

*FCC PART 15, SUBPART B and C
TEST REPORT*
for

 FREQUENCY HOPPER TRANSCEIVER
 MODEL: TX500

Prepared for

 FOXPRO, INC.
 14 FOX HOLLOW DRIVE
 LEWISTOWN, PA 17044

 Prepared by: _____

KYLE FUJIMOTO

 Approved by: _____

MICHAEL CHRISTENSEN

 COMPATIBLE ELECTRONICS INC.
 114 OLINDA DRIVE
 BREA, CALIFORNIA 92823
 (714) 579-0500

DATE: NOVEMBER 4, 2008

	REPORT BODY	APPENDICES					TOTAL
		A	B	C	D	E	
PAGES	22	2	2	10	41	79	

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

 Brea Division
 114 Olinda Drive
 Brea, CA 92823
 (714) 579-0500

 Agoura Division
 2337 Troutdale Drive
 Agoura, CA 91301
 (818) 597-0600

 Silverado Division
 19121 El Toro Road
 Silverado, CA 92676
 (949) 589-0700

 Lake Forest Division
 20621 Pascal Way
 Lake Forest, CA 92630
 (949) 587-0400

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration - EMI	9
4.1.1 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 EMI Test Equipment	12
6. TEST SITE DESCRIPTION	13
6.1 Test Facility Description	13
6.2 EUT Mounting, Bonding and Grounding	13
7. TEST PROCEDURES	14
7.1 RF Emissions	14
7.1.1 Conducted Emissions Test	14
7.1.2 Radiated Emissions (Spurious and Harmonics) Test	15
7.2 20 dB Bandwidth	17
7.3 Peak Output Power	18
7.4 RF Antenna Conducted Test	18
7.5 RF Band Edges	19
7.6 Carrier Frequency Separation	19
7.7 Number of Hopping Frequencies	19
7.8 Average Time of Occupancy Test	20
7.9 Spectral Density Test	21
8. CONCLUSIONS	22

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Recognitions
B	Modifications to the EUT
C	Additional Models Covered Under This Report
D	Diagrams, Charts, and Photos <ul style="list-style-type: none"> • Test Setup Diagrams • Radiated and Conducted Emissions Photos • Antenna and Effective Gain Factors
E	Data Sheets

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site – 3 Meters

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested: Frequency Hopper Transceiver
Model: TX500
S/N: N/A

Product Description: See Expository Statement.

Modifications: The EUT was not modified during the testing.

Manufacturer: Foxpro, Inc.
14 Fox Hollow Drive
Lewistown, PA 17044

Test Dates: October 14, 15, 21, and 24, 2008

Test Specifications: EMI requirements
CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.247

Test Procedure: ANSI C63.4: 2003

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	This test was not performed because the EUT operates on battery power only and cannot be plugged into the AC public mains.
2	Spurious Radiated RF Emissions, 30 MHz – 1000 MHz	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.209
3	Spurious Radiated RF Emissions, 10 kHz – 30 MHz and 1000 MHz – 9300 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, section 15.247(d)
4	Fundamental and Emissions produced by the intentional radiator in non-restricted bands, 10 kHz – 9.3 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247(d)
5	Emissions produced by the intentional radiator in restricted bands, 10 kHz – 9.3 GHz	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209, and section 15.247 (d)
6	20 dB Bandwidth	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (a)(1) and (a)(1)(i)
7	Peak Power Output	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(2)
8	RF Conducted Antenna Test	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d)
9	Carrier Frequency Separation	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1) and 15.247 (a)(1)(i)
10	Average Time of Occupancy	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(i)
11	Peak Power Spectral Density from the Intentional Radiator to the Antenna	This test was not performed because the EUT is a frequency hopper.

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Frequency Hopper Transceiver Model: TX500. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.247.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Foxpro, Inc.

John Dillon Owner

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer
Michael Christensen Lab Manager

2.4 Date Test Sample was Received

The test sample was received on October 13, 2008.

2.5 Disposition of the Test Sample

The sample has not been returned to Foxpro, Inc. as of November 4, 2008.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network
N/A	Not Applicable

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators
ANSI C63.4 2003	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

The Frequency Hopper Transceiver Model: TX500 (EUT) was tested as a stand-alone unit and tested in three orthogonal axis. The EUT was continuously transmitting and receiving. The low, middle, and high channels were tested.

A Transceiver Model: Fury was used to receive the frequency hopping frequencies and to transmit to the EUT. This transceiver was placed approximately 50 feet from the test site. This was used to verify the operation of the EUT.

The final radiated was taken in the modes above. Please see Appendix E for the data sheets.

4.1.1 **Cable Construction and Termination**

There are no external cables attached to the EUT.

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

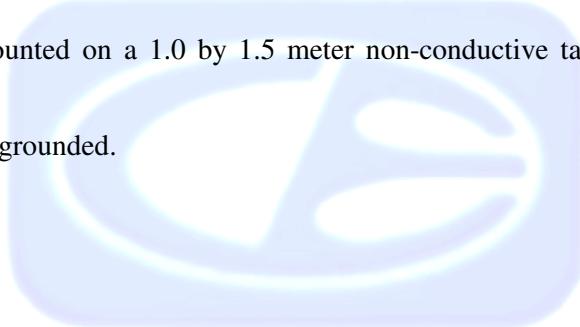
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT**5.1 EUT and Accessory List**

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
FREQUENCY HOPPER TRANSCEIVER (EUT)	FOXPRO, INC.	TX500	N/A	TBD
TRANSCEIVER (EUT)	FOXPRO, INC.	FURY	N/A	C6M630

5.2 **EMI Test Equipment**

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE
GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS					
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08768	August 14, 2007	August 14, 2008
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22262	August 14, 2007	August 14, 2008
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	August 14, 2007	August 14, 2008
EMI Receiver	Rohde & Schwarz	ESIB40	100172	November 27, 2006	Nov. 27, 2008
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
RF RADIATED EMISSIONS TEST EQUIPMENT					
Biconical Antenna	Com Power	AB-900	15226	February 28, 2008	Feb. 28, 2009
Log Periodic Antenna	Com Power	AL-100	16060	June 27, 2008	June 27, 2009
Preamplifier	Com-Power	PA-102	1017	January 11, 2008	Jan. 11, 2009
Loop Antenna	Com-Power	AL-130	17089	September 29, 2008	Sept. 29, 2009
Horn Antenna	Com-Power	AH-118	071175	June 27, 2008	June 27, 2010
Microwave Preamplifier	Com-Power	PA-122	181921	March 3, 2008	March 3, 2009
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A

6. TEST SITE DESCRIPTION


6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2003. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

This test was not performed because the EUT operates on battery power only and cannot be plugged into the AC public mains.

7.1.2

Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer and EMI Receiver were used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz and the Com Power Microwave Preamplifier Model: PA-122 was used for frequencies above 1 GHz. The spectrum analyzer and EMI Receiver were used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the spectrum analyzer to keep the amplitude reading calibrated.

After the readings above 1 GHz were average manually, the reading was further adjusted by a "duty cycle correction factor", derived from $20 \log (\text{dwell time} / 100 \text{ ms})$. The duty cycle correction factor is explained in Appendix E.

The measurement bandwidths and transducers used for the radiated emissions test were:

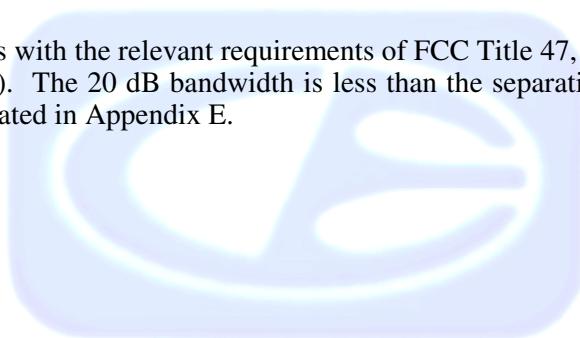
FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 2003. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT by the Radiated Emission Manual Test software. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 10 meter test distance from 10 kHz to 30 MHz, and at a 3 meter test distance from 30 MHz to 25 GHz to obtain the final test data.

Test Results:


The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Sections 15.209 and 15.247 (d) for radiated emissions. Please see Appendix E for the data sheets.

7.2 20 dB Bandwidth

The 20 dB Bandwidth was measured using the EMI Receiver. The bandwidth was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was 10 kHz and the video bandwidth was 30 kHz.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and (a)(1)(i). The 20 dB bandwidth is less than the separation between channels. Please see the data sheets located in Appendix E.

7.3 Peak Output Power

Since antenna conducted tests could not be performed on the EUT due to a lack of an antenna connector on the EUT, the peak output power was calculated by the following equation:

$$P = [(E^2 \cdot D)^2] / (30 \cdot G)$$

P = Power in Watts for which you are solving

E = the measured maximum field strength in V/m utilizing the widest available RBW.

G = the numeric gain of the transmitting antenna over an isotropic radiator.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (b)(2). The maximum peak output power is less than 250 mW. Please see the data sheets located in Appendix E.

7.4 RF Antenna Conducted Test

Since antenna conducted tests could not be performed on the EUT due to a lack of an antenna connector on the EUT, all harmonics were tested using the radiated emissions test procedure located in section 7.1.2 of this test report.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. Please see the radiated emission data sheets located in Appendix E.

7.5 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (902 MHz when the EUT was on the low channel and 928 MHz when the EUT was on the high channel) using the EMI Receiver. The RBW was set to 100 kHz and the VBW was set to 300 kHz. Plots of the fundamental were taken to ensure the amplitude at the band edges were at least 20 dB down from the peak of the fundamental emission.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power at the band edges at 902 MHz and 928 MHz meet the requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). Please see the data sheets located in Appendix E.

7.6 Carrier Frequency Separation

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 100 kHz, and the video bandwidth 1 MHz. The frequency span was wide enough to include the peaks of two adjacent channels.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(i). The Channel Hopping Separation is greater than the 20 dB bandwidth. Please see the data sheets located in Appendix D.

7.7 Number of Hopping Frequencies

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was 1 MHz, and the video bandwidth was 1 MHz. The frequency span was wide enough to include all of the peaks in the frequency band of operation.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(i). The number of hopping frequencies is 25. Please see the data sheets located in Appendix E.

7.8 Average Time of Occupancy Test

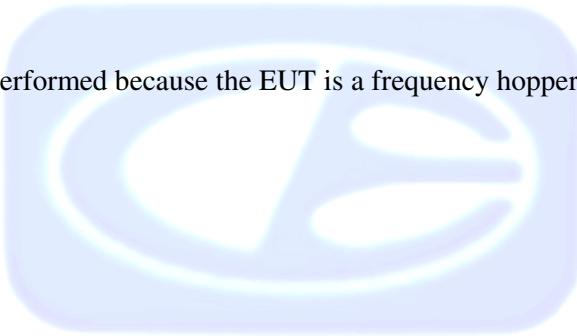
The Average Time of Occupancy Test was measured using the EMI Receiver. The EUT was operating in normal operating mode. The frequency span was taken to 0 Hz with a sweep time of 100 milliseconds to determine the time for each transmission.

The EUT was put into its normal transmitting mode. The EUT frequency hops between 26 different channels during normal operation.

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 10 seconds.

The sweep time was then changed to 10 seconds and the number of pulses taken. The number of pulses in a 10 second period was then used to determine the average time of occupancy.

Test Results:


The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(i). The EUT does not transmit for more than 400 msec in a 10 second period on any frequency. Please see the data sheets located in Appendix E.

7.9 Spectral Density Test

The spectrum density output was measured using the EMI Receiver. The spectral density output was measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth 3 kHz, and the video bandwidth was 10 kHz. The highest 1.5 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

Test Results:

This test was not performed because the EUT is a frequency hopper.

8. CONCLUSIONS

The Frequency Hopper Transceiver Model: TX500 meets all of the specification limits defined in FCC Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.247.

Note: For the unintentional radiator portion of the test, the EUT was within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B.

APPENDIX A

LABORATORY RECOGNITIONS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

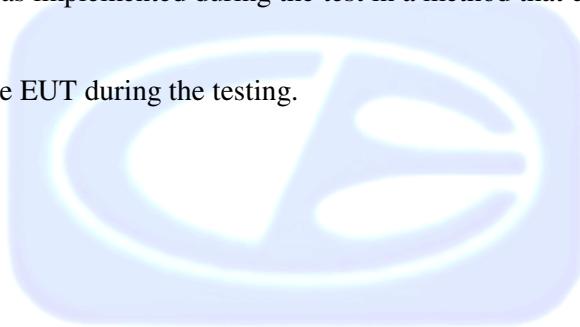
APPENDIX B

MODIFICATIONS TO THE EUT

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700


Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.247 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

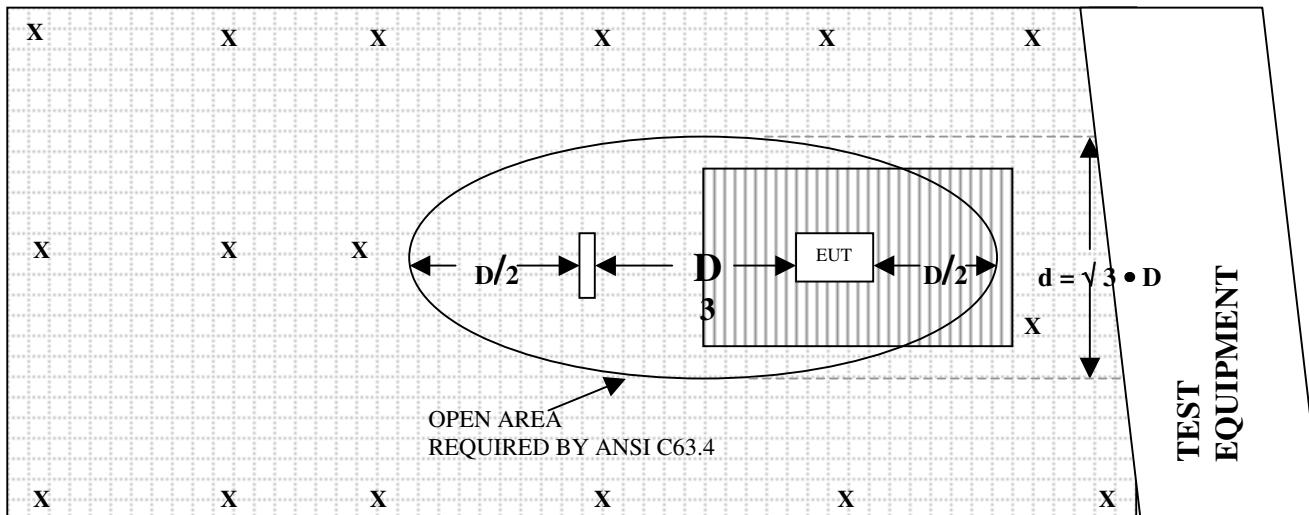
Frequency Hopper Transceiver
Model: TX500
S/N: N/A

There were no additional models covered under this report.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500


Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE – 3 METERS

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

- | | |
|--|---|
| = GROUND RODS | = GROUND SCREEN |
| = TEST DISTANCE (meters) | = WOOD COVER |

COM-POWER AB-900
BICONICAL ANTENNA
S/N: 15226
CALIBRATION DATE: FEBRUARY 28, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	12.1	100	10.7
35	12.2	120	13.6
40	11.7	140	12.1
45	9.9	160	12.2
50	11.3	180	15.2
60	9.4	200	16.5
70	7.6	250	16.5
80	6.0	275	18.1
90	6.8	300	21.5

COM-POWER AL-100**LOG PERIODIC ANTENNA****S/N: 16060****CALIBRATION DATE: JULY 9, 2007**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.7	700	21.2
400	15.3	800	21.7
500	17.4	900	21.8
600	190	1000	22.8

COM POWER AH-118
HORN ANTENNA
S/N: 071175
CALIBRATION DATE: JUNE 27, 2008

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	24.5	10.0	39.4
1.5	25.4	10.5	39.7
2.0	28.3	11.0	39.0
2.5	28.9	11.5	40.0
3.0	29.7	12.0	39.7
3.5	30.8	12.5	41.7
4.0	31.4	13.0	42.7
4.5	32.6	13.5	41.2
5.0	33.7	14.0	41.6
5.5	34.4	14.5	43.2
6.0	34.7	15.0	42.3
6.5	35.4	15.5	39.3
7.0	37.0	16.0	41.7
7.5	37.4	16.5	39.6
8.0	37.6	17.0	43.0
8.5	37.6	17.5	47.1
9.0	38.5	18.0	46.2
9.5	38.6		

COM-POWER PA-102
PREAMPLIFIER
S/N: 1017
CALIBRATION DATE: JANUARY 11, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	38.2	300	38.3
40	38.0	350	38.0
50	38.3	400	38.1
60	38.6	450	37.5
70	38.4	500	37.9
80	38.4	550	37.9
90	38.3	600	37.8
100	38.1	650	37.5
125	38.5	700	38.0
150	38.2	750	37.7
175	38.1	800	37.1
200	38.4	850	37.1
225	38.2	900	37.1
250	38.2	950	37.0
275	38.0	1000	36.5

COM-POWER PA-122
PREAMPLIFIER
S/N: 181921
CALIBRATION DATE: MARCH 3, 2008

FREQUENCY (GHz)	FACTOR (dB)	FREQUENCY (GHz)	FACTOR (dB)
1.0	36.32	10.0	35.47
1.5	35.40	10.5	35.05
2.0	34.77	11.0	34.16
2.5	35.07	11.5	33.75
3.0	34.86	12.0	34.65
3.5	34.48	12.5	34.41
4.0	34.30	13.0	35.36
4.5	33.96	13.5	35.30
5.0	34.06	14.0	35.87
5.5	34.54	14.5	36.44
6.0	35.90	15.0	36.24
6.5	36.85	15.5	35.92
7.0	36.55	16.0	35.53
7.5	35.31	16.5	35.29
8.0	33.57	17.0	34.96
8.5	33.36	17.5	34.02
9.0	35.01	18.0	33.39
9.5	35.97	18.5	32.70

COM-POWER AL-130
LOOP ANTENNA
S/N: 17089
CALIBRATION DATE: SEPTEMBER 29, 2008

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-41.57	9.93
0.01	-42.06	9.44
0.02	-42.43	9.07
0.05	-42.50	9.00
0.07	-42.10	9.40
0.1	-42.03	9.47
0.2	-44.50	7.00
0.3	-41.93	9.57
0.5	-41.90	9.60
0.7	-41.73	9.77
1	-41.23	10.27
2	-40.90	10.60
3	-41.20	10.30
4	-41.30	10.20
5	-40.70	10.80
10	-41.10	10.40
15	-42.17	9.33
20	-42.00	9.50
25	-42.20	9.30
30	-43.10	8.40

FRONT VIEW

FOXPRO, INC.
FREQUENCY HOPPER TRANSCEIVER
MODEL: TX500
FCC SUBPART B AND C – RADIATED EMISSIONS

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

REAR VIEW

FOXPRO, INC.
FREQUENCY HOPPER TRANSCEIVER
MODEL: TX500
FCC SUBPART B AND C – RADIATED EMISSIONS

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

APPENDIX E

DATA SHEETS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

RADIATED EMISIONS
DATA SHEETS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/14/08
Lab: B
Tested By: Kyle Fujimoto

Low Channel - X-Axis
Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1808.56	69.02	V	--	--	Peak	2.25	225	Not in Restricted Band
1808.56	58.11	V	--	--	Avg	2.25	225	Duty Cycle Average
2712.84	63.87	V	74	-10.13	Peak	1.15	180	
2712.84	52.96	V	54	-1.04	Avg	1.15	180	Duty Cycle Average
3617.12	68.73	V	74	-5.27	Peak	1.13	150	
3617.12	61.14	V	54	7.14	Avg	1.13	150	Video Average to 10 Hz
3617.12	50.23	V	54	-3.77	Avg	1.13	150	Additional Duty Cycle Avg.
4521.4	61.31	V	74	-12.69	Peak	1.15	180	
4521.4	50.4	V	54	-3.6	Avg	1.15	180	Duty Cycle Average
5425.68	59.08	V	74	-14.92	Peak	1.15	180	
5425.68	48.17	V	54	-5.83	Avg	1.15	180	Duty Cycle Average
6329.96	71.65	V	--	--	Peak	1.15	150	Not in Restricted Band
6329.96	60.74	V	--	--	Avg	1.15	150	Duty Cycle Average
7234.24	56.06	V	74	-17.94	Peak	1.16	180	
7234.24	45.15	V	54	-8.85	Avg	1.16	180	Duty Cycle Average
8138.52	60.64	V	74	-13.36	Peak	1.15	225	
8138.52	49.73	V	54	-4.27	Avg	1.15	225	Duty Cycle Average
9042.8	53.41	V	74	-20.59	Peak	1.13	150	
9042.8	42.5	V	54	-11.5	Avg	1.13	150	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/14/08
Lab: B
Tested By: Kyle Fujimoto

Low Channel - X-Axis Transmit Mode

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/14/08
Lab: B
Tested By: Kyle Fujimoto

Low Channel - Y-Axis Transmit Mode

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/14/08
Lab: B
Tested By: Kyle Fujimoto

Low Channel - Y-Axis Transmit Mode

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/14/08
Lab: B
Tested By: Kyle Fujimoto

Low Channel - Z-Axis
Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1808.56	72.37	V	--	--	Peak	1.56	150	Not in Restricted Band
1808.56	61.46	V	--	--	Avg	1.56	150	Duty Cycle Average
2712.84	63.51	V	74	-10.49	Peak	1.1	150	
2712.8	56.68	V	54	2.68	Avg	1.1	150	Video Average to 10 Hz
2712.84	45.77	V	54	-8.23	Avg	1.1	150	Duty Cycle Average
3617.12	69.24	V	74	-4.76	Peak	1.15	150	
3617.12	61.54	V	54	7.54	Avg	1.15	225	Video Average to 10 Hz
3617.12	50.63	V	54	-3.37	Avg	1.15	150	Duty Cycle Average
4521.4	60.83	V	74	-13.17	Peak	1.13	150	
4521.4	49.92	V	54	-4.08	Avg	1.13	150	Duty Cycle Average
5425.68	57.99	V	74	-16.01	Peak	1.15	150	
5425.68	47.08	V	54	-6.92	Avg	1.15	150	Duty Cycle Average
6329.96	71.08	V	--	--	Peak	1.13	150	Not in Restricted Band
6329.96	60.17	V	--	--	Avg	1.13	150	Duty Cycle Average
7234.24	61.41	V	74	-12.59	Peak	1.14	150	
7234.24	50.5	V	54	-3.5	Avg	1.14	150	Duty Cycle Average
8138.52	61.37	V	74	-12.63	Peak	1.16	180	
8138.52	50.46	V	54	-3.54	Avg	1.16	180	Duty Cycle Average
9042.8	53.18	V	74	-20.82	Peak	1.16	180	
9042.8	42.27	V	54	-11.73	Avg	1.16	180	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/14/08

Lab: B

Tested By: Kyle Fujimoto

Low Channel - Z-Axis

Transmit Mode

FCC 15.247

Foxpro, Inc.
 Transceiver
 Model: TX500

Date: 10/15/08
 Lab: B
 Tested By: Kyle Fujimoto

Middle Channel - X-Axis
Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1830.44	67.03	V	--	--	Peak	1.13	150	Not in Restricted Band
1830.44	56.12	V	--	--	Avg	1.13	150	Duty Cycle Average
2745.66	61.45	V	74	-12.55	Peak	1.13	150	
2745.66	50.54	V	54	-3.46	Avg	1.13	150	Duty Cycle Average
3660.88	63.63	V	74	-10.37	Peak	1.15	150	
3660.88	58.07	V	54	4.07	Avg	1.15	150	Video Average to 10 Hz
3660.88	47.16	V	54	-6.84	Avg	1.15	150	Additional Duty Cycle Avg.
4576.1	57.46	V	74	-16.54	Peak	1.16	150	
4576.1	46.55	V	54	-7.45	Avg	1.16	150	Duty Cycle Average
5491.32	61.01	V	74	-12.99	Peak	1.13	150	
5491.32	50.1	V	54	-3.9	Avg	1.13	150	Duty Cycle Average
6406.54	69.9	V	--	--	Peak	1.13	150	Not in Restricted Band
6406.54	58.99	V	--	--	Avg	1.13	150	Duty Cycle Average
7321.76	52.93	V	74	-21.07	Peak	1.13	160	
7321.76	42.02	V	54	-11.98	Avg	1.13	160	Duty Cycle Average
8236.98	60.01	V	74	-13.99	Peak	1.16	90	
8236.98	49.1	V	54	-4.9	Avg	1.16	90	Duty Cycle Average
9152.2	53.76	V	74	-20.24	Peak	1.16	150	
9152.2	42.85	V	54	-11.15	Avg	1.16	150	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

Middle Channel - X-Axis Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1830.44	70.71	H	--	--	Peak	1.16	150	Not in Restricted Band
1830.44	63.86	H	--	--	Avg	1.16	150	Duty Cycle Average
2745.66	62.96	H	74	-11.04	Peak	1.15	90	
2745.66	55.23	H	54	1.23	Avg	1.15	90	Video Average to 10 Hz
2745.66	44.32	H	54	-9.68	Avg	1.15	90	Additional Duty Cycle Avg.
3660.88	66.65	H	74	-7.35	Peak	1.13	150	
3660.88	57.71	H	54	3.71	Avg	1.13	150	Video Average to 10 Hz
3660.88	46.8	H	54	-7.2	Avg	1.13	150	Additional Duty Cycle Avg.
4576.1	58.12	H	74	-15.88	Peak	1.13	150	
4576.1	47.21	H	54	-6.79	Avg	1.13	150	Duty Cycle Average
5491.32	63.05	H	74	-10.95	Peak	1.16	150	
5491.32	52.14	H	54	-1.86	Avg	1.16	150	Duty Cycle Average
6406.54	77.66	H	--	--	Peak	1.18	150	Not in Restricted Band
6406.54	66.75	H	--	--	Avg	1.18	150	Duty Cycle Average
7321.76	66.83	H	74	-7.17	Peak	2.25	45	
7321.76	51.27	H	54	-2.73	Avg	2.25	45	Video Average to 10 Hz
7321.76	40.36	H	54	-13.64	Avg	2.25	45	Additional Duty Cycle Avg.
8236.98	71.87	H	74	-2.13	Peak	2.25	315	
8237	54.35	H	54	0.35	Avg	2.25	315	Video Average to 10 Hz
8236.98	43.44	H	54	-10.56	Avg	2.25	315	Additional Duty Cycle Avg.
9152.2	68.53	H	74	-5.47	Peak	1.16	315	
9152.2	51.94	H	54	-2.06	Avg	1.16	315	Video Average to 10 Hz
9152.2	41.03	H	54	-12.97	Avg	1.16	315	Additional Duty Cycle Avg.

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

Middle Channel - Y-Axis

Transmit Mode

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

Middle Channel - Y-Axis Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1830.44	67.55	H	--	--	Peak	2.25	45	Not in Restricted Band
1830.44	56.64	H	--	--	Avg	2.25	45	Duty Cycle Average
2745.66	70.02	H	74	-3.98	Peak	2.05	0	
2745.66	59.67	H	54	5.67	Avg	2.05	0	Video Average to 10 Hz
2745.66	48.76	H	54	-5.24	Avg	2.05	0	Additional Duty Cycle Avg.
3660.88	68.58	H	74	-5.42	Peak	1.12	45	
3660.88	61.59	H	54	7.59	Avg	1.12	45	Video Average to 10 Hz
3660.88	50.68	H	54	-3.32	Avg	1.12	45	Additional Duty Cycle Avg.
4576.1	61.83	H	74	-12.17	Peak	1.16	225	
4576.1	52.86	H	54	-1.14	Avg	1.16	225	Video Average to 10 Hz
4576.1	41.95	H	54	-12.05	Avg	1.16	225	Additional Duty Cycle Avg.
5491.32	60.04	H	74	-13.96	Peak	1.15	150	
5491.32	49.13	H	54	-4.87	Avg	1.15	150	Duty Cycle Average
6406.54	66.27	H	--	--	Peak	1.85	90	Not in Restricted Band
6406.54	55.36	H	--	--	Avg	1.85	90	Duty Cycle Average
7321.76	59.08	H	74	-14.92	Peak	1.13	150	
7321.76	48.17	H	54	-5.83	Avg	1.13	150	Duty Cycle Average
8236.98	62.56	H	74	-11.44	Peak	1.15	150	
8236.98	51.65	H	54	-2.35	Avg	1.15	150	Duty Cycle Average
9152.2	56.96	H	74	-17.04	Peak	1.16	150	
9152.2	46.05	H	54	-7.95	Avg	1.16	150	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

Middle Channel - Z-Axis
Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1830.44	70.05	V	--	--	Peak	1.19	90	Not in Restricted Band
1830.44	59.14	V	--	--	Avg	1.19	90	Duty Cycle Average
2745.66	62.61	V	74	-11.39	Peak	1.16	150	
2745.66	54.96	V	54	0.96	Avg	1.16	150	Video Average to 10 Hz
2745.66	44.05	V	54	-9.95	Avg	1.16	150	Additonal Duty Cycle Avg.
3660.88	64.99	V	74	-9.01	Peak	1.19	135	
3660.88	59.41	V	54	5.41	Avg	1.19	135	Video Average to 10 Hz
3660.88	48.5	V	54	-5.5	Avg	1.19	135	Additonal Duty Cycle Avg.
4576.1	60.12	V	74	-13.88	Peak	1.15	150	
4576.1	49.21	V	54	-4.79	Avg	1.15	150	Duty Cycle Average
5491.32	54.25	V	74	-19.75	Peak	1.16	150	
5491.32	43.34	V	54	-10.66	Avg	1.16	150	Duty Cycle Average
6406.54	70.08	V	--	--	Peak	1.16	150	Not in Restricted Band
6406.54	59.17	V	--	--	Avg	1.16	150	Duty Cycle Average
7321.76	56.27	V	74	-17.73	Peak	1.16	150	
7321.76	45.36	V	54	-8.64	Avg	1.16	150	Duty Cycle Average
8236.98	63.38	V	74	-10.62	Peak	1.15	150	
8236.98	52.47	V	54	-1.53	Avg	1.15	150	Video Average to 10 Hz
8236.98	41.56	V	54	-12.44	Avg	1.15	150	Additonal Duty Cycle Avg.
9152.2	54.81	V	74	-19.19	Peak	1.15	150	
9152.2	43.9	V	54	-10.1	Avg	1.15	150	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

Middle Channel - Z-Axis

Transmit Mode

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

High Channel - X-Axis
Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1852.14	60.44	V	--	--	Peak	1.15	150	Not in Restricted Band
1852.14	49.53	V	--	--	Avg	1.15	150	Duty Cycle Average
2778.21	64.57	V	74	-9.43	Peak	1.16	150	
2778.2	57.38	V	54	3.38	Avg	1.16	150	Video Average to 10 Hz
2778.21	46.47	V	54	-7.53	Avg	1.16	150	Additional Duty Cycle Avg.
3704.28	66.53	V	74	-7.47	Peak	1.16	225	
3704.28	56.73	V	54	2.73	Avg	1.16	225	Video Average to 10 Hz
3704.28	45.82	V	54	-8.18	Avg	1.16	225	Additional Duty Cycle Avg.
4630.35	53.93	V	74	-20.07	Peak	1.15	150	
4630.35	43.02	V	54	-10.98	Avg	1.15	150	Duty Cycle Average
5556.42	62.62	V	74	-11.38	Peak	1.15	180	
5556.42	51.71	V	54	-2.29	Avg	1.15	180	Duty Cycle Average
6482.49	65.51	V	--	--	Peak	1.15	150	Not in Restricted Band
6482.49	54.6	V	--	--	Avg	1.15	150	Duty Cycle Average
7408.56	57.18	V	74	-16.82	Peak	1.18	120	
7408.56	46.27	V	54	-7.73	Avg	1.18	120	Duty Cycle Average
8334.63	61.91	V	74	-12.09	Peak	1.16	225	
8334.6	51	V	54	-3	Avg	1.16	225	Video Average to 10 Hz
8334.63	40.09	V	54	-13.91	Avg	1.16	225	Additional Duty Cycle Avg.
9260.7	59.62	V	74	-14.38	Peak	1.16	150	
9260.7	48.71	V	54	-5.29	Avg	1.16	150	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

High Channel - X-Axis Transmit Mode

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

High Channel - Y-Axis Transmit Mode

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

High Channel - Y-Axis Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1852.14	70.94	H	--	--	Peak	2.25	250	Not in Restricted Band
1852.14	60.03	H	--	--	Avg	2.25	250	Duty Cycle Average
2778.21	63.98	H	74	-10.02	Peak	1.15	135	
2778.21	57.14	H	54	3.14	Avg	1.15	135	Video Average to 10 Hz
2778.2	46.23	H	54	-7.77	Avg	1.15	135	Additional Duty Cycle Avg.
3704.28	67.97	H	74	-6.03	Peak	1.13	45	
3704.28	61.71	H	54	7.71	Avg	1.13	45	Video Average to 10 Hz
3704.28	50.8	H	54	-3.2	Avg	1.13	45	Additional Duty Cycle Avg.
4630.35	58.11	H	74	-15.89	Peak	1.15	90	
4630.35	48.22	H	54	-5.78	Avg	1.15	90	Video Average to 10 Hz
4630.4	37.31	H	54	-16.69	Avg	1.15	90	Additional Duty Cycle Avg.
5556.42	57.03	H	74	-16.97	Peak	1.16	150	
5556.42	46.12	H	54	-7.88	Avg	1.16	150	Duty Cycle Average
6482.49	60.47	H	--	--	Peak	1.15	150	Not in Restricted Band
6482.49	46.92	H	--	--	Avg	1.15	150	Duty Cycle Average
7408.56	56.33	H	74	-17.67	Peak	1.16	150	
7408.56	46.92	H	54	-7.08	Avg	1.16	150	Duty Cycle Average
8334.63	61.54	H	74	-12.46	Peak	1.15	150	
8334.63	46.35	H	54	-7.65	Avg	1.15	150	Duty Cycle Average
9260.7	54.58	H	74	-19.42	Peak	1.16	150	
9260.7	40.17	H	54	-13.83	Avg	1.16	150	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

High Channel - Z-Axis
Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1852.14	69.68	V	--	--	Peak	1.15	150	Not in Restricted Band
1852.14	58.77	V	--	--	Avg	1.15	150	Duty Cycle Average
2778.21	63.32	V	74	-10.68	Peak	1.15	180	
2778.21	54.98	V	54	0.98	Avg	1.15	180	Video Average to 10 Hz
2778.2	44.07	V	54	-9.93	Avg	1.15	180	Additonal Duty Cycle Avg.
3704.28	68.48	V	74	-5.52	Peak	1.15	225	
3704.28	59.33	V	54	5.33	Avg	1.15	225	Video Average to 10 Hz
3704.28	48.42	V	54	-5.58	Avg	1.15	225	Additonal Duty Cycle Avg.
4630.35	60.62	V	74	-13.38	Peak	1.16	150	
4630.35	49.71	V	54	-4.29	Avg	1.16	150	Duty Cycle Average
5556.42	63.33	V	74	-10.67	Peak	1.56	0	
5556.42	52.42	V	54	-1.58	Avg	1.56	0	Duty Cycle Average
6482.49	61.05	V	--	--	Peak	1.13	150	Not in Restricted Band
6482.49	50.14	V	--	--	Avg	1.13	150	Duty Cycle Average
7408.56	54.85	V	74	-19.15	Peak	1.18	150	
7408.56	43.94	V	54	-10.06	Avg	1.18	150	Duty Cycle Average
8334.63	62.07	V	74	-11.93	Peak	1.16	90	
8334.63	47.12	V	54	-6.88	Avg	1.16	90	Video Average to 10 Hz
8334.6	36.21	V	54	-17.79	Avg	1.16	90	Additonal Duty Cycle Avg.
9260.7	57.43	V	74	-16.57	Peak	1.19	90	
9260.7	46.52	V	74	-27.48	Peak	1.19	90	Duty Cycle Average

FCC 15.247

Foxpro, Inc.
Transceiver
Model: TX500

Date: 10/15/08
Lab: B
Tested By: Kyle Fujimoto

High Channel - Z-Axis
Transmit Mode

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
1852.14	69.21	H	--	--	Peak	1.16	150	Not in Restricted Band
1852.14	58.3	H	--	--	Avg	1.16	150	Duty Cycle Average
2778.21	61.62	H	74	-12.38	Peak	1.15	150	
2778.21	51.28	H	54	-2.72	Avg	1.15	150	Video Average to 10 Hz
2778.2	40.37	H	54	-13.63	Avg	1.15	150	Additonal Duty Cycle Avg.
3704.28	67.81	H	74	-6.19	Peak	1.15	150	
3704.28	58.61	H	54	4.61	Avg	1.15	150	Video Average to 10 Hz
3704.28	47.7	H	54	-6.3	Avg	1.15	150	Additonal Duty Cycle Avg.
4630.35	56.52	H	74	-17.48	Peak	1.16	150	
4630.35	45.61	H	54	-8.39	Avg	1.16	150	Duty Cycle Average
5556.42	64.91	H	74	-9.09	Peak	1.18	150	
5556.42	52.72	H	54	-1.28	Avg	1.18	150	Duty Cycle Average
6482.49	69.55	H	--	--	Peak	1.16	150	Not in Restricted Band
6482.49	59.81	H	--	--	Avg	1.16	150	Duty Cycle Average
7408.56	57.46	H	74	-16.54	Peak	1.18	150	
7408.56	46.55	H	54	-7.45	Avg	1.18	150	Duty Cycle Average
8334.63	62.26	H	74	-11.74	Peak	1.15	150	
8334.63	51.35	H	54	-2.65	Avg	1.15	150	Duty Cycle Average
9260.7	58.42	H	74	-15.58	Peak	1.19	145	
9260.7	47.51	H	74	-26.49	Peak	1.19	145	Duty Cycle Average

Test Location : Compatible Electronics

Customer : Foxpro, Inc.

Manufacturer : Foxpro, Inc.

Eut name : Transceiver

Model : TX500

Serial # : N/A

Specification : FCC Class B

Distance correction factor (20 * log(test/spec))

: 0.00

Test Mode : Spurious Emissions Qualification Scan
10 kHz to 9.3 GHz (Vertical and Horizontal)
Mode: Receive (Worst Case)
Test Engineer: Alex Benitez

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Limit = L dBuV/m	Delta R-L dB
V	343.268	42.20	2.16	13.92	38.26	20.02	46.00	-25.98
V	515.131	44.10	2.76	17.66	37.90	26.62	46.00	-19.38
V	629.206	43.10	3.06	19.68	37.62	28.22	46.00	-17.78
V	514.625	47.70	2.76	17.65	37.90	30.21	46.00	-15.79
H	514.619	46.10	2.76	17.65	37.90	28.61	46.00	-17.39
H	629.190	44.10	3.06	19.68	37.62	29.22	46.00	-16.78
H	343.262	45.10	2.16	13.92	38.26	22.92	46.00	-23.08
H	514.656	40.70	2.76	17.65	37.90	23.21	46.00	-22.79
H	514.610	46.60	2.76	17.65	37.90	29.11	46.00	-16.89
H	629.234	45.00	3.06	19.68	37.62	30.12	46.00	-15.88
H	343.311	45.90	2.16	13.92	38.26	23.72	46.00	-22.28

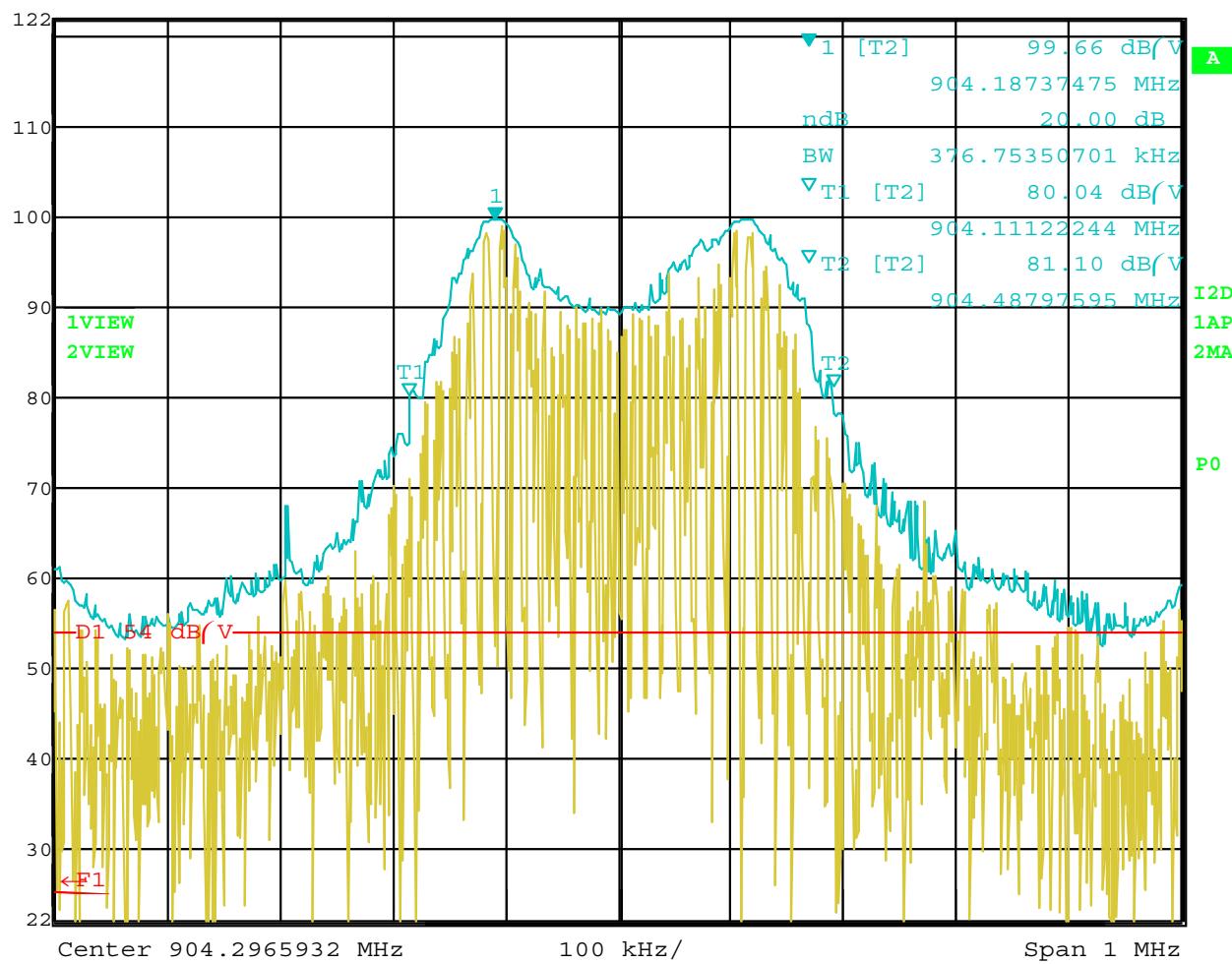
-20 dB BANDWIDTH

DATA SHEETS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

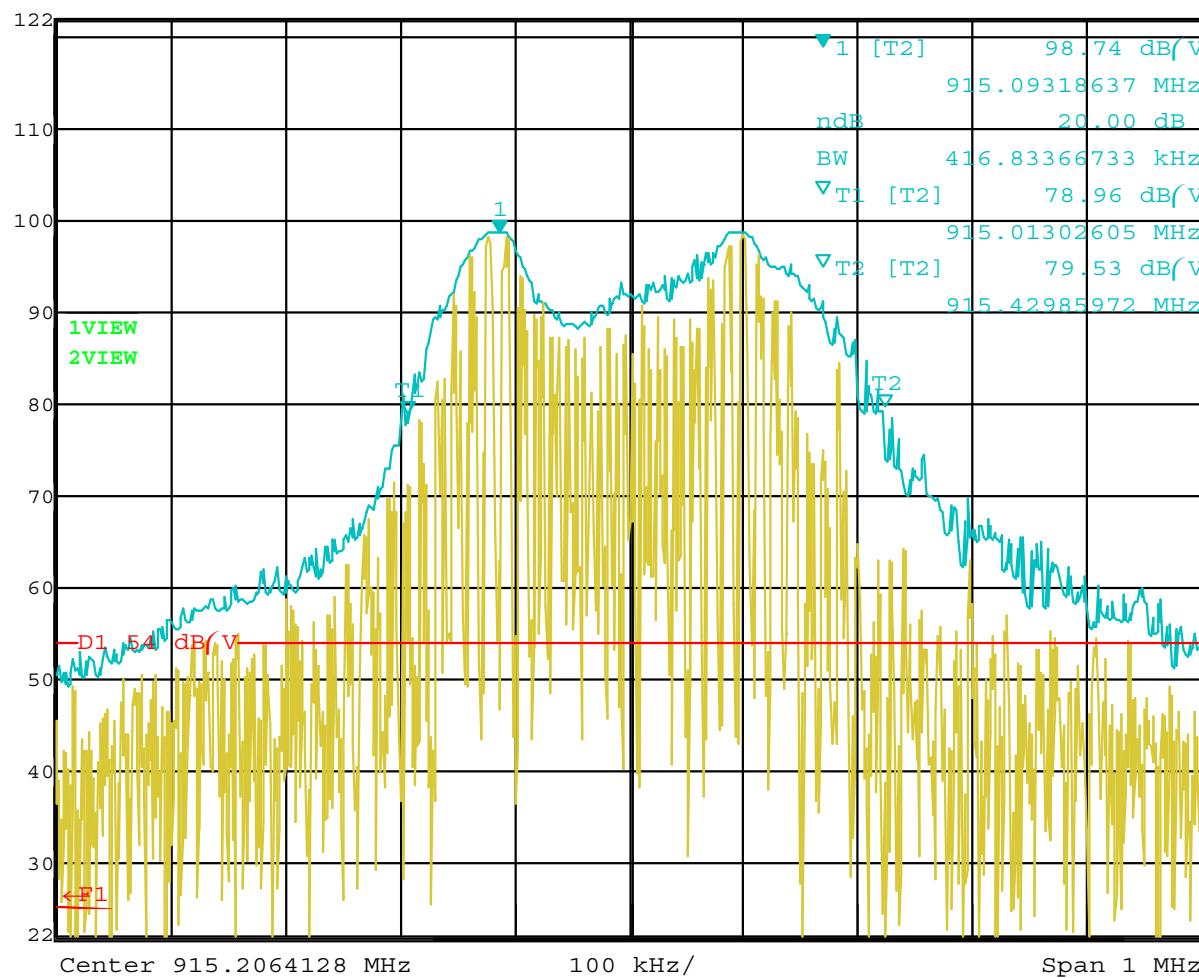

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

Ref Lvl
122 dB/V

Marker 1 [T2 dB]
dB 20.00 dB
BW 376.75350701 kHz

RBW 30 kHz
VBW 100 kHz
SWT 5 ms
RF Att 40 dB
Unit dB/V

Date: 14.OCT.2008 12:05:27

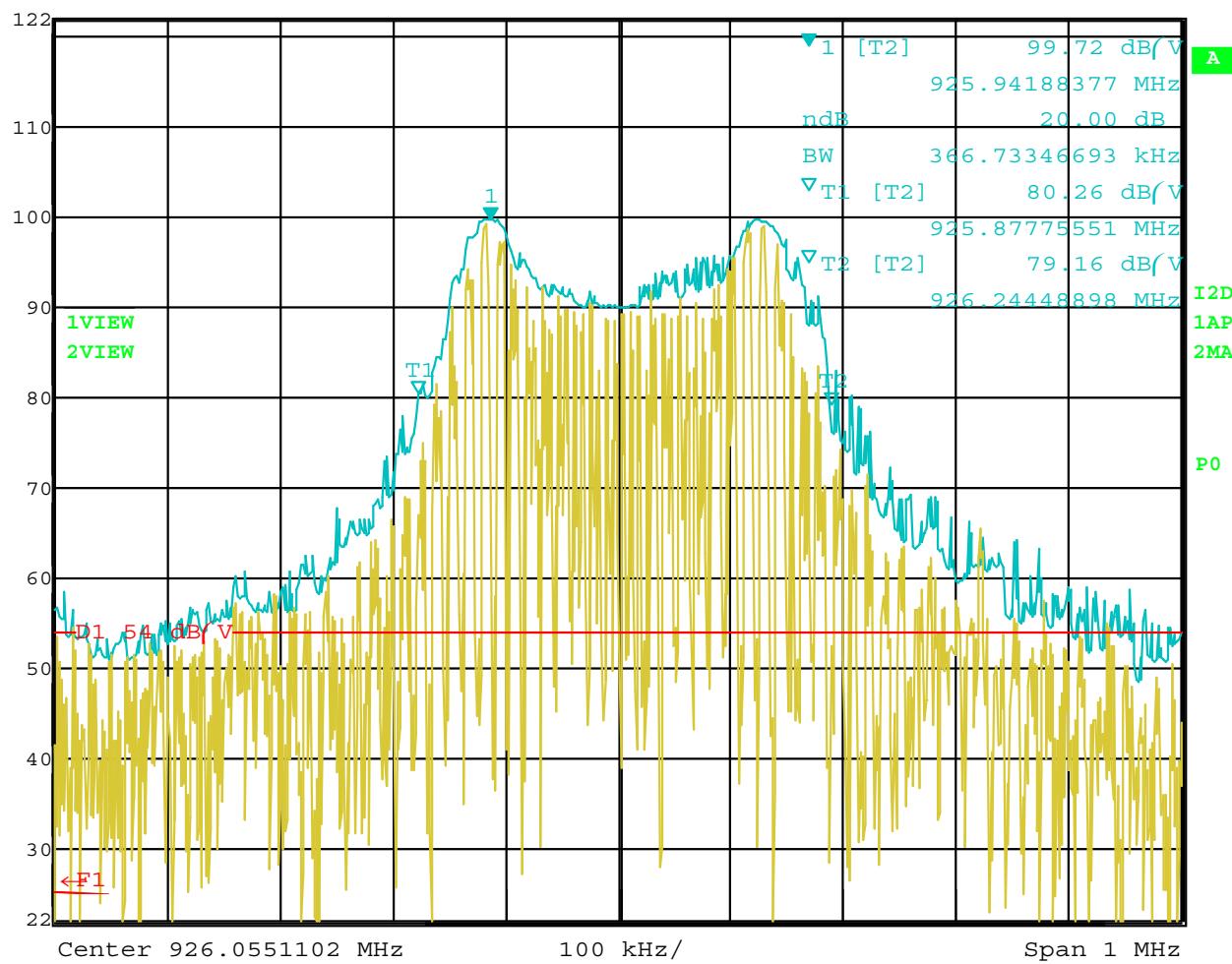

-20 dB Bandwidth – Low Channel

Ref Lvl
122 dB/V

Marker 1 [T2 dB]
dB 20.00 dB
BW 416.83366733 kHz

RBW 30 kHz
VBW 100 kHz
SWT 5 ms
RF Att 40 dB
Unit dB/V

Date: 14.OCT.2008 12:06:53


-20 dB Bandwidth – Middle Channel

Ref Lvl
122 dB/V

Marker 1 [T2 dB]
dB 20.00 dB
BW 366.73346693 kHz

RBW 30 kHz
VBW 100 kHz
SWT 5 ms
RF Att 40 dB
Unit dB/V

Date: 14.OCT.2008 12:11:00

-20 dB Bandwidth – High Channel

PEAK POWER OUTPUT
DATA SHEETS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

FCC 15.247

Foxpro, Inc.

Transceiver

Model: TX500

Date: 10/14/08

Lab: B

Tested By: Kyle Fujimoto

Peak Output Power**Worst Case Axis for Vertical Polarization = Y-Axis****Worst Case Axis for Horizontal Polarization = X-Axis**

Freq. (MHz)	Level (dBuV)	Level (V/m)	Antenna Gain (dBi)	Numeric Gain	Power Output (Watts)	Power Output (mW)	Power Output (dBm)	Comments
904.296	116.57	0.6737519	2.15	1.64059	0.0830082	83.0082	19.1912	Vertical
915.206	115.95	0.6273357	2.15	1.64059	0.071965	71.965	18.5712	Vertical
926.055	115.53	0.597723	2.15	1.64059	0.0653313	65.3313	18.1512	Vertical
904.296	119.87	0.9851446	2.15	1.64059	0.1774685	177.468	22.4912	Horizontal
915.206	119.225	0.9146396	2.15	1.64059	0.1529753	152.975	21.8462	Horizontal
926.055	118.93	0.8840972	2.15	1.64059	0.1429293	142.929	21.5512	Horizontal

Limit = 250 mW (23.97 dBm)

The Power in Watts is obtained by the following Formula Below:

$$P = [(E \cdot D)^2] / (30 \cdot G)$$

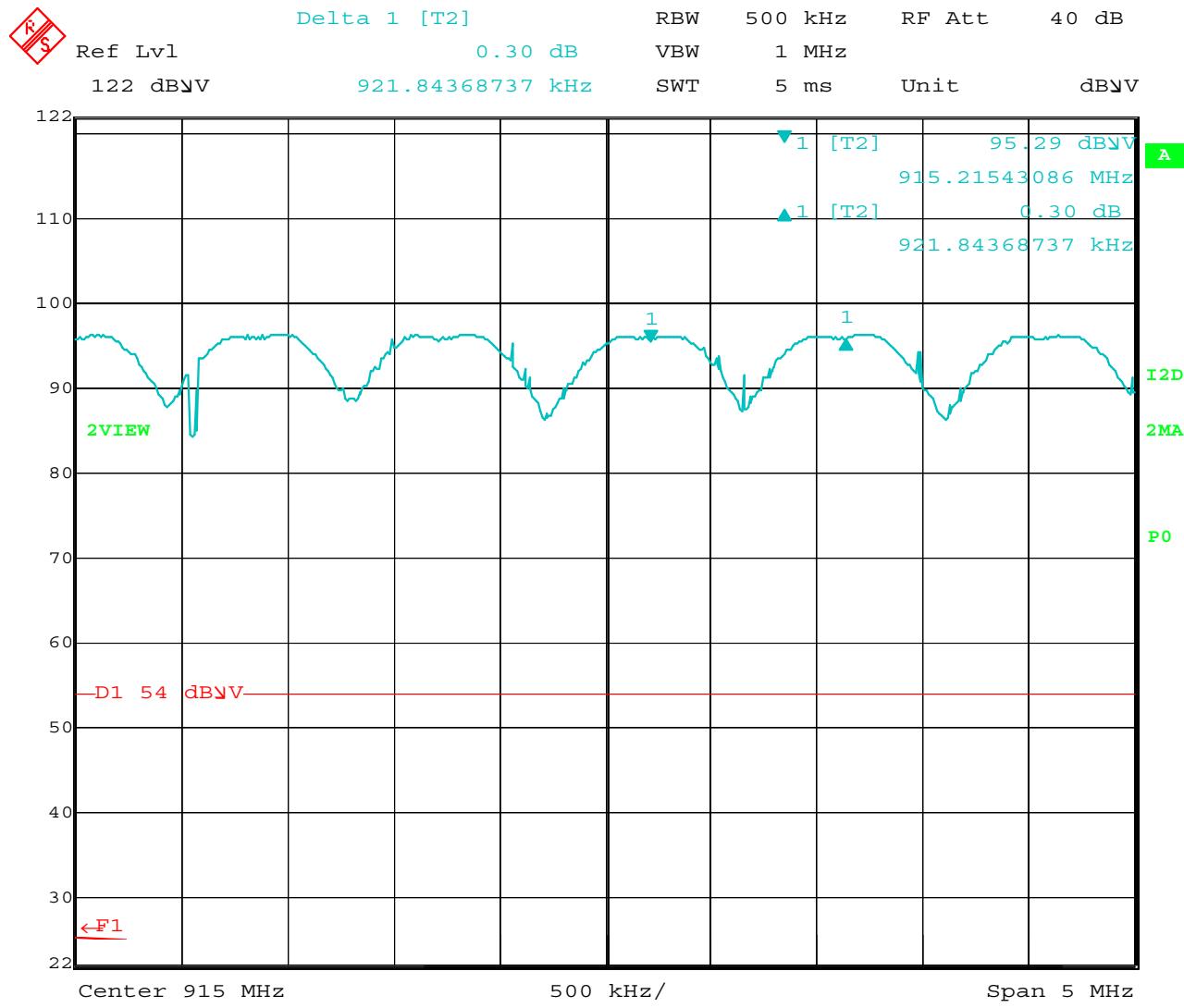
P = Power in Watts

E = The Measured Maximum Field Strength in V/m

G = The Numeric Gain of the Transmitting Antenna over an Isotropic Radiator

CHANNEL HOPPING SEPARATION

DATA SHEET



Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

Date: 14.OCT.2008 12:19:58

Channel Frequency Separation Test

AVERAGE TIME OF OCCUPANCY

DATA SHEETS

Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

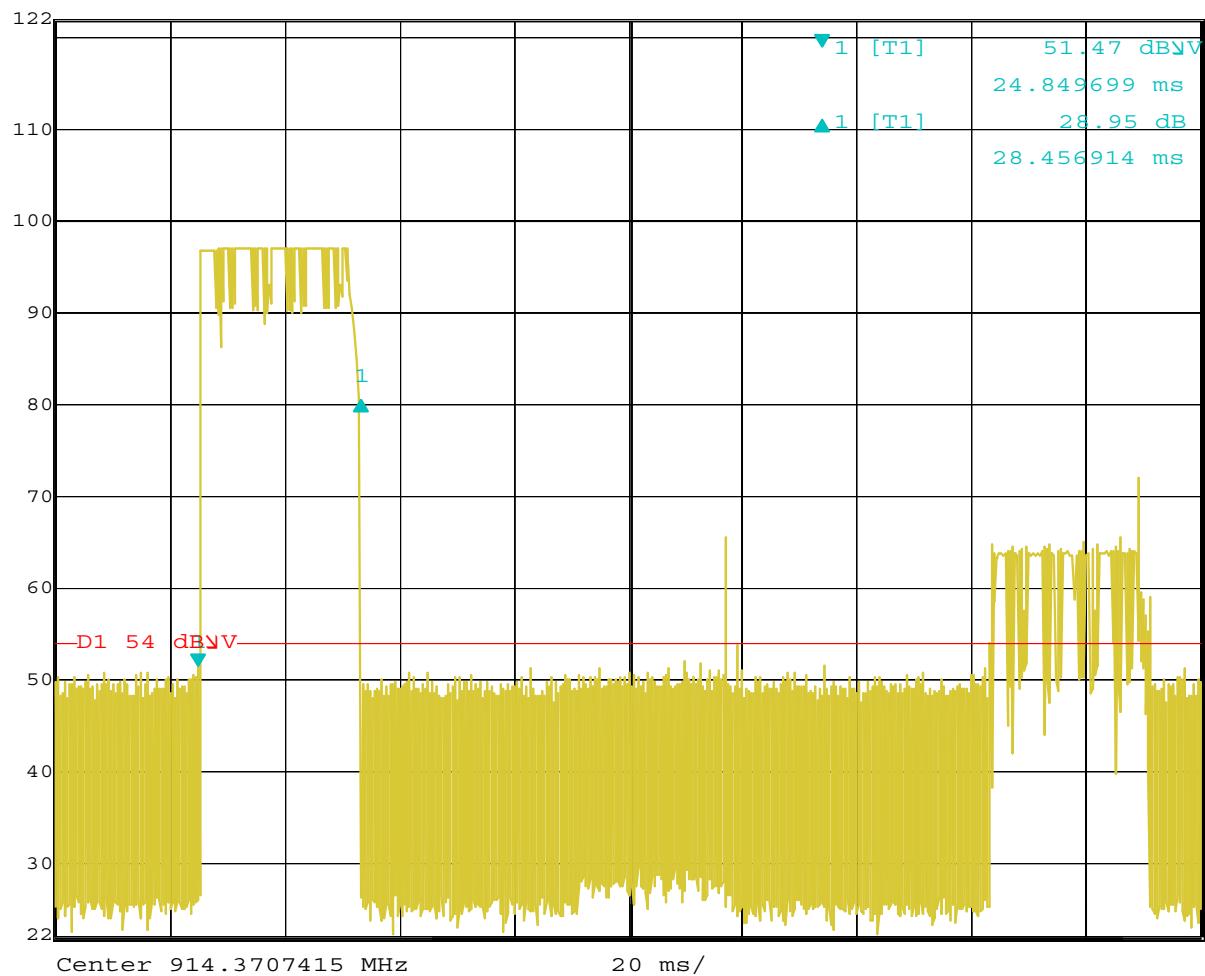
Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

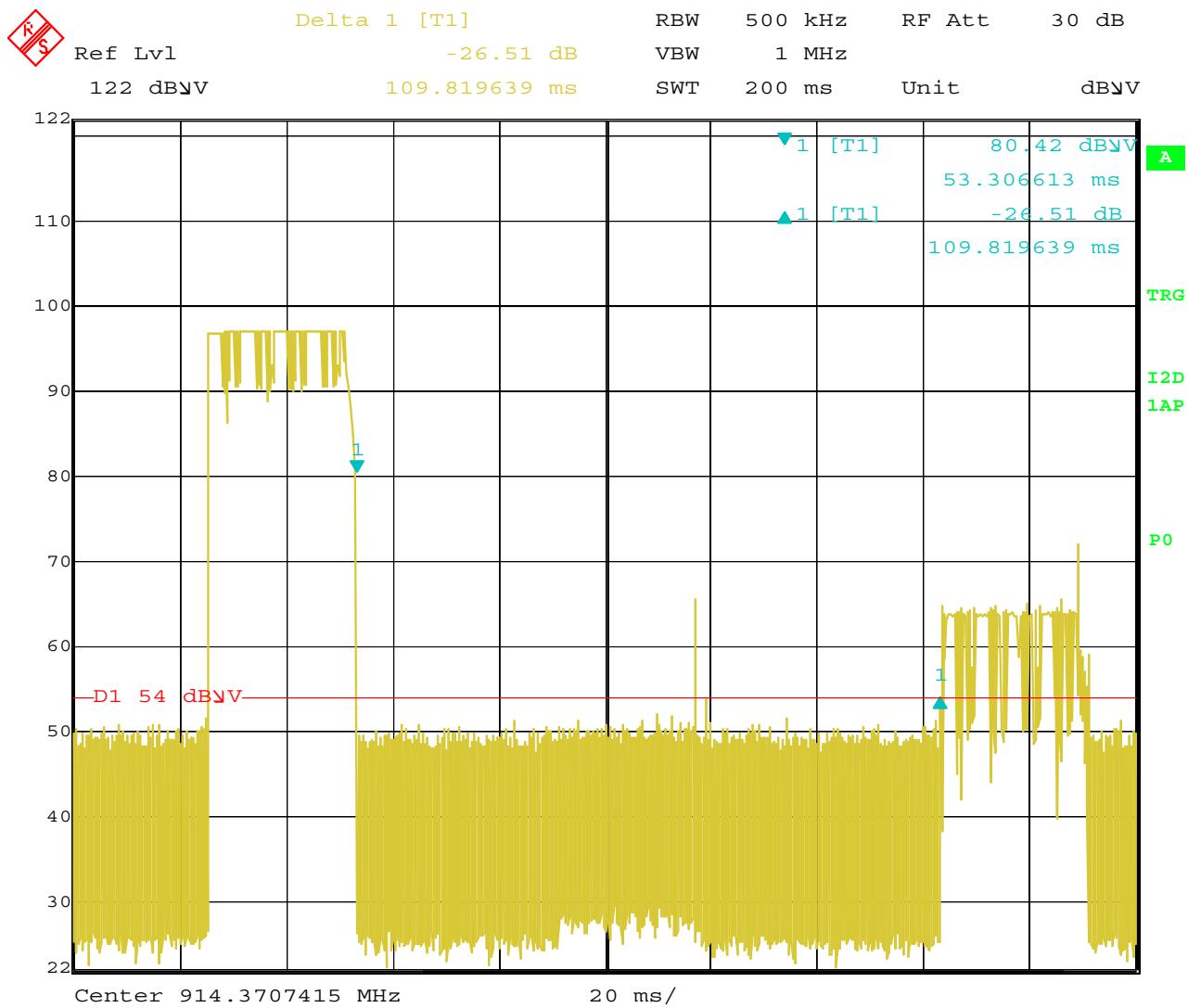
Ref Lvl
122 dB μ V

Delta 1 [T1]

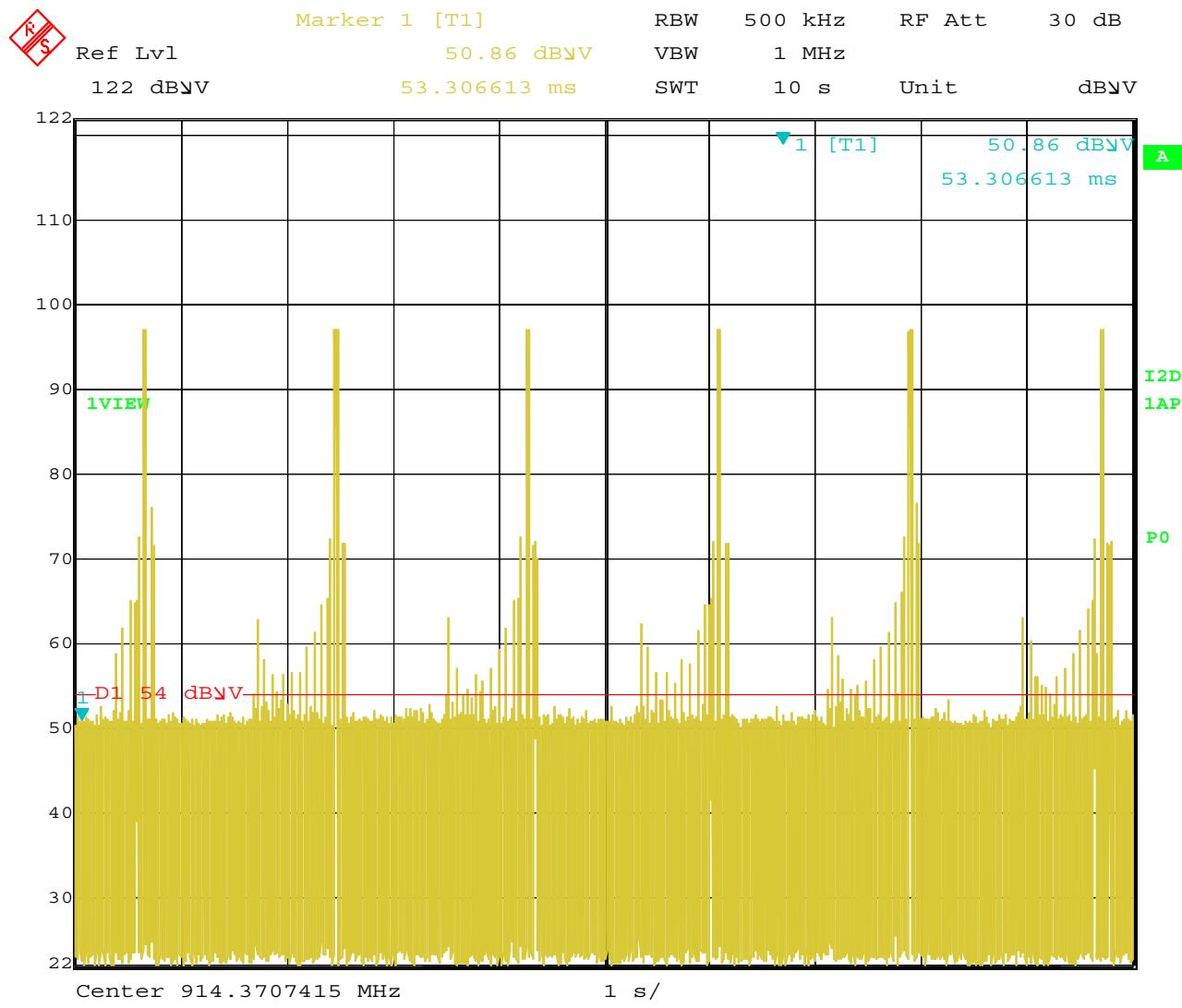

28.95 dB
28.456914 ms

RBW 500 kHz

VBW 1 MHz
SWT 200 ms


RF Att

30 dB
Unit dB μ V


Date: 14.OCT.2008 12:30:13

Time of One Pulse = 28.456914 mS

Date: 14.OCT.2008 12:31:06

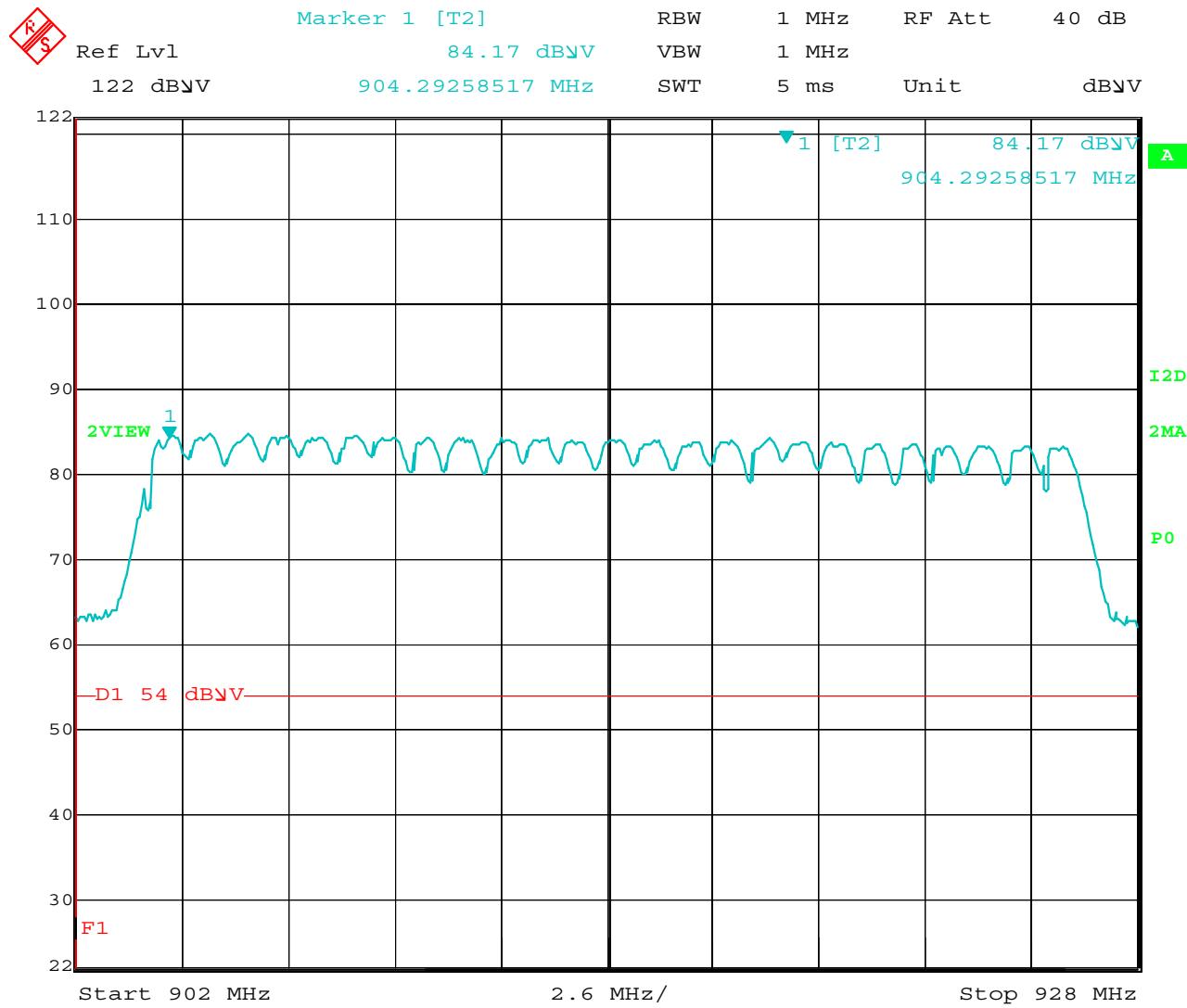
Time of Blanking Interval is Greater than 100 mS

Date: 14.OCT.2008 12:32:36

Number of Pulses in 10 Seconds = 6
 Total time of Occupancy = $6 * 28.456914 \text{ mS} = 170.74 \text{ mS}$
 Limit = 400 mS in a 10 second period.

NUMBER OF HOPPING FREQUENCIES

DATA SHEET



Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600

Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

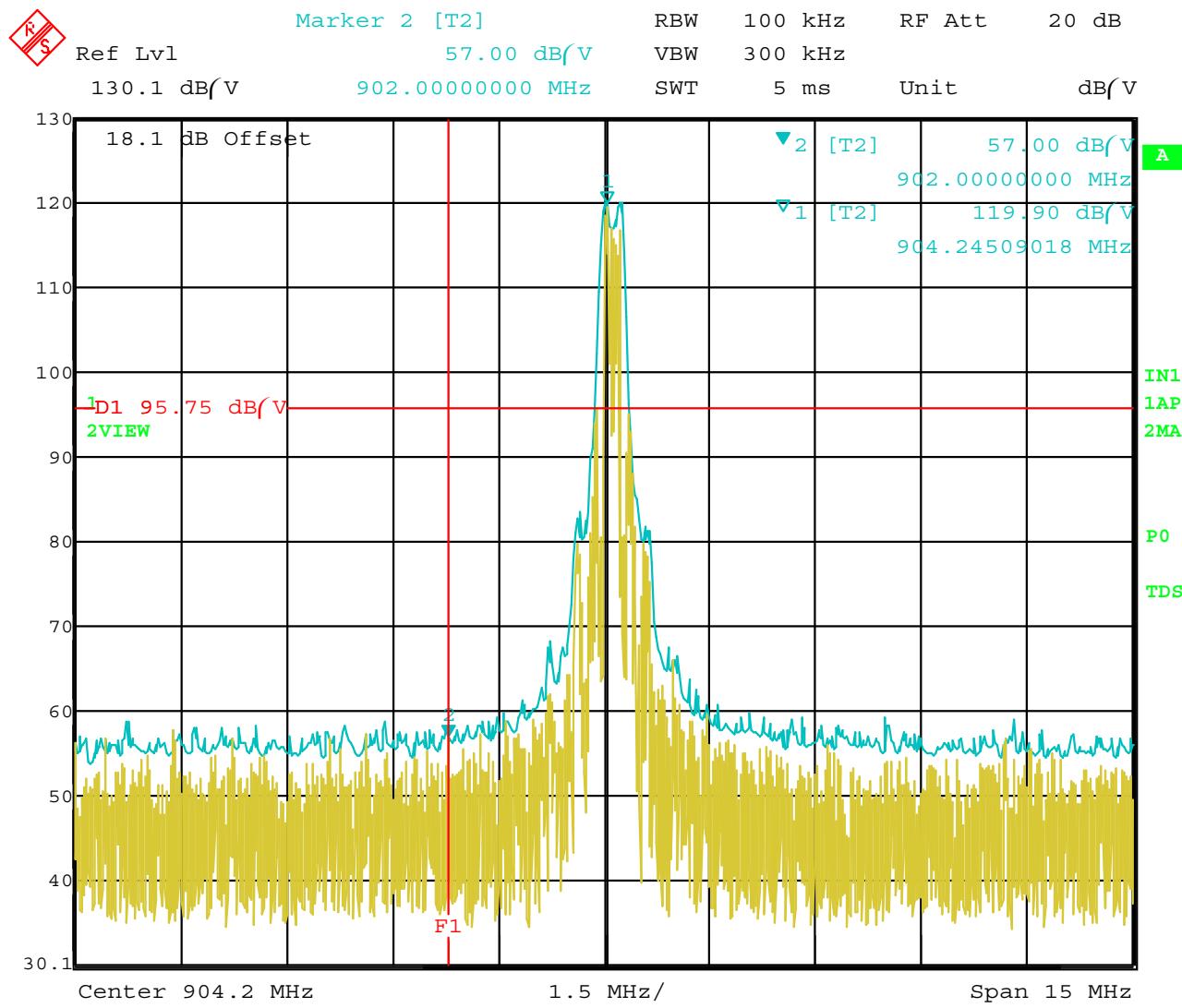
Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

Date: 14.OCT.2008 11:39:48

Number of Frequencies = 25

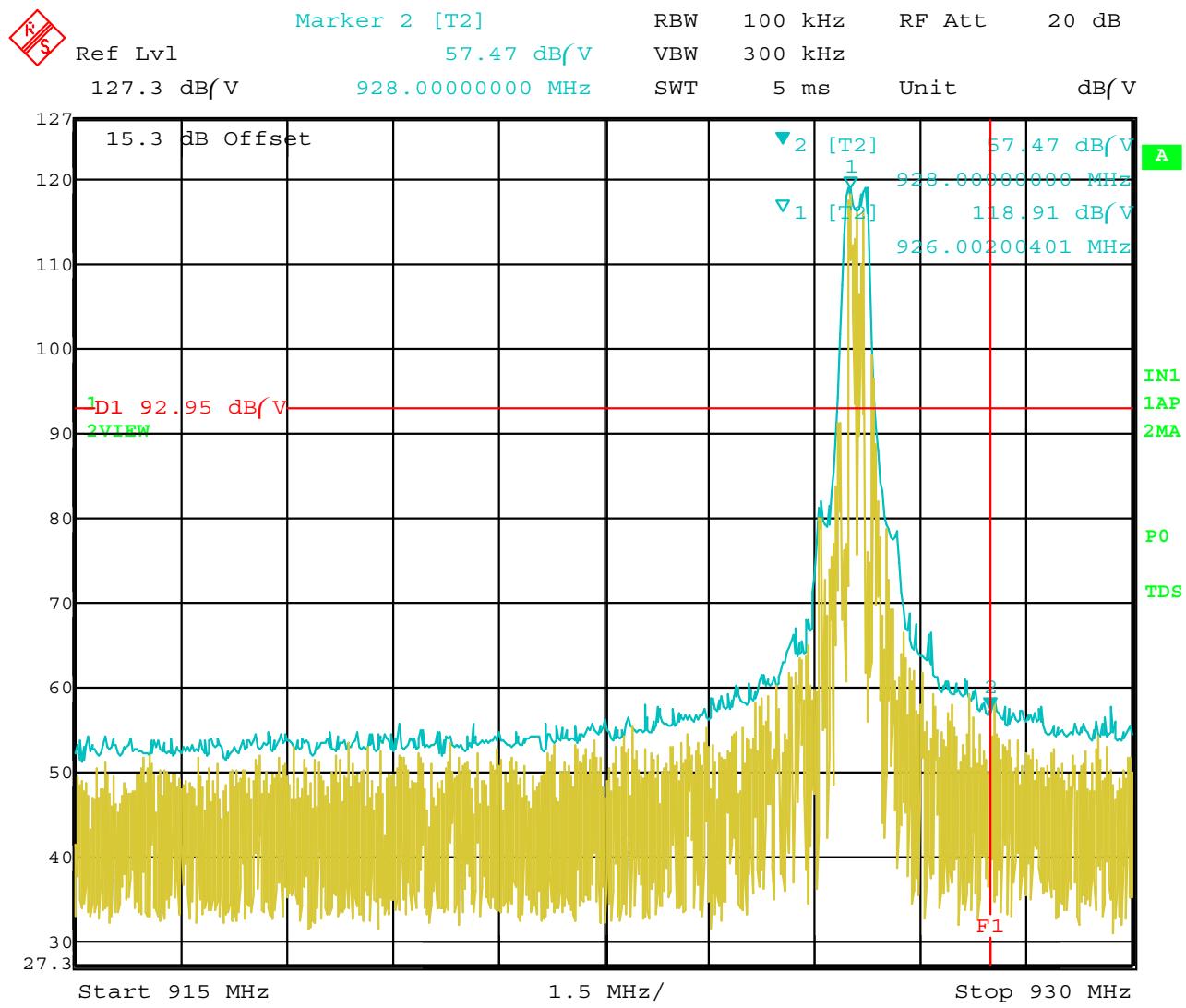
BAND EDGES

DATA SHEETS



Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600


Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

Date: 24.OCT.2008 09:41:54

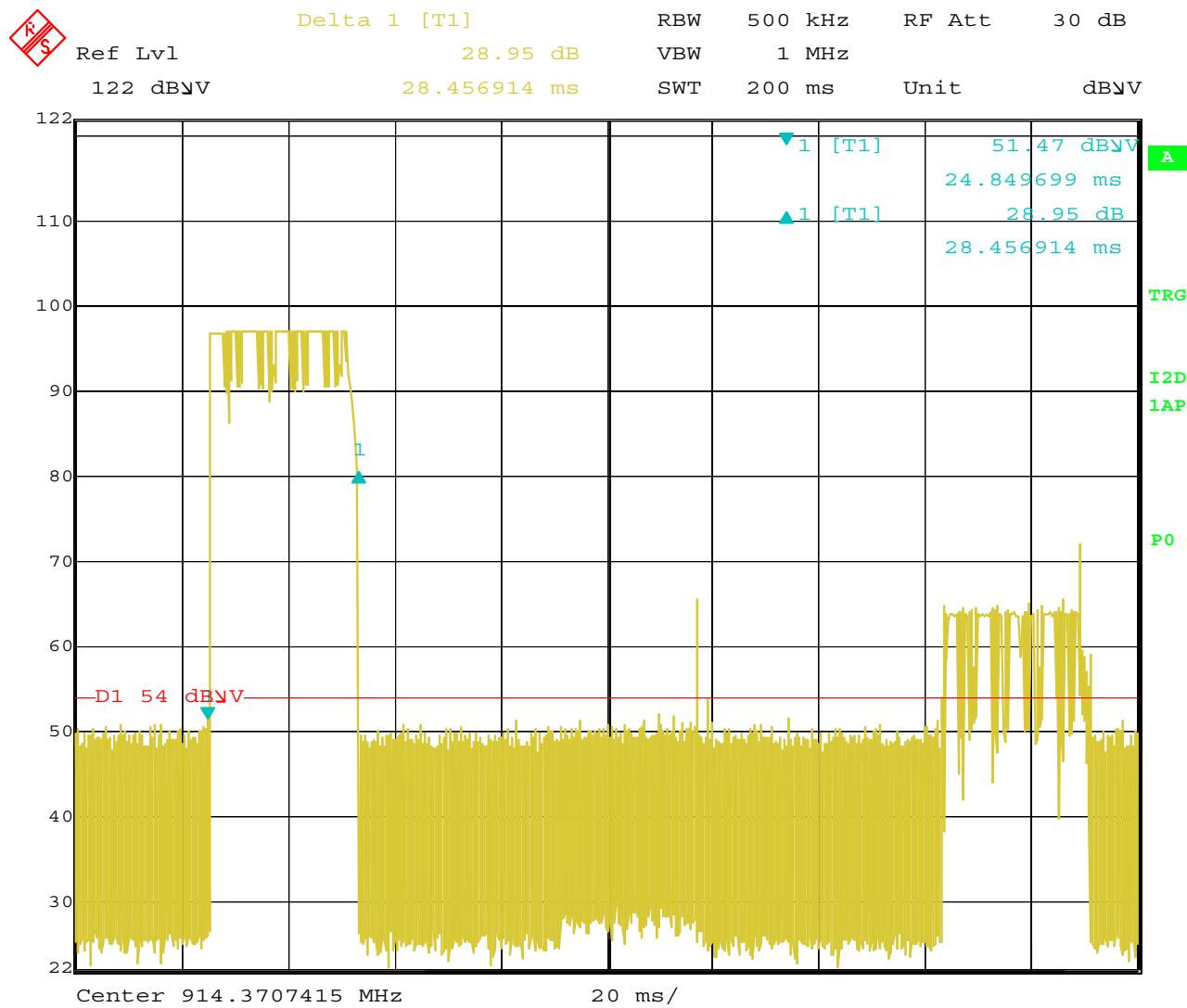
Band Edge – Low Channel – X-Axis – Horizontal Polarization – Worst Case

Date: 24.OCT.2008 09:39:46

Band Edge – High Channel – X-Axis – Horizontal Polarization – Worst Case

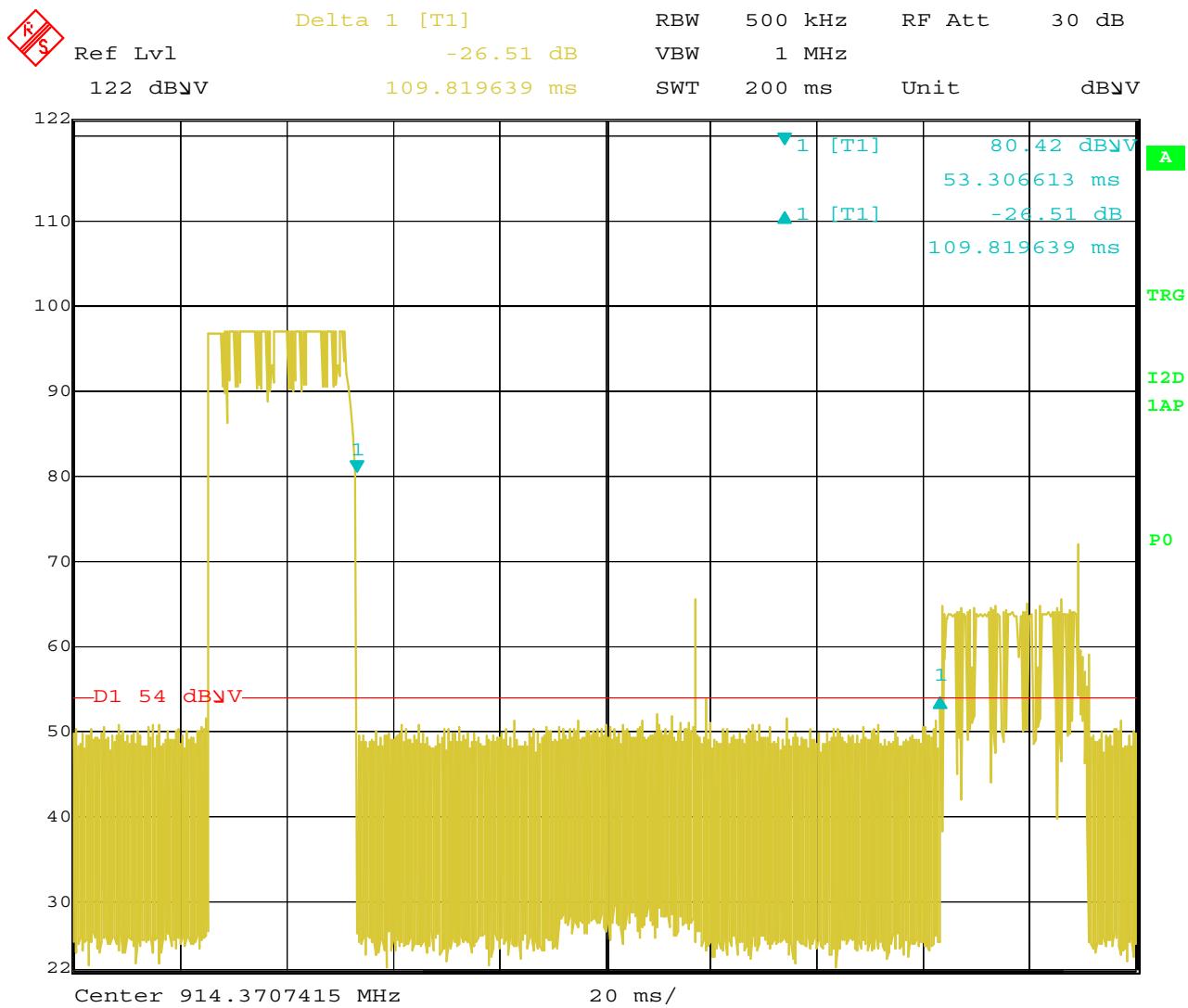
DUTY CYCLE INFORMATION

DATA SHEETS



Brea Division
114 Olinda Drive
Brea, CA 92823
(714) 579-0500

Agoura Division
2337 Troutdale Drive
Agoura, CA 91301
(818) 597-0600


Silverado Division
19121 El Toro Road
Silverado, CA 92676
(949) 589-0700

Lake Forest Division
20621 Pascal Way
Lake Forest, CA 92630
(949) 587-0400

Date: 14.OCT.2008 12:30:13

Time of One Pulse = 28.456914 mS

Date: 14.OCT.2008 12:31:06

Time of Blanking Interval is Greater than 100 mS - Total Duty Cycle = 28.456914 mS / 100 mS = 28.456914%