-11.04
31	1.763	34.96	46.00	-11.04
32	1.367	34.96	46.00	-11.04
33	0.969	34.95	46.00	-11.05
34	0.881	34.95	46.00	-11.05
35	0.583	34.92	46.00	-11.08
36	4.008	34.90	46.00	-11.10
37	3.741	34.90	46.00	-11.10
38	2.995	34.88	46.00	-11.12
39	1.663	34.86	46.00	-11.14
40	1.382	34.86	46.00	-11.14
41	1.100	34.85	46.00	-11.15
42	1.038	34.85	46.00	-11.15
43	0.731	34.85	46.00	-11.15
44	2.077	34.76	46.00	-11.24
45	1.055	34.75	46.00	-11.25
46	0.958	34.75	46.00	-11.25
47	4.528	34.71	46.00	-11.29
48	4.600	34.62	46.00	-11.38
49	3.492	34.59	46.00	-11.41