



Engineering and Testing for EMC and Safety Compliance

## Class II Permissive Change Test Report

**M/A-COM, Inc.**  
221 Jefferson Ridge Parkway  
Lynchburg, VA 24501  
Daryl Popowitch  
Phone: (434) 455-9527  
E-Mail: Popowitda@tycoelectronics.com

**Model: OpenSky Cell Site Base Station  
851-869 MHz**

**FCC ID: BV8MCS800A025  
IC: 3670195674A**

**December 20, 2006**

| <b>Standards Referenced for this Report</b> |                                                                                                       |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Part 2: 2006                                | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations                         |
| Part 15: 2006                               | §15.109: Radiated Emissions Limits                                                                    |
| Part 90: 2006                               | Private Land Mobile Radio Services                                                                    |
| ANSI C63.4-2003                             | Standard Format Measurement/Technical Report Personal Computer and Peripherals                        |
| TIA-603-C-2004                              | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards                   |
| ANSI/TIA/EIA – 102.CAAA; 2002               | Digital C4FM/CQPSK Transceiver Measurement Methods                                                    |
| RSS-119; Issue 8<br>Sept. 2006              | Land Mobile and Fixed Radio Transmitters and Receivers Operating in the Frequency Range 27.41-960 MHz |

| <b>Frequency Range<br/>(MHz)</b> | <b>Measured<br/>Output Power (W)<br/>Conducted</b> | <b>Frequency Tolerance<br/>(ppm)</b> | <b>Emission Designator</b> |
|----------------------------------|----------------------------------------------------|--------------------------------------|----------------------------|
| 851-854                          | 25.9                                               | 0.1                                  | 12K1F9W                    |
| 854-869                          | 25.9                                               | 0.1                                  | 12K1F9W                    |
| 851-869                          | 25.9                                               | 0.1                                  | 11K3F1D                    |
| 854-869                          | 16.2                                               | 0.1                                  | 13K1F9W                    |

**REPORT PREPARED BY TEST ENGINEER: DANIEL BIGGS**

Document Number: 2006190/QRTL06-438

*No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.*

360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
Phone: 703-689-0368 Fax: 703-689-2056

## Table of Contents

---

|     |                                                                                                                                                       |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1   | General Information .....                                                                                                                             | 4  |
| 1.1 | Test Facility .....                                                                                                                                   | 4  |
| 1.2 | Related Submittal(s)/Grant(s).....                                                                                                                    | 4  |
| 1.3 | Description of Change in Device .....                                                                                                                 | 4  |
| 2   | Tested System Details.....                                                                                                                            | 5  |
| 3   | FCC Rules and Regulations Part 2 §2.1033(C)(8) Voltages and Currents Through The Final Amplifying Stage .....                                         | 6  |
| 4   | FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output: Conducted; RSS-119 §5.4: Output Power Test .....                                        | 7  |
| 4.1 | Test Procedure.....                                                                                                                                   | 7  |
| 4.2 | Test Data.....                                                                                                                                        | 7  |
| 5   | FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; RSS-119 §5.8: Transmitter Unwanted Emissions .....                 | 8  |
| 5.1 | Test Procedure.....                                                                                                                                   | 8  |
| 5.2 | Test Data.....                                                                                                                                        | 8  |
| 6   | FCC Rules and Regulations Part 2 §2.1049: Occupied Bandwidth; Part 90 §90.210(g): Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions ..... | 11 |
| 6.1 | Test Procedure.....                                                                                                                                   | 11 |
| 6.2 | Test Data.....                                                                                                                                        | 12 |
| 7   | FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §5.8: Unwanted Emissions .....                             | 16 |
| 7.1 | Test Procedure.....                                                                                                                                   | 16 |
| 7.2 | Test Data.....                                                                                                                                        | 16 |
| 8   | Conclusion .....                                                                                                                                      | 18 |

## Table of Tables

---

|                                                                                          |    |
|------------------------------------------------------------------------------------------|----|
| Table 2-1: Equipment Under Test (EUT).....                                               | 5  |
| Table 2-2: Support Equipment .....                                                       | 5  |
| Table 4-1: RF Power Output (High Power): Carrier Output Power (Unmodulated) .....        | 7  |
| Table 4-2: RF Power Output (Rated Power) .....                                           | 7  |
| Table 4-3: Test Equipment Used for Testing RF Power Output - Conducted.....              | 7  |
| Table 5-1: Conducted Spurious Emissions – 851.0125 MHz – High Power.....                 | 8  |
| Table 5-2: Conducted Spurious Emissions – 854.0125 MHZ – High Power .....                | 9  |
| Table 5-3: Conducted Spurious Emissions – 861.5000 MHz – High Power.....                 | 9  |
| Table 5-4: Conducted Spurious Emissions – 868.9875 MHz – High Power.....                 | 9  |
| Table 5-5: Test Equipment Used for Testing Conducted Spurious Emissions .....            | 10 |
| Table 6-1: Test Equipment Used for Testing Occupied Bandwidth .....                      | 15 |
| Table 7-1: Field Strength of Spurious Radiation – 854.0 MHz; Wide Band; High Power ..... | 16 |
| Table 7-2: Test Equipment Used for Testing Field Strength of Spurious Radiation .....    | 17 |

## Table of Plots

---

---

|                                                             |    |
|-------------------------------------------------------------|----|
| Plot 6-1: Occupied Bandwidth; Wide band; 851.0125 MHz ..... | 12 |
| Plot 6-2: Occupied Bandwidth; Wide band; 854.0125 MHz ..... | 13 |
| Plot 6-3: Occupied Bandwidth; Wide band; 861.5000 MHz ..... | 14 |
| Plot 6-4: Occupied Bandwidth; Wide band; 868.9875 MHz ..... | 15 |

## Table of Figures

---

---

|                                                  |   |
|--------------------------------------------------|---|
| Figure 2-1: Configuration of Tested System ..... | 5 |
|--------------------------------------------------|---|

## Table of Appendices

---

---

|                                                  |    |
|--------------------------------------------------|----|
| Appendix A: Agency Authorization .....           | 19 |
| Appendix B: Confidentiality Request Letter ..... | 20 |
| Appendix C: Change Description.....              | 21 |
| Appendix D: Industry Canada Letters .....        | 22 |
| Appendix E: Parts List .....                     | 23 |
| Appendix F: Schematics.....                      | 24 |
| Appendix G: Block Diagram .....                  | 25 |
| Appendix H: Test Configuration Photographs.....  | 26 |
| Appendix I: Internal Photographs .....           | 28 |

## Table of Photographs

---

---

|                                                                     |    |
|---------------------------------------------------------------------|----|
| Photograph 1: Radiated Emissions (Front View) .....                 | 26 |
| Photograph 2: Radiated Emissions (Rear View) .....                  | 27 |
| Photograph 3: 800 MHz Cell Site Interior with Passive Duplexer..... | 28 |
| Photograph 4: BSX Configured for Passive Duplexer.....              | 29 |
| Photograph 5: BSX PCB Top View .....                                | 30 |
| Photograph 6: BSX PCB Bottom View .....                             | 31 |

## 1 General Information

The following Class II Permissive Change Report is prepared on behalf of **M/A-COM, Inc.** in accordance with the Federal Communications Commission and Industry Canada Rules and Regulations. The Equipment Under Test (EUT) was the **Model MCS-0001, OpenSky Cell Site Base Station; FCC ID: BV8MCS800A025, IC: 3670195674A**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47, and ANSI C63.4 Methods of Measurement of Radio Noise Emissions, 2003. The instrumentation utilized for the measurements conforms to the ANSI C63.4 standard for EMI and Field Strength Instrumentation. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

### 1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report submitted to and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 2003).

### 1.2 Related Submittal(s)/Grant(s)

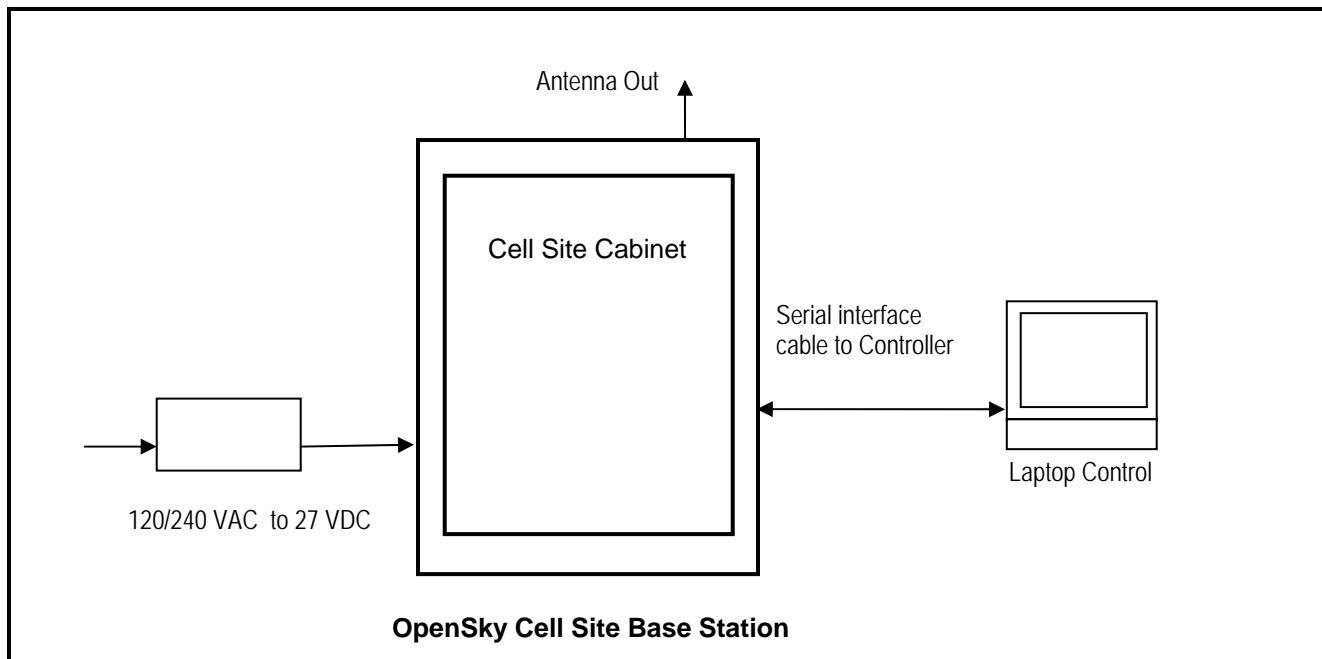
This is a Class II permissive change report for FCC ID: BV8MCS800A025, originally certified by the FCC on April 28, 2000, and by Industry Canada on May 23, 2000. Class II permissive changes were approved on May 26, 2006 and August 1, 2006.

### 1.3 Description of Change in Device

Duplexer changed from a low noise amplifier type to a passive type. Low noise amplifier moved to the BCX board.

## 2 Tested System Details

The test sample was received 12/5/2006. Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this test, as applicable.


**Table 2-1: Equipment Under Test (EUT)**

| Part                           | Manufacturer  | Model     | PN/SN           | FCC ID        | RTL Bar Code |
|--------------------------------|---------------|-----------|-----------------|---------------|--------------|
| OpenSky Cell Site Base Station | M/A-Com, Inc. | MCS-0001  | 1000019821-0001 | BV8MCS800A025 | 17699        |
| Power Supply                   | MW            | SE-600-27 | N/A             | N/A           | N/A          |

**Table 2-2: Support Equipment**

| Part                   | Manufacturer | Model     | PN/SN | FCC ID | RTL Bar Code |
|------------------------|--------------|-----------|-------|--------|--------------|
| Notebook Computer      | Panasonic    | Toughbook | N/A   | N/A    | N/A          |
| Serial Interface Cable |              | DB-9      | N/A   | N/A    | N/A          |

**Figure 2-1: Configuration of Tested System**



Rhein Tech Laboratories  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A-COM, Inc.  
Model: OpenSky Cell Site Base Station  
Standards: FCC Part 90/IC RSS-119  
Report Number: 2006190  
Date: December 20, 2006

### **3 FCC Rules and Regulations Part 2 §2.1033(C)(8) Voltages and Currents Through The Final Amplifying Stage**

**Nominal DC Voltage:** 27.0 VDC  
**Current:** 4.0 AMPS

## 4 FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output: Conducted; RSS-119

### §5.4: Output Power Test

#### 4.1 Test Procedure

ANSI TIA-603-2004, Section 2.2.1.

The EUT was connected to a coaxial attenuator having a  $50 \Omega$  load impedance.

#### 4.2 Test Data

The following channels (in MHz) were tested: 851.0125, 854.0125, 861.5000 and 868.9875.

**Table 4-1: RF Power Output (High Power): Carrier Output Power (Unmodulated)**

| Channel | Frequency (MHz) | RF Power Measured (Watt)* |
|---------|-----------------|---------------------------|
| 1       | 851.0125        | 25.7                      |
| 2       | 854.0125        | 25.9                      |
| 3       | 861.5000        | 25.5                      |
| 4       | 868.9875        | 24.8                      |

\* Measurement accuracy: +/- .02 dB (logarithmic mode)

**Table 4-2: RF Power Output (Rated Power)**

| Rated Power (W) |
|-----------------|
| 25              |

**Table 4-3: Test Equipment Used for Testing RF Power Output - Conducted**

| RTL Asset # | Manufacturer         | Model    | Part Type                          | Serial Number | Calibration Due |
|-------------|----------------------|----------|------------------------------------|---------------|-----------------|
| 901184      | Agilent Technologies | E4416A   | EPM-P Power Meter, Single Channel  | GB41050573    | 10/3/07         |
| 901356      | Agilent Technologies | E9323A   | Power Sensor                       | 31764-264     | 10/3/07         |
| 901138      | Weinschel Corp.      | 48-40-34 | Attenuator, 100 W 40 dB, DC-18 GHz | BK5883        | 1/13/09         |

#### TEST PERSONNEL:

|                          |                                                                                     |                   |
|--------------------------|-------------------------------------------------------------------------------------|-------------------|
| Daniel Biggs             |  | December 11, 2006 |
| Test Technician/Engineer | Signature                                                                           | Date Of Test      |

## 5 FCC Rules and Regulations Part 2 §2.1051: Spurious Emissions at Antenna Terminals; RSS-119 §5.8: Transmitter Unwanted Emissions

### 5.1 Test Procedure

ANSI TIA-603-2004, Section 2.2.13.

The transmitter was interfaced with a spectrum analyzer through an appropriate 50 ohm attenuator and a notch filter. The transmitter was operated at maximum power. Attenuator and cable losses were accounted for.

Device with digital modulation: Modulated to its maximum extent using a pseudo random data sequence – 19,200 bps.

The system loss was measured by using a signal generator and reference cable. The attenuation was first measured with a reference cable, then measured in combination with the attenuators and notch filter.

Loss (reference cable/attenuators/notch filter) – Loss (reference cable) = System Loss

### 5.2 Test Data

Frequency range of measurement per Part 2.1057: 9 kHz to 10 x Fc.

Limits: Mask D (dBm):  $P(\text{dBm}) - (43 + 10 \times \text{LOG } P(\text{W}))$

The following channels (in MHz) were investigated: 851.0125, 854.0125, 861.5000 and 868.9875. The worst case (unwanted emissions) channels are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

**Table 5-1: Conducted Spurious Emissions – 851.0125 MHz – High Power**

25 kHz channel spacing; Conducted power = 25.7 W

| Frequency (MHz) | Level (dBc) | Limit (dBc) | Margin(dB) |
|-----------------|-------------|-------------|------------|
| 1702.025        | 99.90       | 57.10       | -42.77     |
| 2553.038        | 103.00      | 57.10       | -45.87     |
| 3404.05         | 109.00      | 57.10       | -51.87     |
| 4255.063        | 107.20      | 57.10       | -50.07     |
| 5106.075        | 111.40      | 57.10       | -54.27     |
| 5957.088        | 108.00      | 57.10       | -50.87     |
| 6808.1          | 95.00       | 57.10       | -37.87     |
| 7659.113        | 103.60      | 57.10       | -46.47     |
| 8510.125        | 101.80      | 57.10       | -44.67     |

**Table 5-2: Conducted Spurious Emissions – 854.0125 MHZ – High Power**

25 kHz channel spacing; Conducted power = 25.9 W

| Frequency (MHz) | Level (dBc) | Limit (dBc) | Margin(dB) |
|-----------------|-------------|-------------|------------|
| 1708.025        | 98.30       | 57.13       | -41.17     |
| 2562.038        | 98.33       | 57.13       | -41.20     |
| 3416.05         | 105.43      | 57.13       | -48.30     |
| 4270.063        | 103.33      | 57.13       | -46.20     |
| 5124.075        | 106.23      | 57.13       | -49.10     |
| 5978.088        | 102.73      | 57.13       | -45.60     |
| 6832.1          | 91.93       | 57.13       | -34.80     |
| 7686.113        | 99.03       | 57.13       | -41.90     |
| 8540.125        | 98.13       | 57.13       | -41.00     |

**Table 5-3: Conducted Spurious Emissions – 861.5000 MHz – High Power**

25 kHz channel spacing; Conducted power = 25.5 W

| Frequency (MHz) | Level (dBc) | Limit (dBc) | Margin(dB) |
|-----------------|-------------|-------------|------------|
| 1723            | 99.56       | 57.06       | -42.50     |
| 2584.5          | 104.76      | 57.06       | -47.70     |
| 3446            | 110.86      | 57.06       | -53.80     |
| 4307.5          | 108.86      | 57.06       | -51.80     |
| 5169            | 110.56      | 57.06       | -53.50     |
| 6030.5          | 107.96      | 57.06       | -50.90     |
| 6892            | 100.16      | 57.06       | -43.10     |
| 7753.5          | 103.56      | 57.06       | -46.50     |
| 8615            | 98.76       | 57.06       | -41.70     |

**Table 5-4: Conducted Spurious Emissions – 868.9875 MHz – High Power**

25 kHz channel spacing; Conducted power = 24.8 W

| Frequency (MHz) | Level (dBc) | Limit (dBc) | Margin(dB) |
|-----------------|-------------|-------------|------------|
| 1737.975        | 104.35      | 56.95       | -47.40     |
| 2606.963        | 106.55      | 56.95       | -49.60     |
| 3475.95         | 111.65      | 56.95       | -54.70     |
| 4344.938        | 110.45      | 56.95       | -53.50     |
| 5213.925        | 109.95      | 56.95       | -53.00     |
| 6082.913        | 107.55      | 56.95       | -50.60     |
| 6951.9          | 102.85      | 56.95       | -45.90     |
| 7820.888        | 103.45      | 56.95       | -46.50     |
| 8689.875        | 92.55       | 56.95       | -35.60     |

**Table 5-5: Test Equipment Used for Testing Conducted Spurious Emissions**

| RTL Asset # | Manufacturer    | Model           | Part Type                             | Serial Number | Calibration Due |
|-------------|-----------------|-----------------|---------------------------------------|---------------|-----------------|
| 901215      | Hewlett Packard | 8596EM          | EMC Analyzer<br>(9 kHz - 12.8 GHz)    | 3826A00144    | 10/16/07        |
| 901132      | Par Electronics | UHF SN(806-902) | UHF Notch Filter                      | N/A           | 02/1/09         |
| 900139      | Weinschel Corp. | 48-20-34        | Attenuator, 100 W 20 dB,<br>DC-18 GHz | BK5859        | 1/13/09         |

**TEST PERSONNEL:**

|                          |                                                                                   |                   |
|--------------------------|-----------------------------------------------------------------------------------|-------------------|
| Daniel Biggs             |  | December 11, 2006 |
| Test Technician/Engineer | Signature                                                                         | Date Of Test      |

## 6 FCC Rules and Regulations Part 2 §2.1049: Occupied Bandwidth; Part 90 §90.210(g): Emissions Masks; RSS-119 §5.8: Transmitter Unwanted Emissions

### 6.1 Test Procedure

ANSI TIA-603-2004, Section 2.2.11.

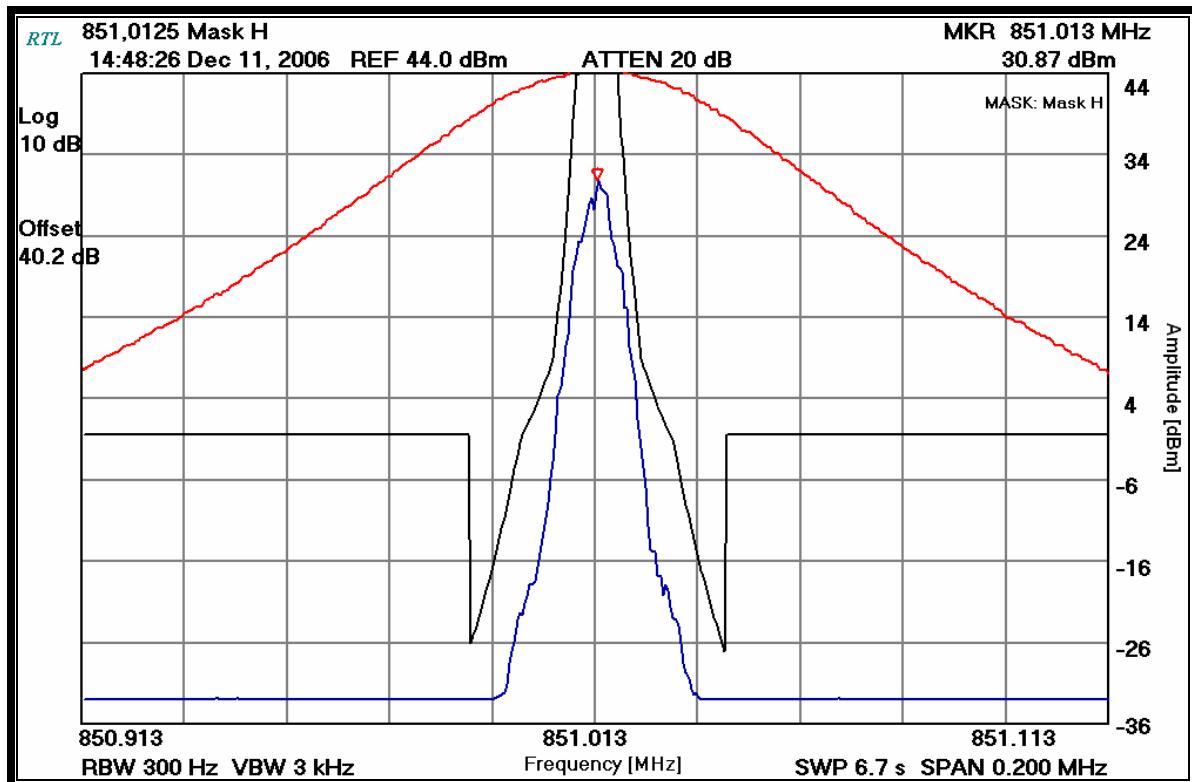
The transmitter was interfaced with a spectrum analyzer through an appropriate 50 ohm attenuator and a notch filter. The transmitter was operated at maximum power. Attenuator losses were accounted for.

Device with digital modulation: Modulated to its maximum extent using a pseudo random data sequence – 19,200 bps.

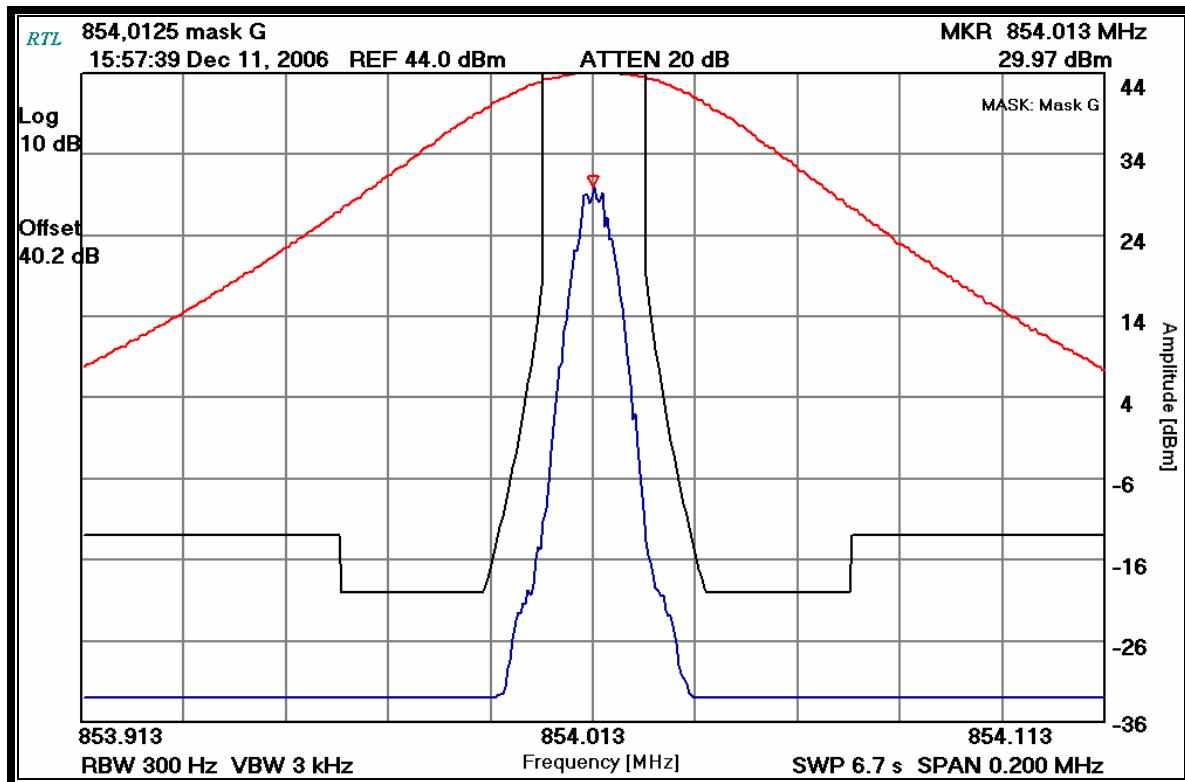
The system loss was measured by using a signal generator and reference cable. The attenuation was first measured with a reference cable, and then measured in combination with the attenuators.

Loss (reference cable/attenuators) – Loss (reference cable) = System loss

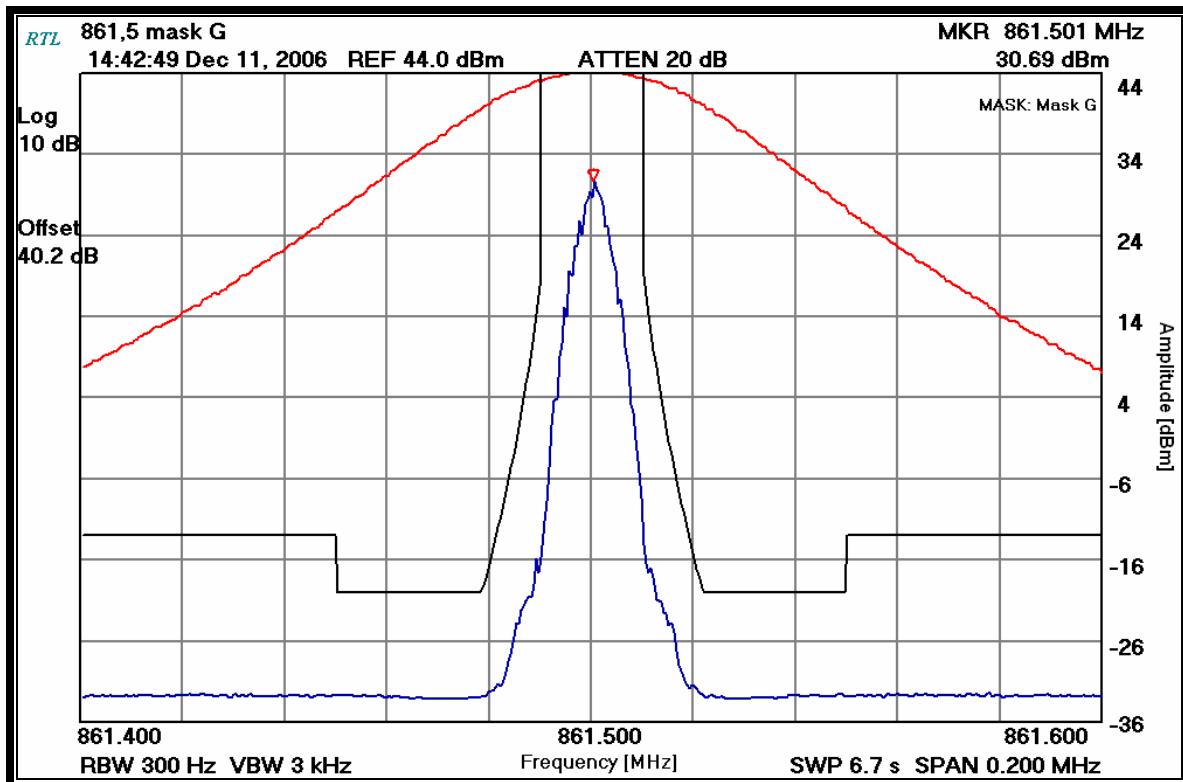
#### Limit Mask G:


- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10KHz: At least **83 log (fd/5) dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250%, of the authorized bandwidth: At least **116 log (fd/6.1) dB** or **50+ 10 log (P) dB**, or **70 dB**, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250% of the authorized bandwidth: At least **43 + 10 log (P) dB**.

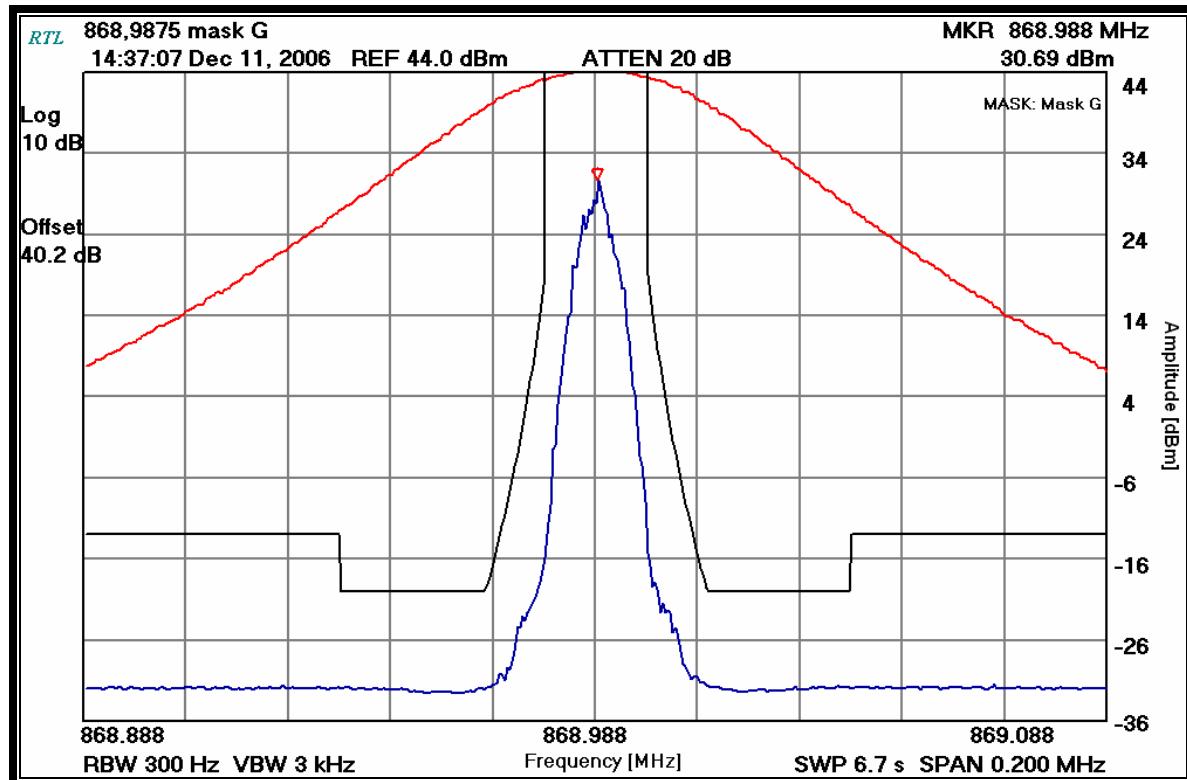
#### Limit Mask H:


- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of 4 kHz or less, **Zero dB**;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 4 kHz, but not more than 8.5 kHz: At least **107 log (fd/4) dB**;
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 8.5 kHz, but not more than 15 kHz: At least **40.5 log (fd/1.16) dB**;
- (4) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 15 kHz, but not more than 25 kHz: At least **116 log (fd/6.1) dB**;
- (5) On any frequency removed from the center of the authorized bandwidth by more than 25 kHz: At least **43 + 10 log (P) dB**.

## 6.2 Test Data


Plot 6-1: Occupied Bandwidth; Wide band; 851.0125 MHz




Plot 6-2: Occupied Bandwidth; 854.0125 MHz



Plot 6-3: Occupied Bandwidth; 861.5000 MHz



**Plot 6-4: Occupied Bandwidth; 868.9875 MHz**



**Table 6-1: Test Equipment Used for Testing Occupied Bandwidth**

| RTL Asset # | Manufacturer    | Model    | Part Type                          | Serial Number | Calibration Due |
|-------------|-----------------|----------|------------------------------------|---------------|-----------------|
| 901215      | Hewlett Packard | 8596EM   | EMC Analyzer (9 kHz - 12.8 GHz)    | 3826A00144    | 10/16/07        |
| 901138      | Weinschel Corp. | 48-40-34 | Attenuator, 100 W 40 dB, DC-18 GHz | BK5883        | 1/13/09         |

**Test Personnel:**

|                          |                     |                   |
|--------------------------|---------------------|-------------------|
| Daniel Biggs             | <i>Daniel Biggs</i> | December 11, 2006 |
| Test Technician/Engineer | Signature           | Date Of Test      |

## 7 FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §5.8: Unwanted Emissions

### 7.1 Test Procedure

ANSI TIA-603-C-2004, Section 2.2.12

Digital Modulation: Modulated to its maximum extent using a pseudo random data sequence – 9600 bps.

The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

$$P_d(\text{dBm}) = P_g(\text{dBm}) - \text{cable loss (dB)} + \text{antenna gain (dB)}$$

where:

$P_d$  is the dipole equivalent power

$P_g$  is the generator output power into the substitution antenna

### 7.2 Test Data

The worst case emissions test data are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

**Table 7-1: Field Strength of Spurious Radiation – 854.0 MHz; Wide Band; High Power**

| Frequency (MHz) | Spectrum Analyzer Level (dBuV) | Signal Generator Level (dBm) | Conducted Power = 44.1 dBm = 25.9 W |                    | Corrected Signal Generator Level (dBc) | Margin (dB) |
|-----------------|--------------------------------|------------------------------|-------------------------------------|--------------------|----------------------------------------|-------------|
|                 |                                |                              | Cable Loss* (dB)                    | Antenna Gain (dBd) |                                        |             |
| 1708.03         | 43.5                           | -57.8                        | 4.6                                 | 4.9                | 101.6                                  | -44.5       |
| 2562.04         | 34.6                           | -65.2                        | 4.6                                 | 6.9                | 107.0                                  | -49.9       |
| 3416.05         | 33.4                           | -64.7                        | 5.6                                 | 7.3                | 107.1                                  | -50.0       |
| 4270.06         | 33.0                           | -57.2                        | 6.0                                 | 7.7                | 99.6                                   | -42.4       |
| 5124.08         | 32.2                           | -56.7                        | 6.5                                 | 7.6                | 99.0                                   | -41.9       |
| 5978.09         | 32.0                           | -54.4                        | 7.5                                 | 8.5                | 97.5                                   | -40.4       |
| 6832.10         | 39.4                           | -47.4                        | 8.2                                 | 8.3                | 91.4                                   | -34.3       |
| 7686.11         | 40.7                           | -43.8                        | 9.0                                 | 8.0                | 88.9                                   | -31.8       |
| 8540.13         | 38.6                           | -40.7                        | 10.1                                | 8.4                | 86.5                                   | -29.4       |

\*This insertion loss corresponds to the cable connecting the RF Signal Generator to the ½ wave dipole antenna.

Rhein Tech Laboratories  
 360 Herndon Parkway  
 Suite 1400  
 Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A-COM, Inc.  
 Model: OpenSky Cell Site Base Station  
 Standards: FCC Part 90/IC RSS-119  
 Report Number: 2006190  
 Date: December 20, 2006

**Table 7-2: Test Equipment Used for Testing Field Strength of Spurious Radiation**

| RTL Asset # | Manufacturer         | Model              | Part Type                                         | Serial Number | Calibration Due Date |
|-------------|----------------------|--------------------|---------------------------------------------------|---------------|----------------------|
| 900791      | Schaffner-Chase      | CBL6112            | Antenna (25 MHz – 2 GHz)                          | 2099          | 6/12/07              |
| 900321      | EMCO                 | 3161-03            | Horn Antenna (4.0 - 8.2 GHz)                      | 9508-1020     | 5/20/07              |
| 900772      | EMCO                 | 3161-02            | Horn Antenna (2 - 4 GHz)                          | 9804-1044     | 5/20/07              |
| 900323      | EMCO                 | 3160-07            | Horn Antenna (8.2 - 12.4 GHz)                     | 9605-1054     | 7/31/09              |
| 900814      | Electro-Metrics      | EM-6961 (RGA-60)   | Double Ridges Guide Antenna (1 - 18 GHz)          | 2310          | 3/30/09              |
| 901215      | Hewlett Packard      | 8596EM             | EMC Analyzer (9 kHz - 12.8 GHz)                   | 3826A00144    | 10/16/07             |
| 900928      | Hewlett Packard      | 83752A             | Sweeper, (Signal generator, 0.01 - 20 GHz)        | 3610A00866    | 11/30/07             |
| 901365      | MITEQ                | JS4-00102600-41-5P | Amplifier, 15 V, 0.1-26 GHz, 28dB gain, power 5dB | 1094152       | 3/24/07              |
| 901365      | MITEQ                | JS4-00102600-41-5P | Amplifier, 15 V, 0.1-26 GHz, 28 dB gain           | 1094152       | 3/24/07              |
| 901423      | Insulated Wire Inc.  | KPS-1503-3600-KPS  | RF Cable, 30'                                     | NA            | 12/12/07             |
| 901425      | Insulated Wire, Inc. | KPS-1503-2400-KPS  | RF Cable, 20'                                     | NA            | 12/12/07             |
| 901424      | Insulated Wire Inc.  | KPS-1503-360-KPS   | RF Cable 36"                                      | NA            | 12/12/07             |

**Test Personnel:**

|               |                     |                   |
|---------------|---------------------|-------------------|
| Daniel Biggs  | <i>Daniel Biggs</i> | December 14, 2006 |
| Test Engineer | Signature           | Date Of Test      |

Rhein Tech Laboratories  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A-COM, Inc.  
Model: OpenSky Cell Site Base Station  
Standards: FCC Part 90/IC RSS-119  
Report Number: 2006190  
Date: December 20, 2006

## 8 Conclusion

The data in this measurement report shows that the **M/A-COM, Inc. Model MCS-0001, OpenSky Cell Site Base Station; FCC ID: BV8MCS800A025, IC: 3670195674A**, complies with applicable requirements of Parts 90, 15 and 2 of the FCC Rules, and Industry Canada RSS-119.