

**FCC CFR47 PART 15 SUBPART C
INDUSTRY CANADA RSS-210 ISSUE 7**

CERTIFICATION TEST REPORT

FOR

MICROWAVE/PIR V-PLEX MOTION SENSOR

MODEL NUMBER: DT7500SN

FCC ID: C2D04007500

IC: 573H-04007500

REPORT NUMBER: 08U11964-1, Revision A

ISSUE DATE: AUGUST 13, 2008

Prepared for
**HONEYWELL INTERNATIONAL
625 COOLIDGE DRIVE, SUITE 150
FOLSOM, CA 95630, U.S.A.**

Prepared by
**COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888**

NVLAP[®]

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
--	08/11/08	Initial Issue	F. Ibrahim
A	08/13/08	Revised set up photos, and support equipment list.	F. Ibrahim

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS.....	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION.....	5
4. CALIBRATION AND UNCERTAINTY	5
4.1. <i>MEASURING INSTRUMENT CALIBRATION.....</i>	<i>5</i>
4.2. <i>MEASUREMENT UNCERTAINTY.....</i>	<i>5</i>
5. EQUIPMENT UNDER TEST	6
5.1. <i>DESCRIPTION OF EUT.....</i>	<i>6</i>
5.2. <i>DESCRIPTION OF AVAILABLE ANTENNAS.....</i>	<i>6</i>
5.3. <i>MAXIMUM OUTPUT POWER.....</i>	<i>6</i>
5.4. <i>WORST-CASE CONFIGURATION.....</i>	<i>6</i>
5.5. <i>DESCRIPTION OF TEST SETUP.....</i>	<i>7</i>
6. TEST AND MEASUREMENT EQUIPMENT	9
7. TEST RESULTS.....	10
7.1. <i>DUTY CYCLE.....</i>	<i>10</i>
7.2. <i>99% BANDWIDTH</i>	<i>11</i>
7.3. <i>RADIATED EMISSION.....</i>	<i>13</i>
7.3.1. <i>FUNDAMENTAL RADIATED EMISSION</i>	<i>14</i>
7.3.2. <i>TX SPURIOUS RADIATED EMISSIONS ABOVE 1 GHz</i>	<i>15</i>
7.3.3. <i>TX SPURIOUS RADIATED EMISSIONS BELOW 1 GHz.....</i>	<i>16</i>
7.4. <i>AC POWER LINE CONDUCTED EMISSIONS.....</i>	<i>20</i>
8. MAXIMUM PERMISSIBLE EXPOSURE.....	24
9. SETUP PHOTOS.....	28

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: HONEYWELL INTERNATIONAL
625 COOLIDGE DRIVE, SUITE 150
FOLSOM, CA 95630, U.S.A.

EUT DESCRIPTION: MICROWAVE/PIR V-PLEX MOTION SENSOR

MODEL: DT7500SN

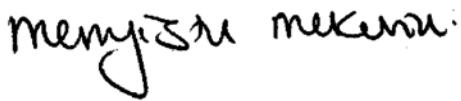
SERIAL NUMBER: 6A

DATE TESTED: JULY 26 & 27, 2008

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 15 SUBPART C	Pass
INDUSTRY CANADA RSS-210 Issue 7, Annex 2	Pass
INDUSTRY CANADA RSS-GEN Issue 2	Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.


Approved & Released For CCS By:

FRANK IBRAHIM
EMC SUPERVISOR
COMPLIANCE CERTIFICATION SERVICES

Tested By:

MENGISTU MEKURIA
EMC ENGINEER
COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Microwave / PIR Motion Sensor that operates at 24.127 GHz; and it is manufactured by Honeywell International.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna was designed as an integral part of the microwave source, and as such, has no specification of its own.

5.3. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak EIRP output power @ 3m distance as follows:

Frequency (GHz)	Mode	Output Power (dBuV/m)
24.125	Modulator	113.20

5.4. WORST-CASE CONFIGURATION

The worst-case position of the EUT was determined as that which produced the highest output power. After investigation of the three orthogonal positions, the Y Position was found to be the worst-case, so all emissions tests were done with the EUT in the Y orientation.

5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

SETUP 1

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
DC Power Supply	Universal Battery	UB1245	2361208N	N/A

SETUP 2

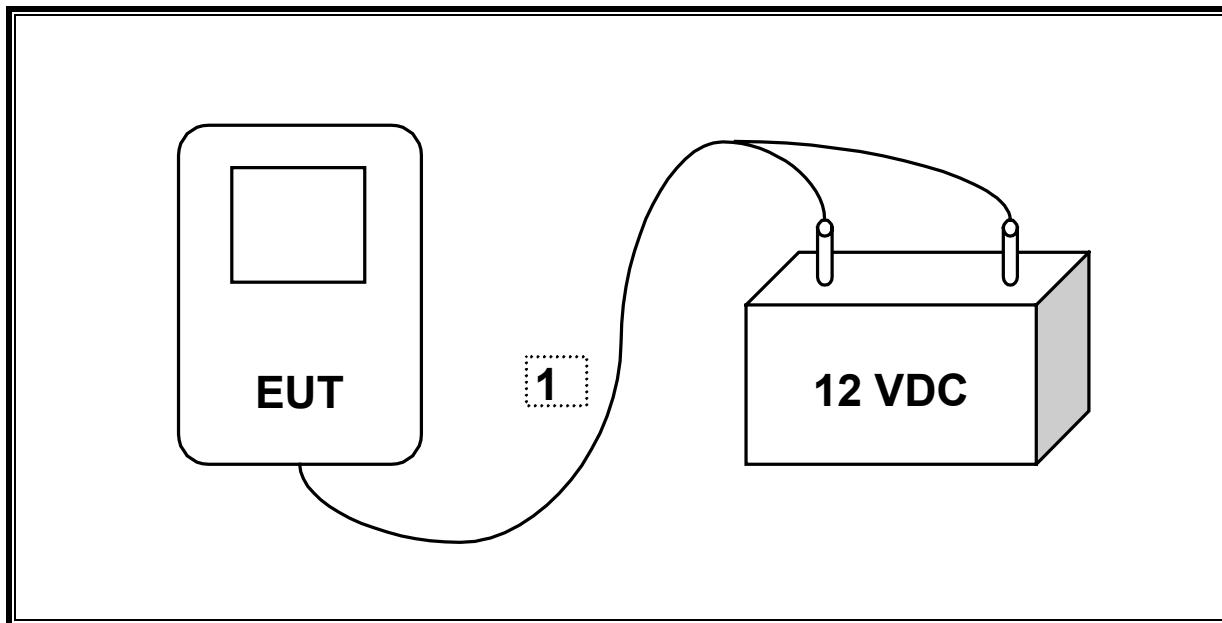
PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
Control Panel	Honeywell	Vista 128	N/A	N/A

I/O CABLES

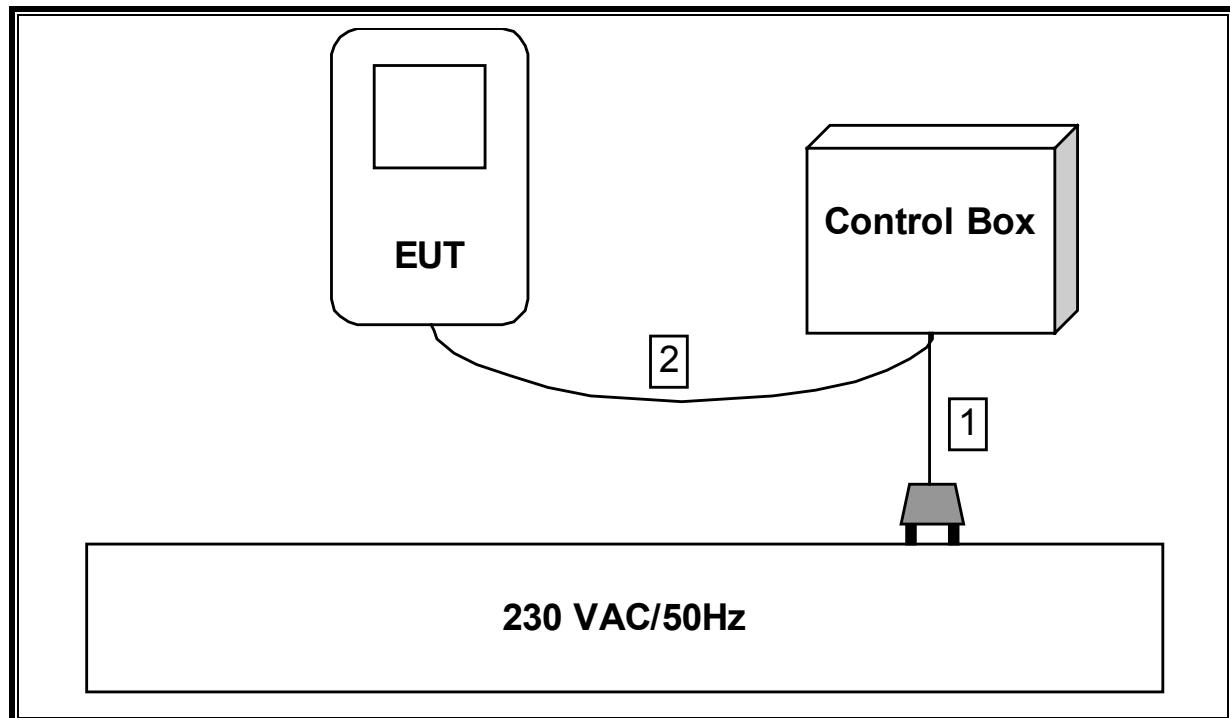
SETUP 1

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC	1	DC Terminal	Un-Shielded	1.5m	N/A

SETUP 2


I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	AC	1	AC	Un-Shielded	1.5m	N/A
2	DC	1	DC Terminal	Un-Shielded	1.5m	N/A

TEST SETUP


The EUT was set up to work in both Tx and Rx modes simultaneously.

SETUP DIAGRAM FOR TESTS

SETUP 1

SETUP 2

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Date	Cal Due
RF Filter Section	HP	85420E	3705A00256	06/19/09	09/19/09
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/25/07	10/25/08
EMI Test Receiver	R & S	ESHS 20	827129/006	02/06/08	08/06/09
EMI Receiver, 9 kHz ~ 2.9 GHz	HP	8542E	3942A00286	06/19/09	09/19/09
Spectrum Analyzer 3 Hz ~ 44 GHz	Agilent	E4446A	US42510266	09/11/07	09/11/08
Preamp, 1000MHz	Sonoma	310N	185623	03/31/08	03/31/09
Preamplifier, 26.5 GHz	Agilent / HP	8449B	3008A00561	09/27/07	09/27/08
PreAmplifier 26-40 GHz	Miteq	NSP4000-SP2	924343	10/11/07	10/11/08
Antenna, Bilog 30MHz ~ 2Ghz	Sunol Sciences	JB1	A0022704	09/28/07	09/28/08
Antenna, Horn, 18 GHz	EMCO	3115	6717	04/22/08	04/22/09
Antenna, Horn 18 ~ 26 GHz	ARA	SWH-28	1007	10/06/07	10/06/08
Antenna, Horn, 26.5 GHz	ARA	MWH-1826/B	1013	09/29/07	09/29/08
Antenna, Horn 33 ~ 50 GHz	ATM	(0R8N4) 22-442-6	Lot#7046005	CNR	CNR
Antenna, Horn 50 ~ 75 GHz	ATM	15-442-6	Lot#7046105	CNR	CNR
Antenna, Horn 75 ~ 100 GHz	ATM	10-442-6	Lot#7046205	CNR	CNR
Antenna, Horn 75 ~ 110 GHz	ATM	10-442-6	Lot#7046205	CNR	CNR

7. TEST RESULTS

7.1. DUTY CYCLE

LIMITS

None; for reporting purposes only.

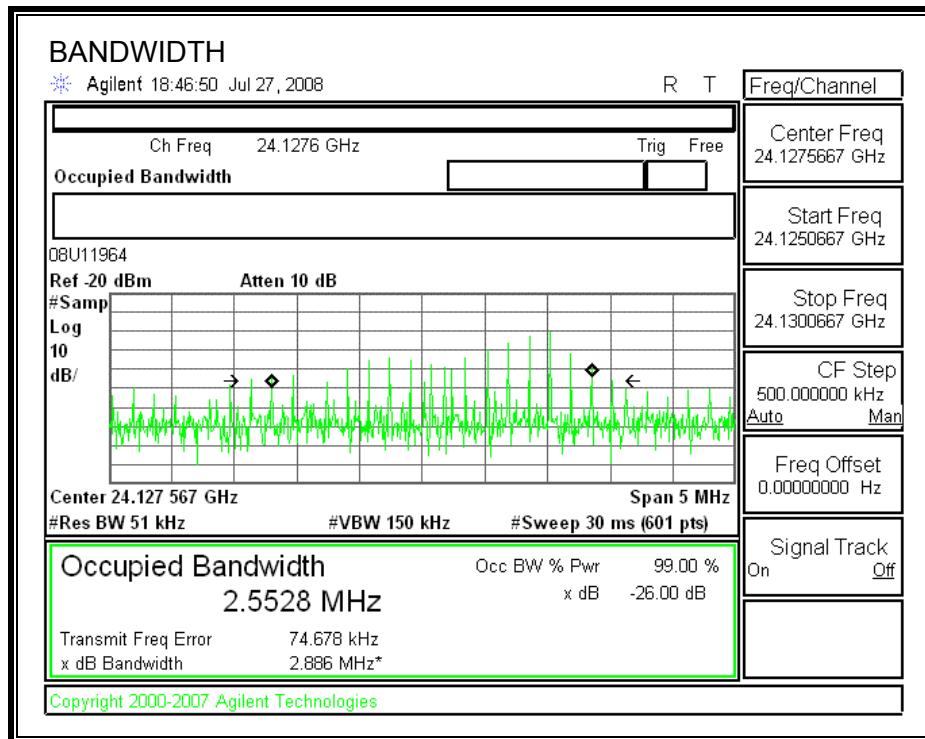
RESULTS

Tx on (usec)	Tx on + Tx off (usec)	Duty Cycle (%)	Correction Factor (dB)
12.2	333.5	3.66	14.37

7.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Frequency (GHz)	99% Bandwidth (MHz)
24.127	2.5528

99% BANDWIDTH

7.3. RADIATED EMISSION

LIMIT

§15.245
IC RSS-210, Section 2.6 (Transmitter), Annex 7
IC RSS-GEN, Section 6 (Receiver)

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Limits for radiated disturbance of an intentional radiator		
Fundamental Frequency (MHz)	Field Strength of fundamental (millivolts / meter)	Field Strength of harmonic (millivolts / meter)
902-928	500	1.6
2435-2465	500	1.6
5785-5815	500	1.6
10500-10550	2500	25
24075-24175	2500	25

TEST PROCEDURE

ANSI C63.4

The EUT is an intentional radiator that does not incorporate a digital device, the highest fundamental frequency generated or used in the device is 24.127 GHz; therefore, the frequency range was investigated from 30 MHz to the 5th harmonic of the highest fundamental frequency (120.635 GHz).

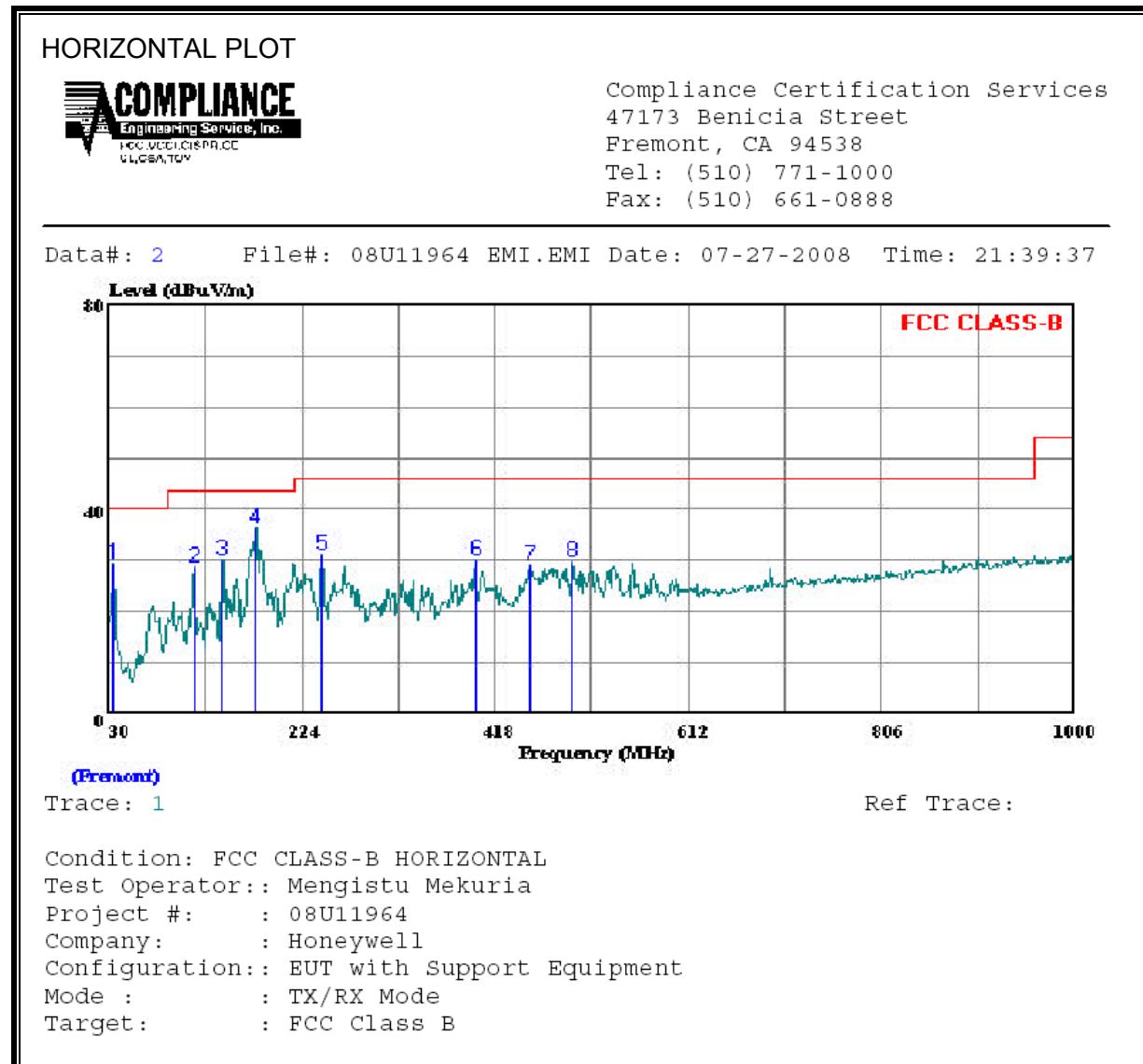
RESULTS

7.3.1. FUNDAMENTAL RADIATED EMISSION

High Frequency Measurement Compliance Certification Services, Fremont 5m Chamber															
Company:	Honeywell														
Project #:	08U11964														
Date:	7/27/2008														
Test Engineer:	Mengistu Mekuria														
Configuration:	EUT Alone														
Mode:	TX and RX Mode														
	Duty Cycle CF 14.37														
Test Equipment:															
Horn 1-18GHz		Pre-amplifier 1-26GHz		Pre-amplifier 26-40GHz		Horn > 18GHz		Limit							
T145 Agilent 3008A0056						T39; ARA 18-26 GHz; S/N:1013		FCC 15.209							
Hi Frequency Cables															
2 foot cable		3 foot cable		12 foot cable		HPF		Reject Filter		Peak Measurements RBW=VBW=1MHz Average Measurements RBW=1MHz, VBW=10Hz					
f	Dist	Read Pk	Read Avg	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m		dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
Z Position															
24.131	3.0	94.9	80.6	33.6	15.9	-32.6	0.0	0.0	111.8	97.4	148.0	128.0	-36.2	-30.6	V
24.131	3.0	80.3	66.0	33.6	15.9	-32.6	0.0	0.0	97.2	82.8	148.0	128.0	-50.8	-45.2	H
Y Position															
24.131	3.0	81.9	67.6	33.6	15.9	-32.6	0.0	0.0	98.8	84.4	148.0	128.0	-49.2	-43.6	V
24.131	3.0	96.6	82.2	33.6	15.9	-32.6	0.0	0.0	113.4	99.1	148.0	128.0	-34.6	-28.9	H
X Position															
24.131	3.0	82.9	68.5	33.6	15.9	-32.6	0.0	0.0	99.7	85.4	148.0	128.0	-48.3	-42.6	V
24.131	3.0	90.9	76.5	33.6	15.9	-32.6	0.0	0.0	107.8	93.4	148.0	128.0	-40.2	-34.6	H
Rev. 4.12.7															
f Measurement Frequency				Amp Preamp Gain				Avg Lim Average Field Strength Limit							
Dist Distance to Antenna				D Corr Distance Correct to 3 meters				Pk Lim Peak Field Strength Limit							
Read Analyzer Reading				Avg Average Field Strength @ 3 m				Avg Mar Margin vs. Average Limit							
AF Antenna Factor				Peak Calculated Peak Field Strength				Pk Mar Margin vs. Peak Limit							
CL Cable Loss				HPF High Pass Filter											

The AV should be the PK + duty cycle correction factor

7.3.2. TX SPURIOUS RADIATED EMISSIONS ABOVE 1 GHz


Noise Floor Levels:

Specification Distance: 3 meters							
Freq GHz	SA dBuV	AF dB/m	Distance m	Distance dB	Field dBuV/m	Limit dBuV/m	Margin dB
33 to 50 GHz							
RBW = 1 MHz, peak detection							
50	39.2	44.2	0.1	-29.5	53.86	74	-20.14
RBW = 1 MHz, average detection							
50	27.2	44.2	0.1	-29.5	41.86	54	-12.14
50 to 75 GHz							
RBW = 1 MHz, peak detection							
75	39.2	47.7	0.1	-29.5	57.36	74	-16.64
RBW = 1 MHz, average detection							
75	27.2	47.7	0.1	-29.5	45.36	54	-8.64
75 to 110 GHz							
RBW = 1 MHz, peak detection							
110	39.2	51.0	0.1	-29.5	60.66	74	-13.34
RBW = 1 MHz, average detection							
110	27.2	51.0	0.1	-29.5	48.66	54	-5.34

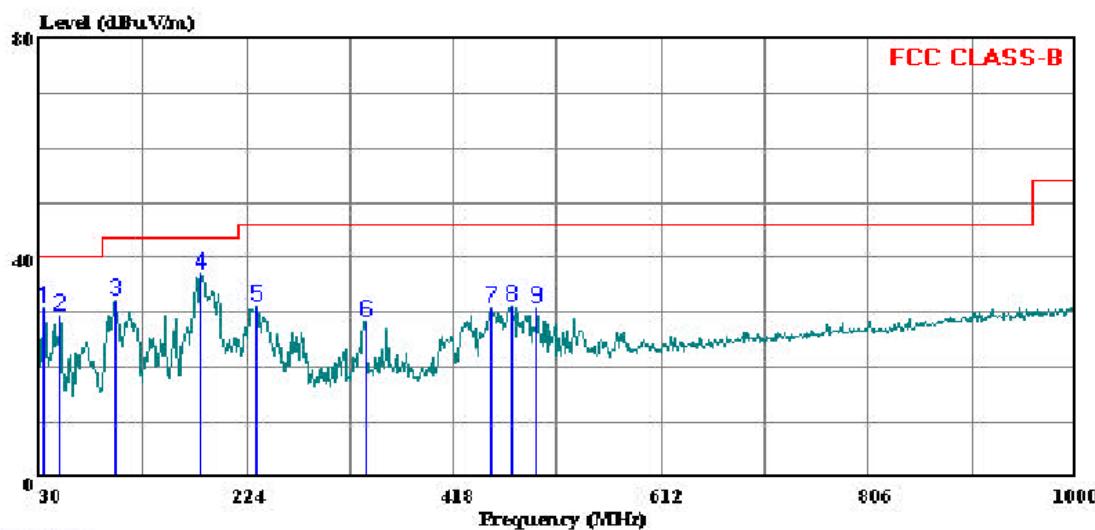
Note: there are no emissions found from EUT above the system noise floor level from 1 GHz to 120.635 GHz.

7.3.3. TX SPURIOUS RADIATED EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZONTAL DATA

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV		dB	dBuV/m	dBuV/m	dB
1	34.850	44.22	-14.91	29.31	40.00	-10.69	Peak
2	115.360	46.50	-17.86	28.64	43.50	-14.86	Peak
3	142.520	48.17	-18.02	30.15	43.50	-13.35	Peak
4	177.440	55.08	-18.87	36.22	43.50	-7.28	Peak
5	243.400	48.83	-17.75	31.09	46.00	-14.91	Peak
6	398.600	42.83	-12.71	30.12	46.00	-15.88	Peak
7	452.920	40.17	-11.12	29.04	46.00	-16.96	Peak
8	495.600	39.67	-9.95	29.71	46.00	-16.29	Peak


SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL PLOT

Compliance Certification Services
47173 Benicia Street
Fremont, CA 94538
Tel: (510) 771-1000
Fax: (510) 661-0888

Data#: 6 File#: 08U11964 EMI.EMI Date: 07-27-2008 Time: 22:13:11

(Fremont)

Trace: 5

Ref Trace:

Condition: FCC CLASS-B VERTICAL
Test Operator: Mengistu Mekuria
Project #: 08U11964
Company: Honeywell
Configuration: EUT with Support Equipment
Mode : TX/RX Mode
Target: FCC Class B

VERTICAL DATA

Freq	Read			Limit		Over	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	34.850	45.88	-14.91	30.97	40.00	-9.03	Peak
2	49.400	53.00	-23.43	29.57	40.00	-10.43	Peak
3	100.810	52.83	-20.61	32.23	43.50	-11.27	Peak
4	181.320	55.50	-18.55	36.95	43.50	-6.55	Peak
5	233.700	48.67	-17.64	31.03	46.00	-14.97	Peak
6	335.550	43.00	-14.53	28.47	46.00	-17.53	Peak
7	452.920	41.83	-11.12	30.71	46.00	-15.29	Peak
8	471.350	41.67	-10.61	31.06	46.00	-14.94	Peak
9	495.600	40.67	-9.95	30.71	46.00	-15.29	Peak

7.4. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)
RSS-Gen 7.2.2

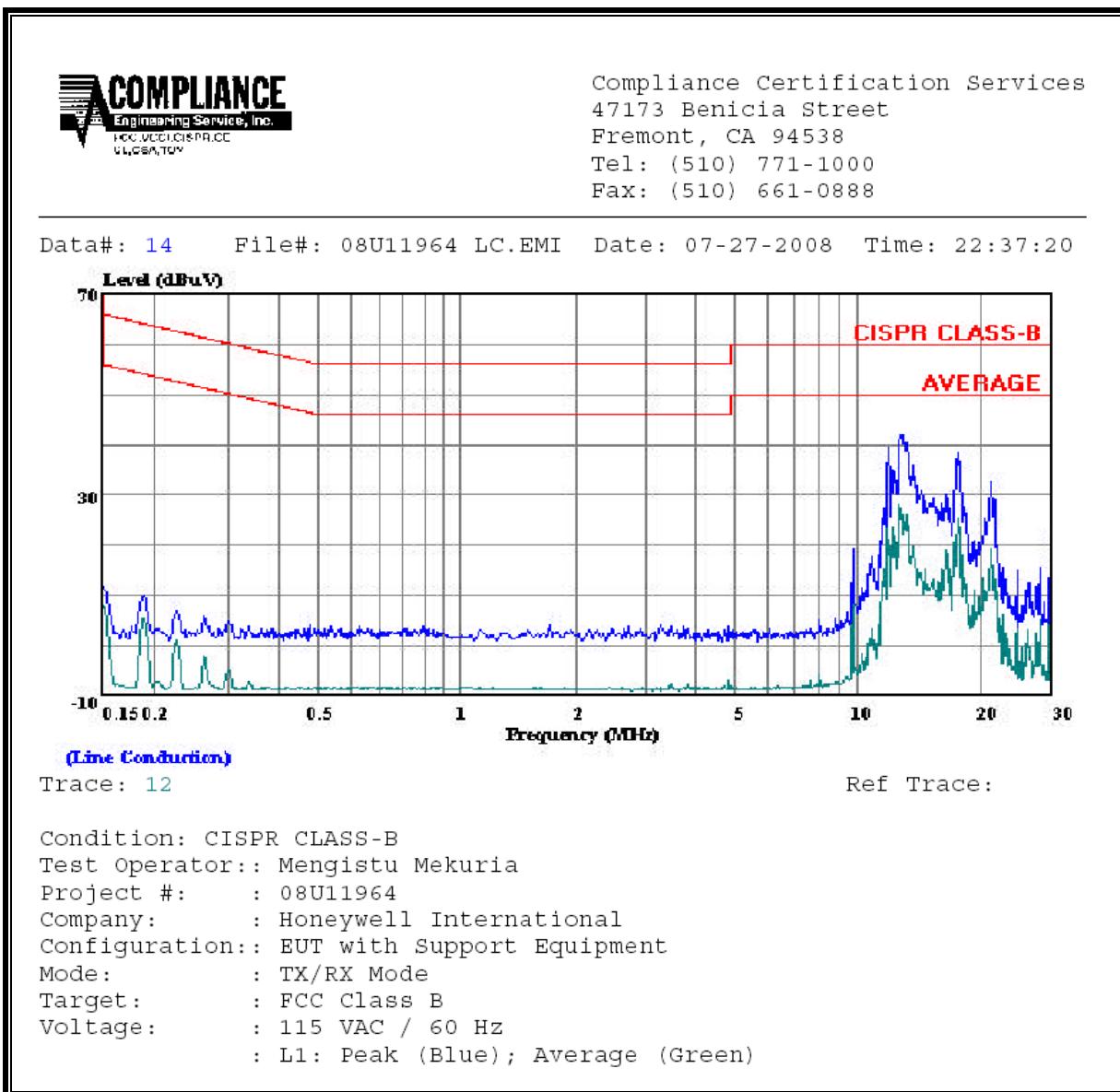
Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56 [*]	56 to 46 [*]
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

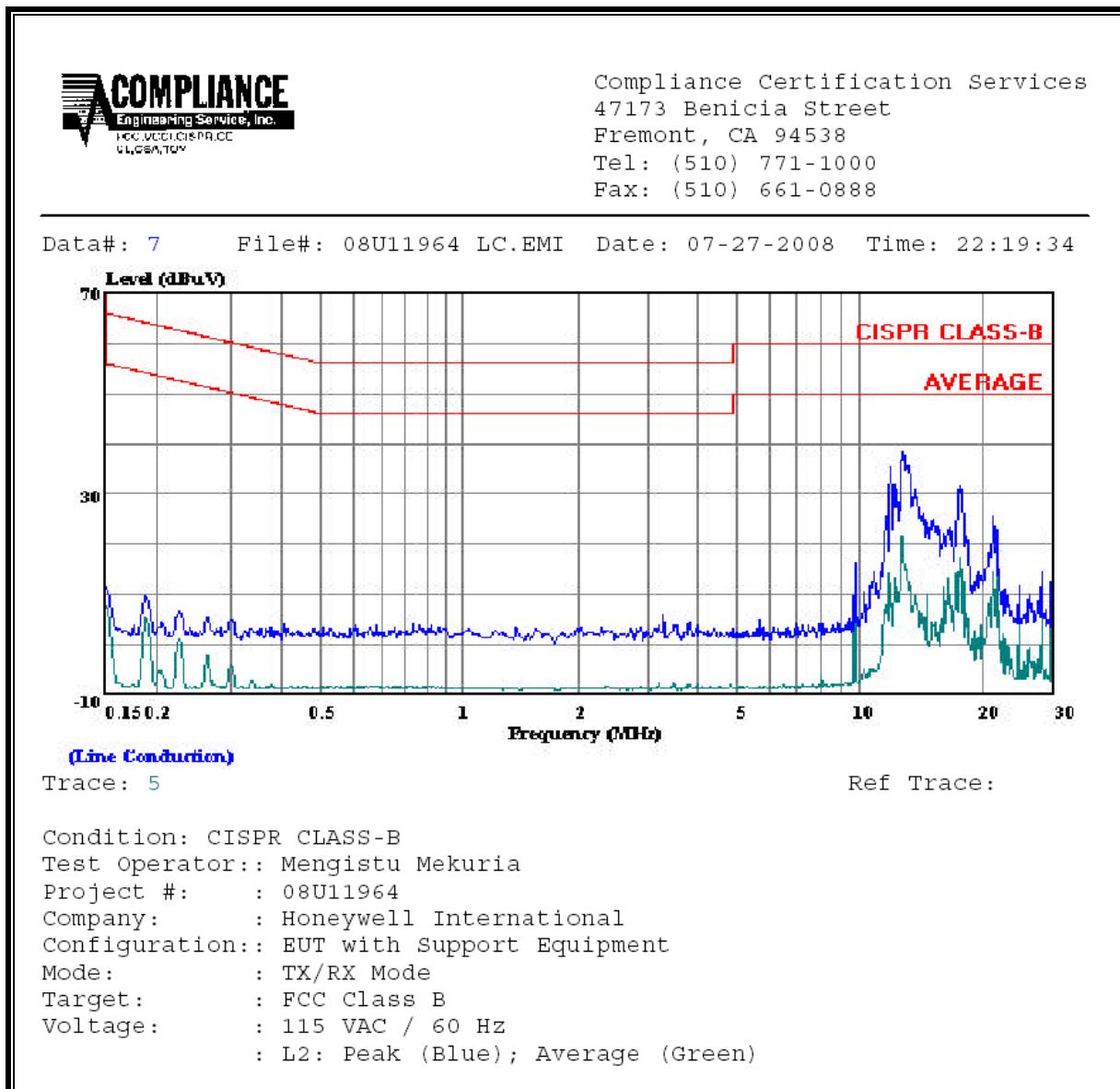
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq. (MHz)	Reading			Closs (dB)	Limit	EN_B	Margin		Remark
	PK (dBuV)	QP (dBuV)	AV (dBuV)				QP	AV	
12.92	42.03	--	28.07	0.00	60.00	50.00	-17.97	-21.93	L1
17.75	38.46	--	25.31	0.00	60.00	50.00	-21.54	-24.69	L1
21.20	32.46	--	19.33	0.00	60.00	50.00	-27.54	-30.67	L1
12.92	38.55	--	21.55	0.00	60.00	50.00	-21.45	-28.45	L2
17.75	31.41	--	17.32	0.00	60.00	50.00	-28.59	-32.68	L2
21.37	25.56	--	17.02	0.00	60.00	50.00	-34.44	-32.98	L2
6 Worst Data									

LINE 1 RESULTS

LINE 2 RESULTS

8. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f ²)	6
30–300	61.4	0.163	1.0	6
300–1500	f/300	6
1500–100,000	5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500	f/1500	30
1500–100,000	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/f		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	$1.585f^{0.5}$	$0.0042f^{0.5}$	$f/150$	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	$616\,000/f^{1.2}$
150 000–300 000	$0.158f^{0.5}$	$4.21 \times 10^{-4}f^{0.5}$	$6.67 \times 10^{-5}f$	$616\,000/f^{1.2}$

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes:

1. Frequency, f , is in MHz.
2. A power density of 10 W/m² is equivalent to 1 mW/cm².
3. A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μ T) or 12.57 milligauss (mG).

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

$$d = 0.282 * 10^{((P + G) / 20) / \sqrt{S}}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm²

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10^{((P + G) / 10) / (d^2)}$$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	MPE Distance (cm)	Output Power (dBm)	FCC Power Density (mW/cm ²)	IC Power Density (W/m ²)
24075-24175 MHz	20.0	18.00	0.01	0.13

CONVERSION OF FIELD STRENGTH TO EIRP:

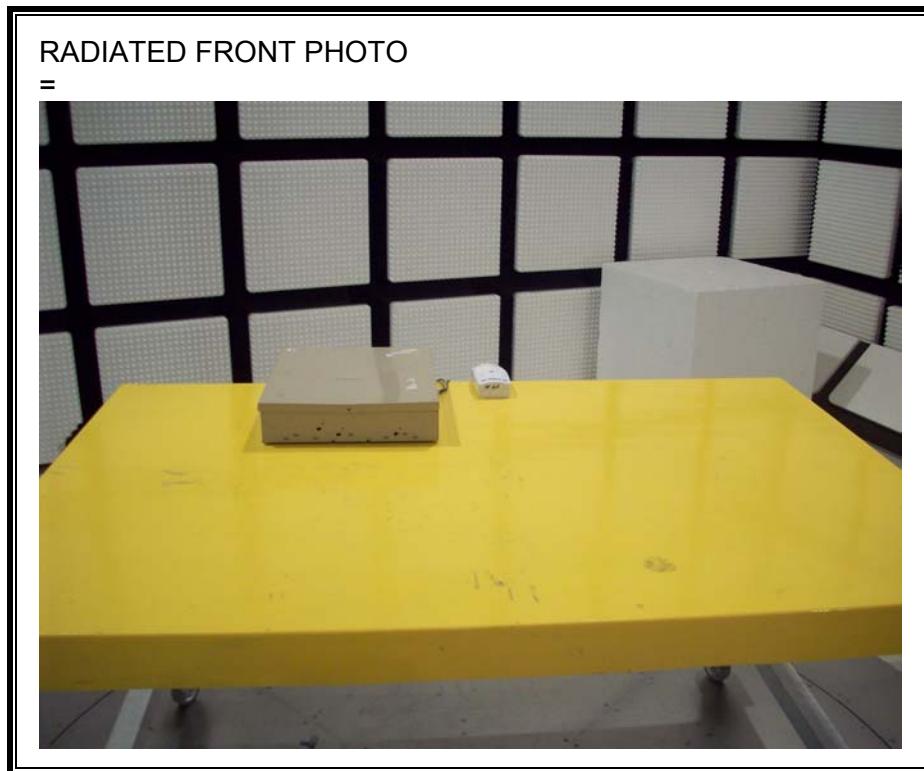
For frequencies where measurement equipment limitations preclude substitution measurements, the measured field strength at a 3 meter test distance is converted to EIRP using:

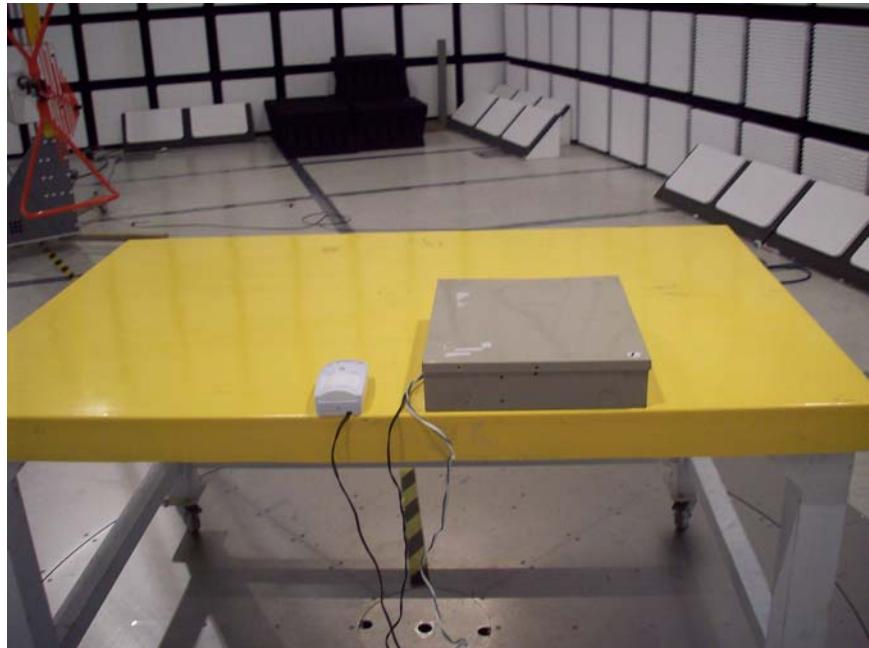
EIRP (dBm) = Field Strength at 3 meters (dBuV/m) – 95.2

9. SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP

X - POSITION


Y - POSITION


Z - POSITION

RADIATED EMISSIONS MEASUREMENT SETUP

RADIATED BACK PHOTO

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

LINE CONDUCTED FRONT PHOTO

LINE CONDUCTED BACK PHOTO

END OF REPORT