

**EMC EVALUATION OF THE
M/A-COM
OPEN SKY DIGITAL BASE STATION
MODEL IBS-750 MULTI-MODE
IN ACCORDANCE WITH THE
FCC PART 90 CERTIFICATION**

Prepared For:

**M/A-COM
1011 PAWTUCKET BOULEVARD
POST OFFICE BOX 3295
LOWELL, MASSACHUSETTS 01854
ATTENTION: TIM DONOVAN**

Prepared By:

**ROBERT FOSTER
CHOMERICS TEST SERVICES
77 DRAGON COURT
WOBURN, MASSACHUSETTS 01801**

Date:

MARCH 23, 1999

Test Report Number:

EMI1953.US.99

Test Technician or Engineer:

Robert Foster

CTS Approved Signatory:

David C. Francon

This report shall not be reproduced except in full without the
written approval of Chomerics Test Services.

TABLE OF CONTENTS

1.0 General

1.1 Introduction

1.1.1 Purpose

1.1.2 Requirements

1.2 Administrative Data

1.2.1 Test Facility

1.2.2 Equipment Calibration

1.2.3 Test Personnel

1.3 Test Set-up

1.3.1 Test Site Matrix

1.3.2 Test Site Descriptions

1.3.3 Equipment Under Test

2.0 Test Summary

2.1 Summary of Recommendations

3.0 Tests Performed

3.1 Output Power

3.1.1 Equipment Used

3.1.2 Test Conditions

3.1.3 Test Method

3.1.4 Results

3.2 Occupied Bandwidth

3.2.1 Equipment Used

3.2.2 Test Conditions

3.2.3 Test Method

3.2.4 Results

3.3 Emission Mask and Spurious Emissions at Antenna Terminals

3.3.1 Equipment Used

3.3.2 Test Conditions

3.3.3 Test Method

3.3.4 Results

3.4 Channel Spacing/Bandwidth

3.4.1 Equipment Used

3.4.2 Test Conditions

3.4.3 Test Method

3.4.4 Results

TABLE OF CONTENTS

(continued)

3.5	Field Strength of Spurious Radiation
3.5.1	Equipment Used
3.5.2	Test Conditions
3.5.3	Test Method
3.5.4	Results
3.6	Modulation Characteristics
3.7	Frequency Stability
3.7.1	Equipment Used
3.7.2	Test Conditions
3.7.3	Test Method
3.7.4	Results
3.8	Radiated Emissions Receiver
3.8.1	Equipment Used
3.8.2	Test Conditions
3.8.3	Test Method
3.8.4	Results
3.9	Conducted Emissions Receiver
3.9.1	Equipment Used
3.9.2	Test Conditions
3.9.3	Test Method
3.9.4	Result
4.0	Appendix
Appendix A:	Test Data
Appendix B:	Set Up Photographs
Appendix C:	Customer Supplied Modulation Characteristics
Appendix D:	Customer Supplied Equipment Description

LIST OF DEFINITIONS/ABBREVIATIONS

AC	Alternating Current
BB	Broadband
BW	Bandwidth
cm	Centimeter
C.P.U.	Calibrate Prior to Use
dB	Decibel
DC	Direct Current
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
ER	Electric Radiation
EUT	Equipment Under Test
GHz	Gigahertz
Hz	Hertz
I-face	Interface
kHz	Kilohertz
m	Meter
MHz	Megahertz
mm	Millimeter
ms	Millisecond
mV	Millivolt
MR	Magnetic Radiation
NB	Narrowband
N.C.R.	No Calibration Required
PLC	Power Line Conduction
PPS	Pulses Per Second
uF	Microfarad
uH	Microhenry
uS	Microsecond
uV	Microvolt
U.W.C.	Use With Calibrated Equipment

Document #: EMI1953.US.99

Date: March 23, 1999

1.0 GENERAL

1.1 Introduction

1.1.1 Purpose

The purpose of this report is to document the performance of the M/A-Com Open Sky Digital Base Station during a variety of radio-performance tests and record the test requirements and procedures used. At the request of M/A-Com, the tests were performed by Chomerics Test Service (CTS) of Woburn, Massachusetts. The assessment will determine the compliance or non-compliance to the requirements set by FCC Part 90 and Part 2.

No representative from M/A-Com was present for testing. Testing was performed during the period of October through December 1998 under purchase order number 229343.

1.1.2 Requirements

The requirements for the sequence of tests performed on the M/A-Com Open Sky Digital Base Station are as follows:

Output Power

The RF output of the Open Sky Digital Base Station must be within $\pm 1\text{dB}$ of the manufacturer's rated output.

Please note this is not a FCC requirement but used for information purposes only.

Occupied Bandwidth

FCC Part 2.989

The Occupied Bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the means power radiated are each equal to 0.5 % of the total mean power radiated by a given emission.

Document #: EMI1953.US.99
Date: March 23, 1999

Emission Mask and Spurious Emissions at Antenna Terminals
FCC Part 90.210 and Part 2.991

The following emission mask shall be followed. The power of any emission must be below the unmodulated carrier power (P) as follows:

1. On any frequency removed from the assigned frequency by more than 50%, but not more than 100% of the authorized bandwidth: At least 25dB.
2. On any frequency removed from the assigned frequency by more than 100%, but not more than 250% of the authorized bandwidth: At least 35dB.
3. On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth: At least $43 + 10 \log (P)$.

Channel Spacing/Bandwidth
FCC Part 90.209

The following Channel Spacing/Bandwidth shall be followed:

Frequency Band MHz	Channel Spacing kHz	Authorized Bandwidth kHz
806-821 / 851-866	25	20
821-824 / 866-869	12.5	20

Field Strength of Spurious Radiation
FCC Part 2.933

The field strength of each harmonic and other spurious emissions shall be below $43 + 10 \log (P)$ when measured in an open field test site. The frequency range under investigation is 30MHz to 8690MHz.

P = to 75 watts

Limit = $43 + 10 \log (75) = 61.75\text{dB}$ under

Modulation Characteristics
FCC Part 2.987

The modulation curve showing the percentage of modulation versus the modulation input voltage will be supplied.

Document #: EMI1953.US.99
Date: March 23, 1999

**Frequency Stability
FCC Part 90.213 and 2.955**

The transmitter shall have the following Frequency Stability over the temperature range of -30°C to +50° F

**Radiated and Conducted Emissions “Receiver”
FCC Part 15**

The receiver shall meet the FCC Part 15 Subpart B Class B radiated and conducted emissions limits.

1.2 Administrative Data**1.2.1 Test Facility**

Chomerics Test Facility is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP) for NVLAP Codes 12/C01 and 12/R01. Tests within this report not conforming to 12/C01 and 12/R01 NVLAP Codes are not covered under Chomerics NVLAP accreditation.

Chomerics Test Facility operates under the current revision of Chomerics Quality Assurance (QA) Manual Document Number QA002.

The QA manual has been constructed to reflect a quality program in accordance with the requirements of the National Institute of Standards and Technology (NIST), ISO 9002, ISO Guide 25, NIST Handbook 150, EN 45001, MIL-I-45208A, MIL-STD-461D, 462D and Chomerics Quality Assurance Program (QAP).

The QA manual outlines and describes the procedures for establishing and maintaining the quality of analysis, research, inspection, and testing within Chomerics Test Service (CTS).

This report does not represent an endorsement by the U.S. Government.

The results and/or conclusions within this test report refer and/or apply only to the unit(s) tested as defined by this report.

Measurements performed for this test are traceable to the National Institute of Standards and Technology (NIST) based on the fact that all test equipment used for the measurements were previously calibrated using standards traceable to NIST.

Document #: EMI1953.US.99
Date: March 23, 1999

No deviations, additions to, or exclusions from the test specification(s) were made.

The system amplitude accuracy for the measurements made during the radiated emission tests was ± 3 dB.

1.2.2 Equipment Calibration

The calibration of Chomerics test facility equipment is controlled under the current edition of Chomerics Laboratory Test Equipment Calibration Manual Document Number QA001.

The test equipment used throughout this test sequence conforms to laboratory calibration standards, MIL-STD-45662, traceable to the National Institute of Standards and Technology. The date of the next due scheduled calibration is listed in each test section for the applicable equipment.

All test equipment is calibrated in one year intervals

1.2.3 Personnel

The test personnel used to perform or supervise the tests are accredited by the National Association of Radio and Telecommunications Engineers, Inc. (NARTE) as Certified Electromagnetic Compatibility Engineers (N.C.E.) and Technicians (N.C.T.).

1.3 Test Set-up

1.3.1 Test Site Matrix

The test locations used for the emissions and immunity tests are as follows: (Refer to Section 1.3.2 for test site descriptions).

Test Performed

Output Power
Occupied Bandwidth
Emission Mask and Spurious Emissions at Antenna Terminals
Channel Spacing/Bandwidth
Field Strength of Spurious Radiation
Modulation Characteristics
Frequency Stability
Radiated/Conducted Emissions

Test Site

Test Chamber A
Test Chamber A
Test Chamber A
Test Chamber A
Open Area Test Site A
M/A-Com
Safety Lab A
Open Area Test Site A

Document #: EMI1953.US.99
Date: March 23, 1999

1.3.2 Test Site Descriptions

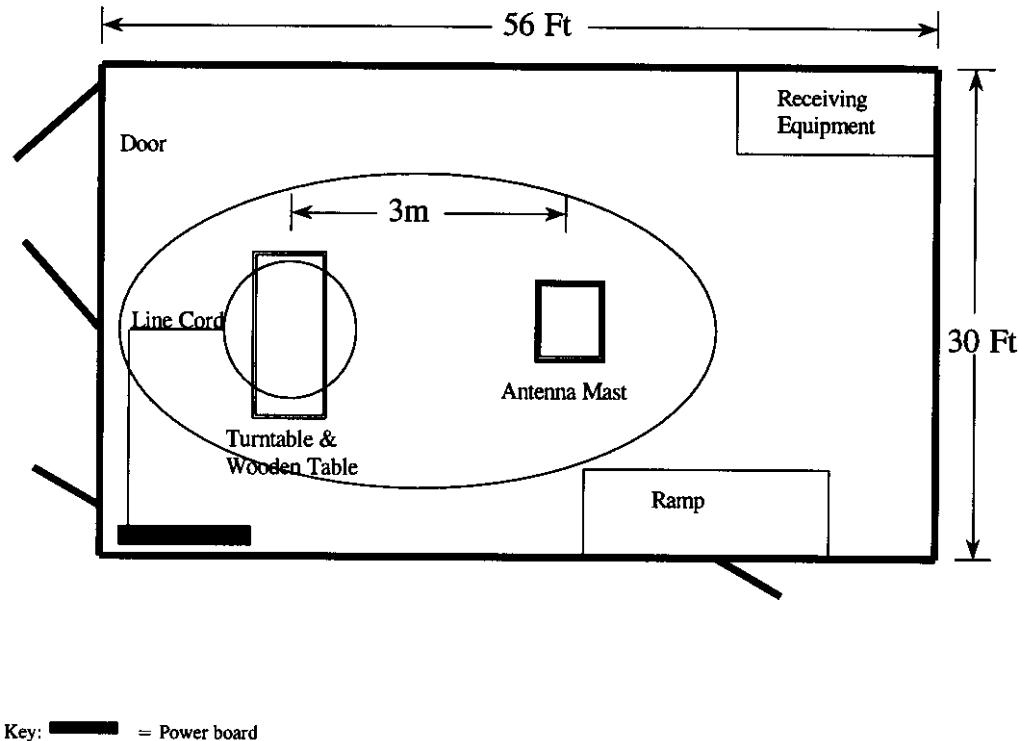
The following is a list of the test sites and descriptions of each. Refer to Section 1.3.1 for specific test sites used for testing.

Open Area Test Site A: Chomerics Open Area Test Site "A" if used for this test program is located in the lower parking lot attached to the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 1). Parking is permitted on one side of test site "A" at a discrete distance from the imaginary ellipse.

The Open Area Test Site A enclosure is a wooden structure measuring 56 x 30 x 25 feet in size with galvanized steel sheet metal used as the ground plane. The structure is sized to allow 3 meter measurements and is heated and/or air conditioned.

The structure used to support equipment under test is an EMCO 4 foot diameter motorized turntable. For tabletop equipment, a wooden table measuring 1.5 x 1 meter in size is positioned at the center of the turntable, at the proper height above the ground plane.

The area at the end of the Open Area Test Site "A" is the location for the test personnel and equipment to ensure they are outside the imaginary ellipse.


The available AC power within Open Area Test Site "A" is 120V 60Hz Single Phase 60Amps; 208V 60Hz Three Phase 60Amps; 208V 60Hz Single Phase 60Amps; 230V 50Hz Single Phase 50Amps.

This Site is listed with the Federal Communications Commissions (FCC).

Document #: EMI1953.US.99
Date: March 23, 1999

OPEN AREA TEST SITE A

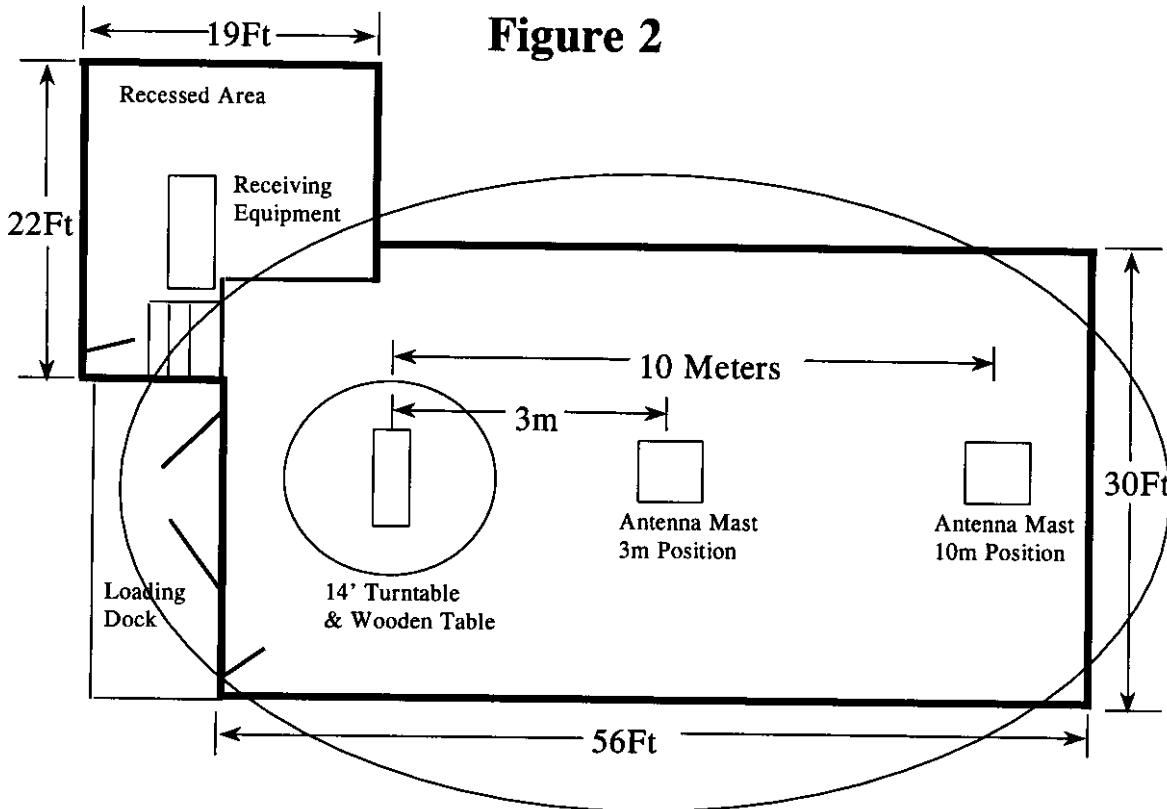
Figure 1

Open Area Test Site B: Chomerics Open Area Test Site "B" if used for this test program is located in the lower parking lot behind the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 2). Parking is permitted on one side of test site "B" at a discrete distance from the imaginary ellipse.

The Open Area Test Site "B" enclosure is a wooden structure measuring 56 x 30 x 25 feet in size with galvanized steel sheet metal used as the ground plane. The structure is sized to allow both 3 and 10 meter measurements and is heated and/or air conditioned.

The structure used to support equipment under test is a 14 foot diameter motorized turntable. The sheet metal surface is flush with the ground plane. To ground the turntable, 175 copper fingers (1" x 1.5") are mounted around the outer edge of the turntable using machine screws. The spring fingers are equally spaced and provide a uniform interface between the turntable metal surface and ground plane. For tabletop equipment, a wooden table measuring 1.5 x 1 meter in size is positioned at the center of the turntable, at the proper height above the ground plane.

Document #: EMI1953.US.99
Date: March 23, 1999


The addition at the end of the Open Area Test Site "B" is the location for the test personnel and equipment to ensure they are outside the imaginary ellipse.

The available AC power within Open Area Test Site "B" is 120V 60Hz Single Phase 60Amps; 208V 60Hz Three Phase 60Amps; 208V 60Hz Single Phase 60Amps; 230V 50Hz Single Phase 50Amps.

This site is listed with the Federal Communications Commissions (FCC).

OPEN AREA TEST SITE B

Figure 2

Test Chamber A: Chomerics Test Chamber A, if used for this test program, is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 3). The shielded enclosures (test chambers) were manufactured and installed by Universal Shielding Corporation of Deer Park, New York. Attenuation tests have demonstrated that the shielded enclosures meet the attenuation requirements of MIL-STD-285 and NSA 65-6. The main test chamber is 22 x 10 x 10 feet in size with an adjacent enclosure that is 8 x 8 x 8 feet in size. The adjacent room, used for support equipment, and the main test chamber are connected together and referenced to the same single point ground.

Document #: EMI1953.US.99
Date: March 23, 1999

When needed for tabletop equipment, a wooden table measuring 3 x 9 feet in size is positioned within the test chamber. When used for MIL-STD-461D tests the tabletop surface is covered with a copper sheet and grounded to the test chamber wall so that the resistance is less than 2.5 milliohms.

The power line filters supplying the power to the enclosures provide 100dB of attenuation from 10kHz to 10GHz. The adjacent room, used for support equipment, and the main test chamber have independent AC power obtained from independent AC power line filters.

The available AC power in Test Chamber A is 120V 60Hz Single Phase 100Amps; 120V 400Hz Three Phase 50Amps; 208V 60Hz Three Phase 100Amps; 208V 60Hz Single Phase 100Amps; 230V 50Hz Single Phase 50Amps.

Test Chamber B: Chomerics Test Chamber B, if used for this test program, is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 3). The shielded enclosures (test chambers) were manufactured and installed by Universal Shielding Corporation of Deer Park, New York. Attenuation tests have demonstrated that the shielded enclosures meet the attenuation requirements of MIL-STD-285 and NSA 65-6.

The main test chamber is 22 x 10 x 10 feet in size with an adjacent enclosure that is 8 x 8 x 8 feet in size. The adjacent room, used for support equipment, and the main test chamber are connected together and referenced to the same single point ground.

Test Chamber B is lined with Rantec ferrite absorber tiles FT-100. All surfaces of the room are lined with FT-100. The floor is lined with removable tiles. This absorber material allows the test chamber to meet the 0-6dB field uniformity requirements of IEC 1000-4-3 and ENV50140.

There are two access panels between the main test chamber and the support room. The access panels are covered with absorber tiles. The absorber tiles can be removed from the access panels.

The power line filters supplying the power to the enclosures provide 100dB of attenuation from 10kHz to 10GHz. The adjacent rooms, used for support equipment, and the main test chamber have independent AC power obtained from independent AC power line filters.

The available AC power in Test Chamber B is 120V 60Hz Single Phase 30Amps; 208V 60Hz Three Phase 30Amps; and 230V 50Hz Single Phase 30Amps: A wooden table 3 x 6 feet in size is used for tabletop equipment.

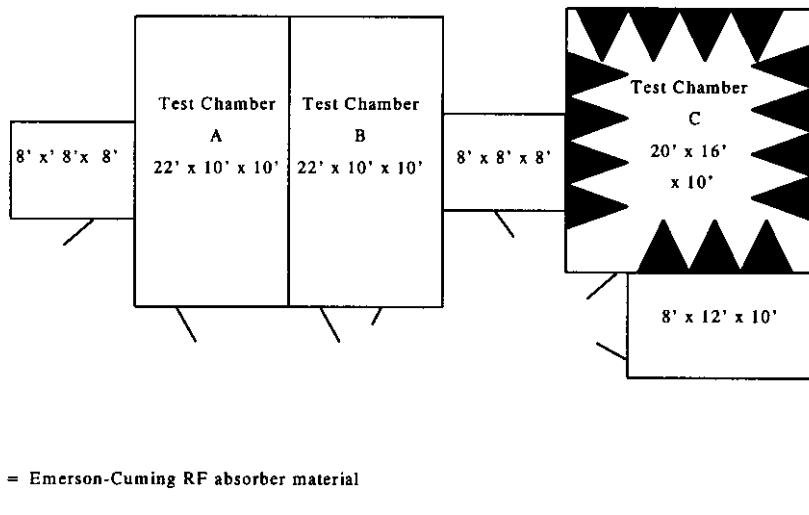
Only one power line frequency is available in the chamber at a time, 50, 60 or 400 cycle, unless power is brought through an access panel.

Document #: EMI1953.US.99
Date: March 23, 1999

Test Chamber C: Chomerics Test Chamber C, if used for this test program, is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts (see Figure 3). The shielded enclosures (test chambers) were manufactured and installed by Universal Shielding Corporation of Deer Park, New York.

Attenuation tests have demonstrated that the shielded enclosures meet the attenuation requirements of MIL-STD-285 and NSA 65-6. The main test chamber is 16 x 20 x 10 feet in size with two adjacent enclosures on either side which are 8 x 8 x 8 and 8 x 12 x 10 feet in size, respectively.

Test Chamber C is lined with Emerson-Cuming RF absorber material. This absorber material meets the following absorption specifications: 80MHz 6dB, 300MHz 30dB, 500MHz 35dB, 1GHz 40dB, and 3 to 24 GHz 50dB. Each of the two adjacent rooms used for support equipment and the main test chamber are connected together and referenced to the same single point ground.


When needed for table top equipment, a wooden table measuring 3 x 9 feet in size is positioned within the test chamber. When used for MIL-STD-461D tests, the tabletop surface is covered with a copper sheet and grounded to the test chamber wall so that the resistance is less than 2.5 milliohms. When used for radiated electromagnetic field tests, to some standards, the copper table top surface is removed.

The available AC power in Test Chamber C is 120V 60Hz AC Single Phase 60Amps; 230V 50Hz AC Single Phase 50Amps; 115V 400Hz AC Three Phase 30Amps (through access panel); 208V 60Hz AC Three Phase AC 30Amps (through access panel).

The power line filters supplying the power to the enclosures provide 100dB of attenuation from 10kHz to 10GHz. Each of the two adjacent rooms used for support equipment and the main test chamber has independent AC power obtained from independent AC power line filters.

Immunity Lab Layout

Figure 3

EC Lab A: Chomerics EC Lab A is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts.

EC Lab A is a typical room measuring 20 x 16 feet with an aluminum sheet metal (8 x 12 feet in size) in the center of the floor for a ground plane. When needed for tabletop equipment, a wooden table (0.8 meters in height) is placed on the metal ground plane that extends at least 0.1m beyond all sides of the table. A removable 3 x 6 foot sheet of aluminum is placed on top of the wooden table when a horizontal coupling plane is required.

The appropriate connections, as needed for each test, are used to interconnect the table horizontal coupling plane, ground plane floor, test equipment, and earth ground.

The available AC power in the EC Lab A is 120V 60Hz AC Single Phase 60Amps; 230V 50Hz AC Single Phase 50Amps; and 208V 60Hz AC Three Phase AC 30Amps.

EC Lab A is equipped with air and water services for use with equipment that requires it.

The humidity in EC Lab A can be automatically controlled in the range of 20% to 60%.

EC Lab B: Chomerics EC Lab B is located in the Seeger Building at Chomerics, 84 Dragon Court, Woburn, Massachusetts.

Document #: EMI1953.US.99
Date: March 23, 1999

EC Lab B is a typical room measuring 12 x 14 feet with a copper sheet (6 x 8 feet in size) in the center of the floor for a ground plane. When needed for tabletop equipment, a wooden table (0.8 meters in height) is placed on the metal ground plane that extends at least 0.1m beyond all sides of the table. A removable 3 x 6 foot sheet of aluminum is placed on top of the wooden table when a horizontal coupling plane is required.

The appropriate connections, as needed for each test, are used to interconnect the table horizontal coupling plane, ground plane floor, test equipment, and earth ground.

The available AC power in the EC Lab B is 120V 60Hz AC Single Phase 60Amps, 230V 50Hz AC Single Phase 50Amps; and 208V 60Hz AC Three Phase AC 30Amps.

The humidity in EC Lab B can be automatically controlled in the range of 20% to 60%.

1.3.3 Equipment Under Test

A detailed description of the Equipment Under Test is located in Appendix D.

Document #: EMI1953.US.99
Date: March 23, 1999

2.0 SUMMARY

The terms "Passed" or "Failed" in this section are intended to guide the reader as to whether or not the EUT met the minimum Performance Criteria that can be interpreted from the FCC Parts 2, 15 and 90. The "Results" paragraph in each test section to follow, and the test data sheets, will outline specifically how the EUT performed during each test.

Output Power	Passed
Occupied Bandwidth	Passed
Emission Mask and Spurious Emissions at Antenna Terminals	Passed
Channel Spacing/Bandwidth	Passed
Field Strength of Spurious Radiation	Passed
Frequency Stability	Passed
Radiated Emission Receiver	Passed
Conducted Emission Receiver	Passed

2.1 Summary of Recommendations

The M/A-Com Open Sky Digital Base Station will not require modifications in order to insure compliance with FCC Parts 2, 15 and 90.

Document #: EMI1953.US.99
Date: March 23, 1999

3.0 TESTS PERFORMED

3.1 Output Power

3.1.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	H/P 8566B Spectrum Analyzer	47	2637A04064	07/99
X	H/P 85658A RF Preselector	48	2648A00483	07/99
X	H/P OPT 462 Display	46	2648A14289	07/99
X	Narda 769-30 High Power Attenuator	284	03793	C.P.U.
X	Narda 769-20 High Power Attenuator	471	02951	C.P.U.

3.1.2 Test Conditions

For measurement of the output power the Open Sky Digital was placed inside a shielded room. The ambient temperature of the room was 20°C.

The Open Sky Digital Base Station was configured to operate in a normal full power transmit mode. The Open Sky Digital Station was set up and powered by 120V 60Hz for the test.

3.1.3 Test Method

The output of the Open Sky Digital was measured at six frequencies between the frequency range of 851MHz to 869MHz. The output of the transmitter was connected to two high power attenuators. The attenuators were connected to a Spectrum Analyzer. See Figure 4 for test set-up.

The frequencies measured are as follows:

Channel No.	Base Frequency MHz
1	851.0125
300	858.0125
600	865.9875
601	866.0125
715	867.5125
830	868.9875

3.1.4 Results

The output power of the M/A-Com Open Sky Digital Base Station is within $\pm 1\text{dB}$ throughout the frequency range.

3.2 Occupied Bandwidth

3.2.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	H/P 8566B Spectrum Analyzer	47	2637A04064	07/99
X	H/P 85658A RF Preselector	48	2648A00483	07/99
X	H/P OPT 462 Display	46	2648A14289	07/99
X	Narda 769-30 High Power Attenuator	284	03793	C.P.U.
X	Narda 769-20 High Power Attenuator	471	02951	C.P.U.

3.2.2 Test Conditions

For measurement of the occupied bandwidth the Open Sky Digital was placed inside a shielded room. The ambient temperature of the room was 20°C.

The Open Sky Digital Base Station was configured to operate in a normal full power transmit mode. The Open Sky Digital Base Station was set up and powered by 120V 60Hz for the test.

3.2.3 Test Method

The output of the Open Sky Digital was measured at six frequencies between the frequency range of 851MHz to 869MHz. The output of the transmitter was connected to two high power attenuators. The attenuators were connected to a Spectrum Analyzer. See Figure 4 for test set-up.

The frequencies measured are as follows:

Channel No.	Base Frequency MHz
1	851.0125
300	858.0125
600	865.9875
601	866.0125
715	867.5125
830	868.9875

3.2.4 Results

The M/A-Com Open Sky Digital Base Station meets the requirements of FCC Part 2 .989 Occupied Bandwidth.

3.3 Emissions Mask and Spurious Emissions at Antenna Terminals

3.3.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	H/P 8566B Spectrum Analyzer	47	2637A04064	07/99
X	H/P 85658A RF Preselector	48	2648A00483	07/99
X	H/P OPT 462 Display	46	2648A14289	07/99
X	Narda 769-30 High Power Attenuator	284	03793	C.P.U.
X	Narda 769-20 High Power Attenuator	471	02951	C.P.U.

3.3.2 Test Conditions

The Emissions Mask measurements of the Open Sky Digital were made inside a shielded room. The ambient temperature of the room was 20°C.

The Open Sky Digital Base Station was configured to operate in a normal full power transmit mode. The Open Sky Digital Base Station was set up and powered by 120V 60Hz for the test.

3.3.3 Test Method

The output of the Open Sky Digital was measured at six frequencies between the frequency range of 851MHz to 869MHz. The output was compared to the Emissions Mask B of FCC Part 90.210.

The output of the transmitter was connected to two high power attenuators. The attenuators were connected to a Spectrum Analyzer. See Figure 4 for test set-up.

The frequencies measured are as follows:

Channel No.	Base Frequency MHz
1	851.0125

A full scan from 5 MHz to 10 GHz was performed for Channel 1 851.0125 only.

3.3.4 Results

The M/A-Com Open Sky Digital Base Station meets the requirements of FCC Part 90.210 and Part 2.991 Emissions Mask and Spurious Emissions at Antenna Terminals.

3.4 Channel Spacing/Bandwidth

3.4.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	H/P 8566B Spectrum Analyzer	47	2637A04064	07/99
X	H/P 85658A RF Preselector	48	2648A00483	07/99
X	H/P OPT 462 Display	46	2648A14289	07/99
X	Narda 769-30 High Power Attenuator	284	03793	C.P.U.
X	Narda 769-20 High Power Attenuator	471	02951	C.P.U.

3.4.2 Test Conditions

The Channel Spacing/Bandwidth measurements of the Open Sky Digital were made inside a shielded room. The ambient temperature of the room was 20°C.

The Open Sky Digital Base Station was configured to operate in a normal full power transmit mode. The Open Sky Digital Base Station was set up and powered by 120V 60Hz for the test.

3.4.3 Test Method

The output of the Open Sky Digital was measured at four frequencies. The channel spacing and bandwidth were checked.

The output of the transmitter was connected to two high power attenuators. The attenuators were connected to a Spectrum Analyzer. See Figure 4 for test set-up.

The frequencies measured are as follows:

Channel No.	Base Frequency MHz
1	851.0125
2	851.0375
601	866.0125
602	866.0135

3.4.4 Results

The M/A-Com Open Sky Digital Base Station meets the requirements of FCC Part 90.209 channel Spacing/Bandwidth.

3.5 Field Strength of Spurious Radiation Electromagnetic Emissions

3.5.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	Tektronix 496 Spectrum Analyzer	1	B010559	10/99
X	Tektronix 494 AP Spectrum Analyzer	543	B010201	9/99
X	Rhode and Schwartz ESV Test Receiver	15	875931049	9/99
X	Hewlett Packard 8447D Pre Amp	4	2727A06065	1/99
X	EMCO 3120 Tuned Dipole Antenna B1	477	56	1/99
X	EMCO 3121 Tuned Dipole Antenna B2	478	176	1/99
X	EMCO 3121 Tuned Dipole Antenna B3	479	728	1/99
X	EMCO 3115 Microwave Horn Antenna	376	2796	1/99

Test Setup

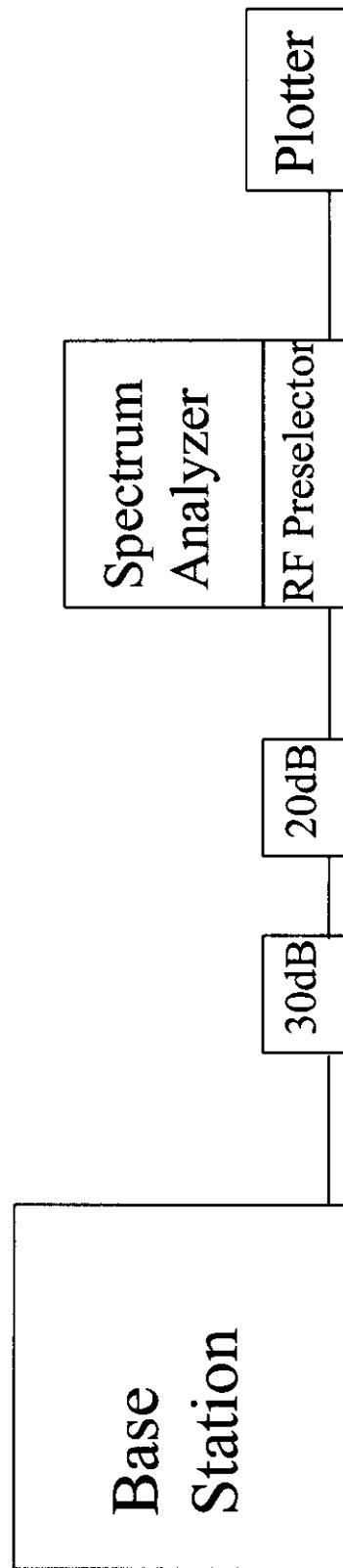


Figure 4

DOCUMENT #: EMI1953.US.99
DATE: March 23, 1999

PAGE 22 OF 52

3.5.2 Test Conditions

For radiated emissions testing of small devices, the devices are set up above the turntable on a wooden table 10 meters from a tuned dipole antenna within Open Area Test Site B.

The Open Sky Digital Base Station was configured to operate in the full power mode of operation to maximize the emissions. The EUT was set up and powered by 120V 60Hz for radiated emission tests. The output of the Open Sky Digital Base Station was connected to a load. The worst case signals detected were recorded.

3.5.3 Test Method

The test method of ANSI C63.4 was followed. For the radiated emission measurements, a manual scan was performed from 30MHz to 10GHz. During this scan, the antenna, turntable and EUT's cable positions were manipulated to maximize the emission levels in a given frequency band displayed on the spectrum analyzer.

3.5.4 Results

The M/A-Com Open Sky Digital Base Station meets the FCC Part 2.993 Field Strength of Spurious Radiated Electromagnetic Emissions requirements.

3.6 Modulation Characteristics

The modulation characteristics of the audio filter were supplied by M/A-Com. They are attached in Appendix C.

3.7 Frequency Stability

3.7.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	H/P 8566B Spectrum Analyzer	47	2637A04064	07/99
X	H/P 85658A RF Preselector	48	2648A00483	07/99
X	H/P OPT 462 Display	46	2648A14289	07/99
X	Cincinatti Sub Zero ZH-32-2H/AC Temp.Chamber	544	Z09712530	05/99
X	Narda 769-30 High Power Attenuator	284	03793	C.P.U.
X	Narda 769-20 High Power Attenuator	471	02951	C.P.U.

Document #: EMI1953.US.99
Date: March 23, 1999

3.7.2 Test Conditions

The Frequency Stability measurements of the Open Sky Digital were made inside a Temperature/Humidity Chamber.

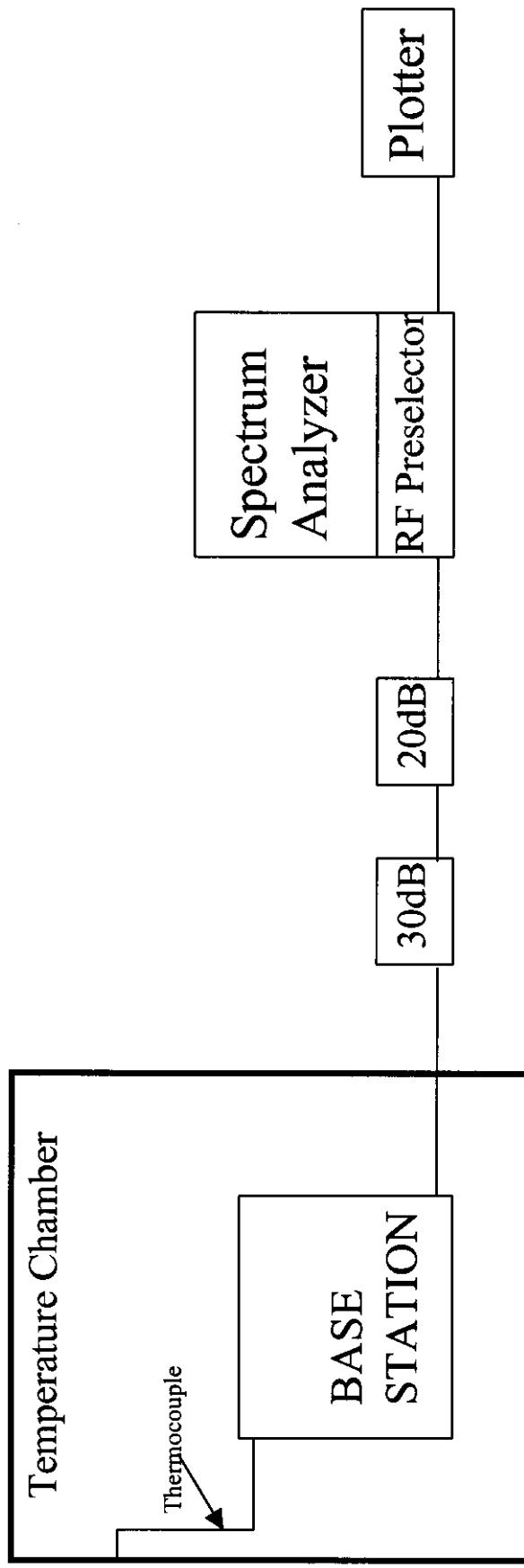
The Open Sky Digital Base Station was configured to operate in a normal full power transmit mode. The Open Sky Digital Base Station was set up and powered by 120V 60Hz for the test.

3.7.3 Test Method

The output of the Open Sky Digital was measured at two frequencies. The frequency stability of the output was measured. The frequency selected was 851.0125 MHz.

With the Open Sky Digital Base Station in the temperature chamber, the output of the transmitter was connected to two high power attenuators. The attenuators were connected to a Spectrum Analyzer. See Figure 5 for test set-up.

The temperature was measured by placing a thermal couple on the RF chain. The Temperature was varied from -30° to $+50^{\circ}\text{C}$ in 10° steps. At each 10° step the output of the Open Sky Digital was measured for frequency stability.


The Open Sky Digital was turned off between each 10° step. The Open Sky Digital was allowed two minutes for warm up before the frequency was measured.

3.7.4 Results

The M/A-Com Open Sky Digital Base Station meets the Frequency Stability requirements of FCC Part 90.210 and Part 2.995.

Document #: EMI1953.US.99
Date: March 23, 1999

Test Setup

DOCUMENT #: EMI1953.US.99
DATE: March 23, 1999
PAGE 25 OF 52

Figure 5

3.8 Radiated Electromagnetic Emissions Receiver

3.8.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	Tektronix 496 Spectrum Analyzer	1	B010559	10/99
X	Tektronix 494 AP Spectrum Analyzer	543	B010201	9/99
X	Rhode and Schwartz ESV Test Receiver	15	875931049	9/99
X	Hewlett Packard 8447D Pre Amp	4	2727A06065	1/99
X	EMCO 3120 Tuned Dipole Antenna B1	477	56	1/99
X	EMCO 3121 Tuned Dipole Antenna B2	478	176	1/99
X	EMCO 3121 Tuned Dipole Antenna B3	479	728	1/99
X	EMCO 3115 Microwave Horn Antenna	376	2796	1/99

3.8.2 Test Conditions

For radiated emissions testing of small devices, the devices are set up above the turntable on a wooden table 10 meters from a tuned dipole antenna within Open Area Test Site B.

The Open Sky Digital Base Station was configured to operate in the non-transmitting mode of operation to maximize the emissions. The EUT was set up and powered by 120V 60Hz for radiated emission tests. The worst case signals detected were recorded.

3.8.3 Test Method

The test method of ANSI-C63.4 was followed for Class B equipment. For the radiated emission measurements, a manual scan was performed from 30MHz to 10GHz. During this scan, the antenna, turntable and EUT's cable positions were manipulated to maximize the emission levels in a given frequency band displayed on the spectrum analyzer.

3.8.4 Results

The M/A-Com Open Sky Digital Base Station meets the requirements for Radiated Emissions as required by FCC Part 15 Subpart B for Class B equipment.

3.9 Conducted Electromagnetic Emissions Receiver

3.9.1 Equipment Used

Test Equipment		Asset #	Serial #	Cal Date
X	Tektronix 496 Spectrum Analyzer	1	B010559	10/99
X	Rhode and Schwartz ESH-2 Test Receiver	16	8799631020	9/99
X	Polarad ESH2-25 Artificial Mains Network	23	890484/016	1/99

3.9.2 Test Conditions

Conducted emissions testing was performed with small devices placed on the table but with the test receiver connected to the Line Impedance stabilization Network (LISN) or Artificial Mains Network.

The EUT was configured to operate in the non-transmit mode of operation to maximize the emissions. The Open Sky Digital Base Station was set up and powered by 120V 60Hz for conducted emission tests. The worst case signals detected were recorded.

3.9.3 Test Method

The test method of ANSI-C63.4 was followed for Class B equipment. For conducted emissions testing, a manual scan was performed from 450kHz to 30MHz with the EUT powered through the Artificial Mains Network.

3.9.4 Results

The M/A-Com Open Sky Digital Base Station meets the requirements for Conducted Emissions as required by FCC Part 15 Subpart B for Class B equipment.

APPENDIX A

TEST DATA

Document #: EMI1953.US.99
Date: March 23, 1999

OUTPUT POWER

CUSTOMER: MAEOM
 EQUIPMENT: Digital Base Station
 TESTED BY: R Foster
 OPERATING MODE: full Power

DATE: Dec. 7 1998
 TEST NUMBER: 3
 COUPLING DEVICE: N/A
 TEST SPEC: Output Power

Channel No.	Base Frequency MHz	Output Power dB
1	851.0125	+48.7
300	858.0125	+48.6
600	865.9875	+48.8
601	866.0125	+48.6
715	867.5125	+48.5
830	868.9875	+48.5

Document #: EMI1953.US.99

Date: March 23, 1999

Page 29 of 52

OCCUPIED BANDWIDTH

Part 2.989

CUSTOMER: MACOM
 EQUIPMENT: Digital Base Station
 TESTED BY: R.Foster
 OPERATING MODE: Normal full power

DATE: December 6 1993
 TEST NUMBER: 2
 COUPLING DEVICE: NA
 TEST SPEC: Occupied Bandwidth

0.5% of Lower and 99% of Upper

Channel No.	Base Frequency MHz	Occupied Bandwidth
1	851.0125	Within Spec.
300	858.0125	Within Spec
600	865.9875	Within Spec
601	866.0125	Within Spec
715	867.5125	Within Spec
830	868.9875	Within Spec

Document #: EMI 1953 US 99
 Date: March 23, 1999

Page 30 of 52

CHANNEL SPACEING

CUSTOMER: MHzam
 EQUIPMENT: Digital Base Station
 TESTED BY: R-BSN
 OPERATING MODE: full Power

DATE: Dec. 4, 1998
 TEST NUMBER: 4
 COUPLING DEVICE: NA
 TEST SPEC: CHANNEL SPACING

Frequency MHz	Measured Spacing kHz	6dB Bandwidth kHz
Channel 1 851.0128	24.9KHz	15kHz
Channel 2 851.0377		15kHz
Channel 601 866.0128	11kHz	15kHz
Channel 602 866.0137		14kHz

Document #: EMI/953/US.99
 Date: March 23, 1999

Page 31 of 52

FREQUENCY STABILITY
Temperature vs Frequency

CUSTOMER: MACOM
 EQUIPMENT: Digital Base Station
 TESTED BY: R. Foster
 OPERATING MODE: Full Power

DATE: Nov. 30 - Dec 3 1988
 TEST NUMBER: 1
 COUPLING DEVICE: NA
 TEST SPEC: Freq. Stability

Center Frequency 851.0125 MHz at 20°C

Temperature	Frequency MHz
-30°C	851.0130
-20°C	851.0145
-10°C	851.0129
0°C	851.0130
10°C	851.0132
20°C	851.0125
30°C	851.0129
40°C	851.0139
50°C	851.0127

Maximum Deviation .1ppm at 40°C

Document #: EMI953.US.99
 Date: March 23, 1999

Page 32 of 52

RADIATED E FIELD EMISSION MEASUREMENTS

MACOM
Digital Base Station
R. Foster

DATE: October 24, 1998
TEST NUMBER: 1
OPERATING MODE: full power transmitting in L
TEST SPEC: EN55042 | FCC Part 15 Class B
PROCEDURE: ANSI C63.4

FREQUENCY RANGE: [30MHz - 1 GHz] [11.76 GHz - 12.7 GHz]

ANTENNA DISTANCE: 13 METERS 10 METERS

OTHER (SPECIFY) 30 MHz - 10 GHz

** All signals greater than 3dB from the limit are calculate to the nearest whole number.

** Field Level (dBuV/m) = [107 - Measured level (dBm)] + Antenna Factor/Cable Loss (dB)

mbient Temperature: **70** °F

FORM CTSDS001R

Document #: EMT1953US99

Humidity: 40 %

Date: March 23, 1999

Atmospheric Pressure: 30 "

Page 33 of 52

RADIATED E FIELD EMISSION MEASUREMENTS

CUSTOMER: MTcom
EQUIPMENT: Digital Base Station
TESTED BY: R. Foster
BANDWIDTH: 100 kHz (PEAK)/120 kHz (QP)
OTHER (SPECIFY) _____
FREQUENCY RANGE: 30MHz - 1 GHz 11.76 GHz
OTHER (SPECIFY) 30 MHz - 1061

DATE: October 24, 1998
TEST NUMBER: 2
OPERATING MODE: Receiving
TEST SPEC: FCC Part 15 class B
PROCEDURE: ANSI C63.4
ANTENNA DISTANCE: 1.3 METERS 1.10 METERS

** All signals greater than 3dB from the limit are calculate to the nearest whole number.

** Field Level (dBuV/m) = [107 - Measured level (dBm)] + Antenna Factor/Cable Loss (dB)

Ambient Temperature: 70 °F

FORM CTSDS001R

Document #: EMI953.US99
Date: March 23, 1999

Atmospheric Pressure: 30 "

CONDUCTED EMISSION MEASUREMENTS

CUSTOMER: MACom
EQUIPMENT: Digital Base Station
TESTED BY: R. Foster
BANDWIDTH: 200 Hz 9kHz
FREQUENCY RANGE: 10 kHz-30 MHz 150 kHz-

 450 kHz-30 MHz

110/208 V AC 240V AC OTHER

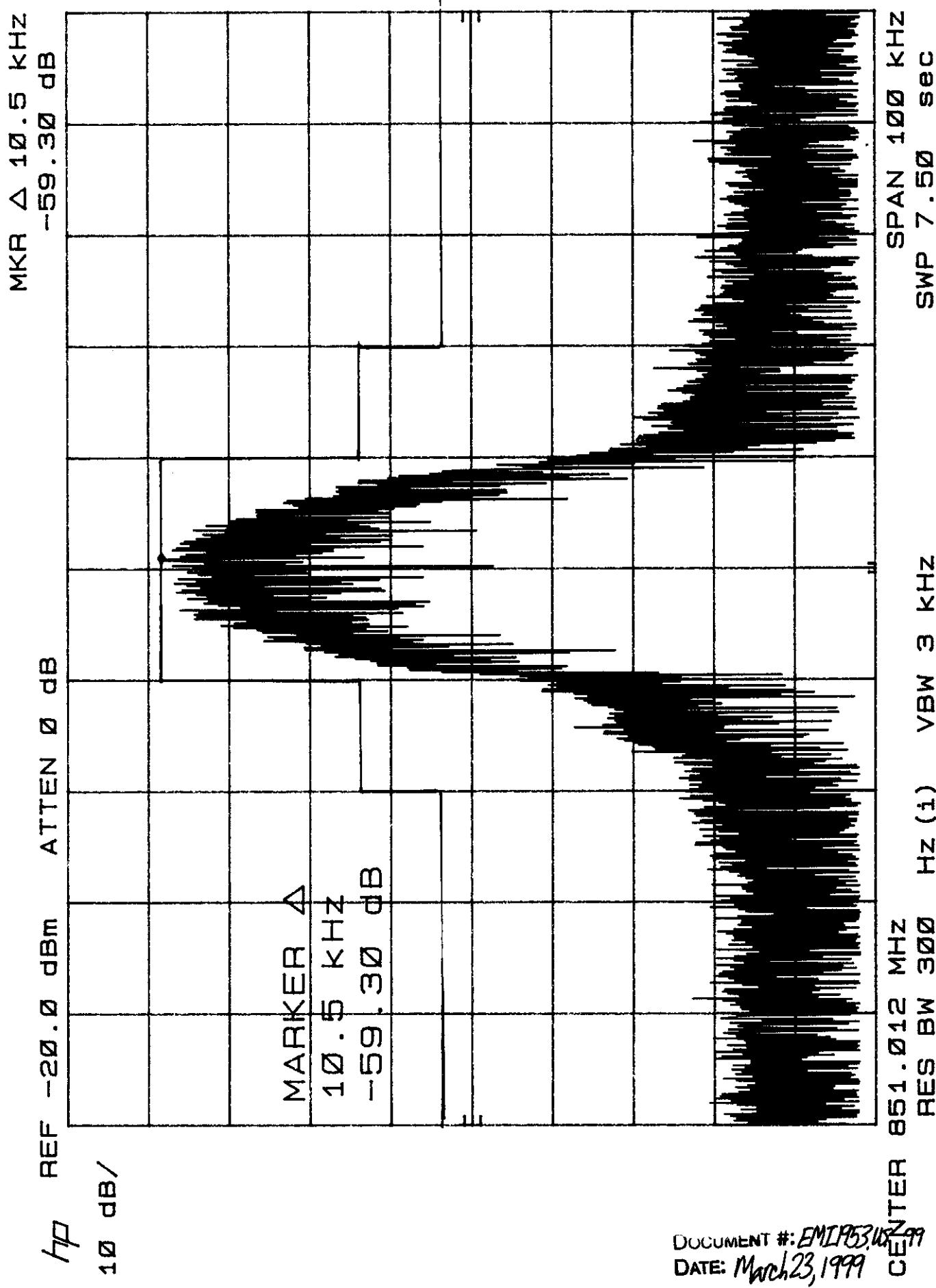
DATE: October 24, 1998
TEST NUMBER: 3
OPERATING MODE: Receiving & Full Power
TEST SPEC: FCC 5502/1992 Class B
PROCEDURE: ANSI C63.4

50 Hz [] 100 Hz [X] SINGLE [] 130 []

** All signals greater than 3dB from the limit are calculated to the nearest whole number.

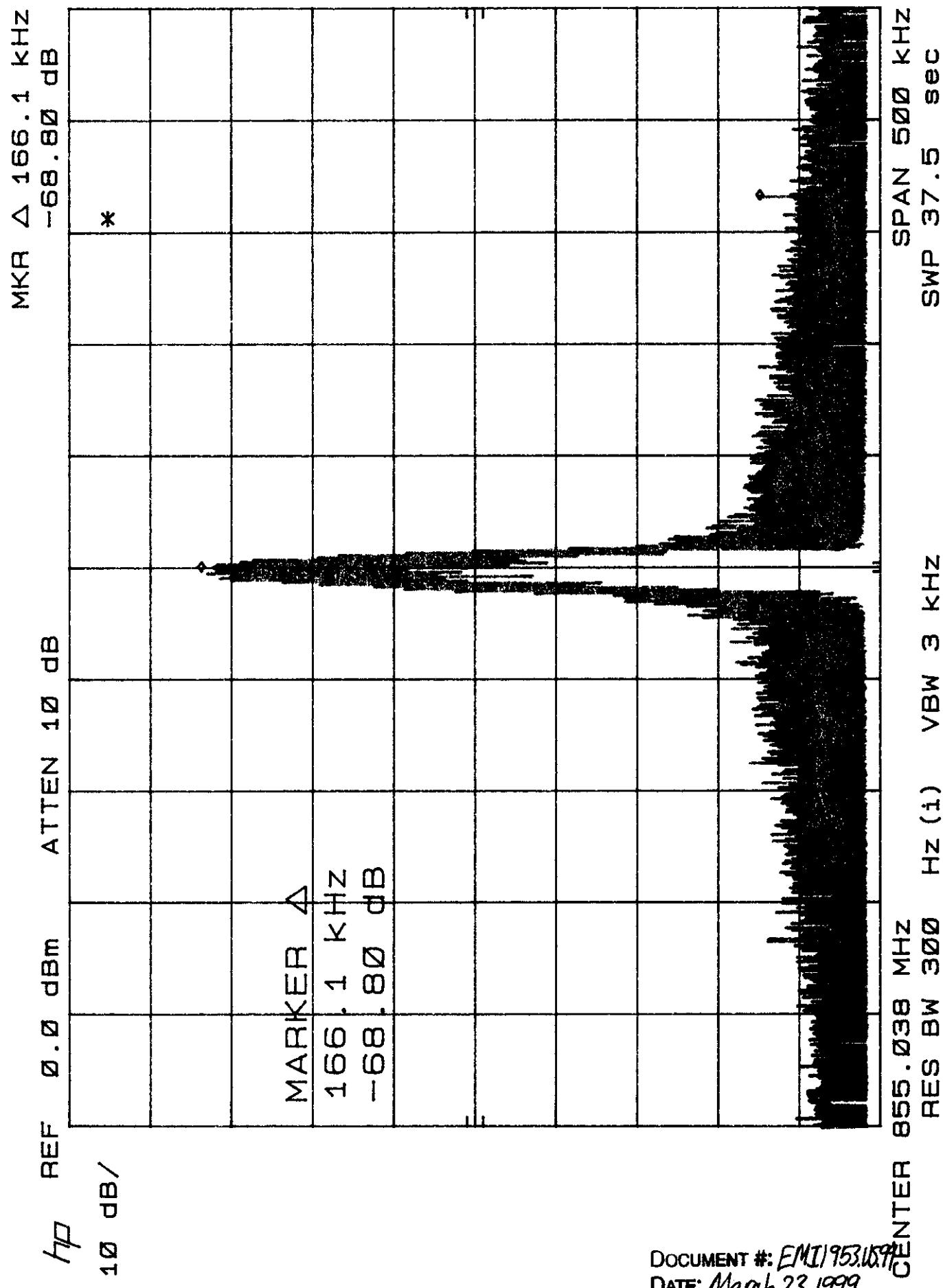
Ambient Temperature: 70 °F

Humidity: 40 %

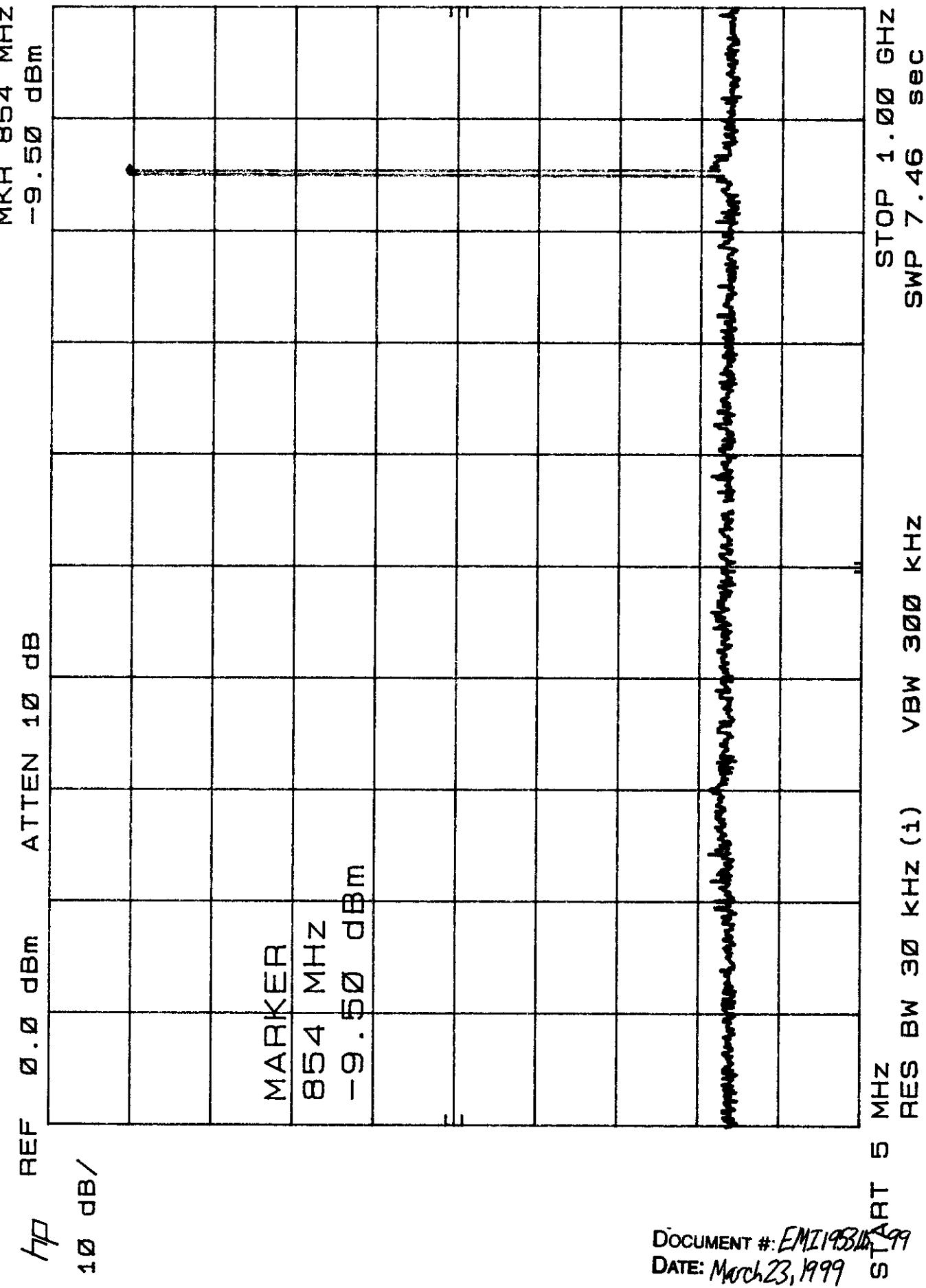

Atmospheric Pressure: 30 "

FORM CTSDS002C

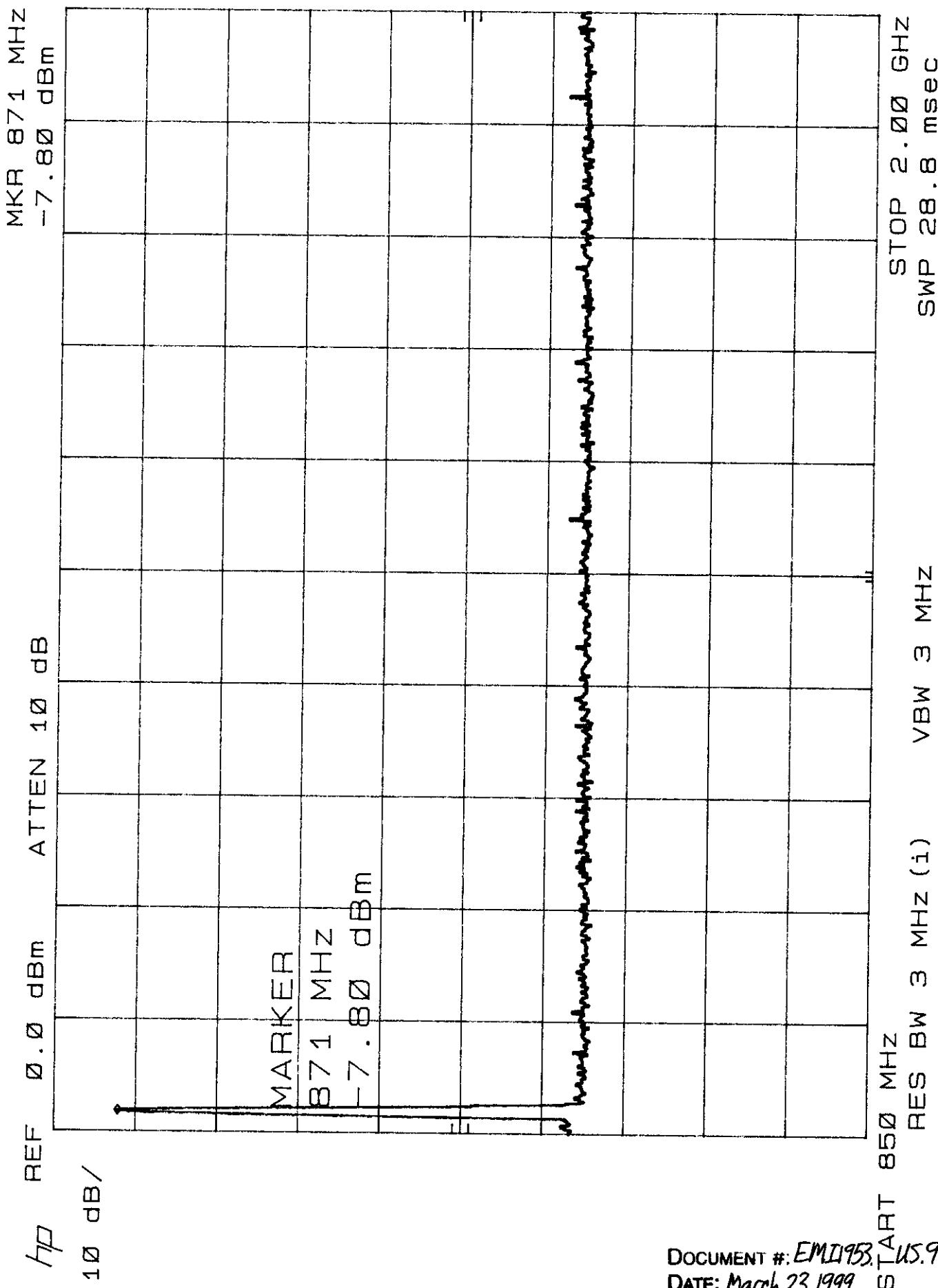
Document #: EMI1953.0599


Date: March 23, 1999

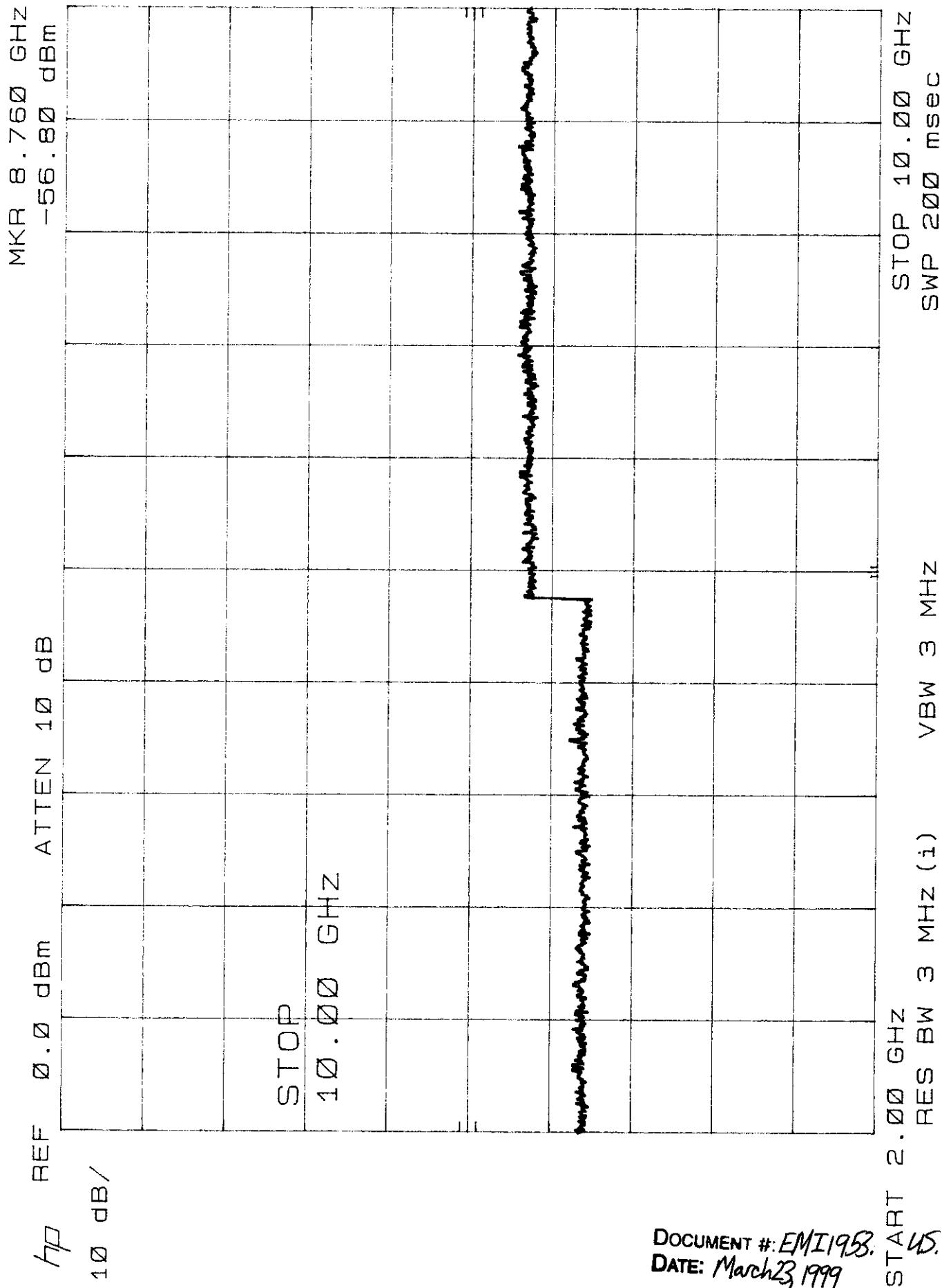
Page 35 of 52


DOCUMENT #: EMI 1953.10 Z-99
DATE: March 23, 1999 C

PAGE 31 OF 52


DOCUMENT #: EM1953.1591
DATE: March 23, 1999

PAGE 37 OF 52


DOCUMENT #: EMI1953A
DATE: March 23, 1999

PAGE 38 OF 52

DOCUMENT #: EMI953
 DATE: March 23, 1999

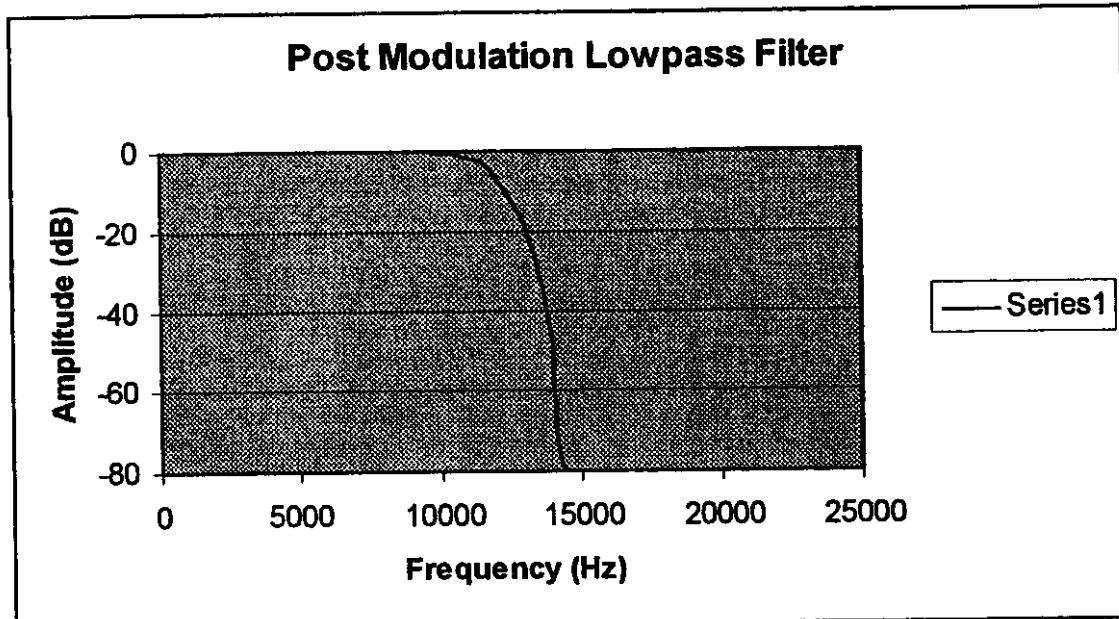
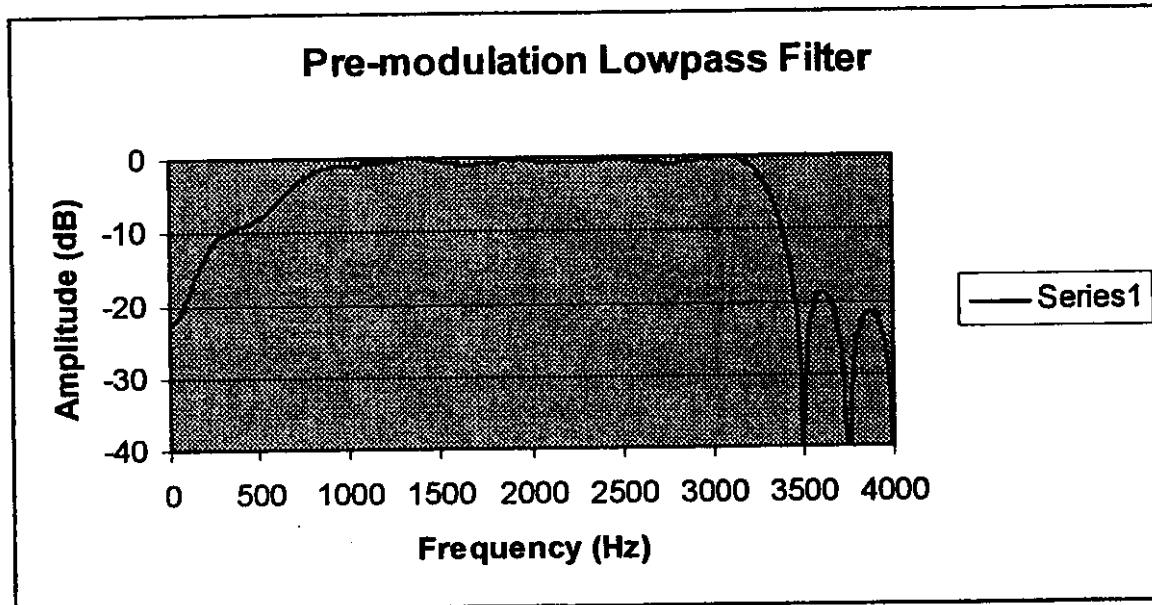
START 850 MHz
 US.99

DOCUMENT #: EMI198
DATE: March 23, 1999
45.99

PAGE 40 OF 52

APPENDIX B
SET-UP PHOTOGRAPHS

Document #: EMI1953.US.99
Date: March 23, 1999



APPENDIX C

CUSTOMER SUPPLIED MODULATION CHARACTERISTICS

Document #: EMI1953.US.99
Date: March 23, 1999

Audio Filter Used For FM Transmission

The OpenSky base station transmitter includes lowpass filtering before and after FM modulation. The lowpass filter before modulation is shown below. A more selective filter is provided after modulation. Its response is also included.

DOCUMENT #: EMI1953.U5.99
DATE: March 23, 1999

PAGE 46 OF 52

Description of Modulation System

The digital modes, FMP, OCP, and OTP, use a 4 level gaussian frequency shift keying (GFSK) signal to send data at a symbol rate of 9600 baud and a corresponding data rate of 19.2kbits/sec. Before FM modulation symbols are filtered by a gaussian filter with a B_B $T=0.7$ and peak frequency deviation of 5.5 kHz. All data, control and encoded voice are sent using the GFSK waveform. All baseband signal processing, filtering, tone generation, and modulation is implemented by digital signal processing (DSP) software and is therefore not subject to temperature drift and aging effects.

APPENDIX D

CUSTOMER SUPPLIED EQUIPMENT DESCRIPTION

Document #: EMI1953.US.99
Date: March 23, 1999

Introduction to the OpenSky Digital Base Station

Base Station Overview

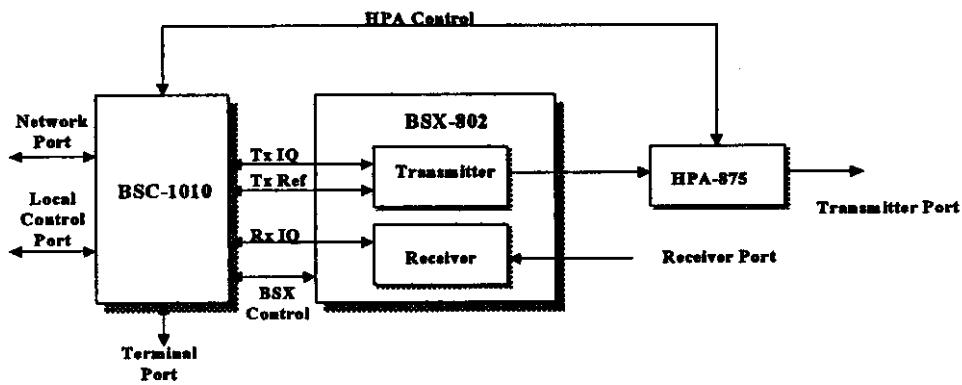
Within the OpenSky network, the base station functions as a link that provides voice and data connectivity between OpenSky wireless communication devices, such as mobile and portable radios, and the wireline infrastructure of the OpenSky network. Operating in the OpenSky network architecture, the base station provides a data rate of 19.2 kbps for all OpenSky protocols (OCP, OTP and FMP).

The OpenSky protocols, FMP (Federal Express Mobile Protocol), OCP (OpenSky Communication Protocol), and OTP (OpenSky Trunking Protocol) are fully digital, TDMA network protocols. For all modes, the OpenSky Base Station implements a complete seven-layer protocol stack.

Note that for all three protocols, the base station hardware operates identically. Only the software is different. Thus the accompanying detailed technical theory of operation is applicable for any operational mode.

Although voice is supported in FMP, it is digital voice; all modulation is digital. The digital modulation technique used is 4-level Gaussian Minimum Shift Keying (GMSK), with a symbol rate of 9600 Hz (data rate of 19.2 kbps).

This high data rate is supported simultaneously on the transmit and receive channels. The base station provides this full duplex connectivity by transmitting over SMR channels with frequencies ranging from 851-869 MHz, with the corresponding receive channels utilizing the frequency range 806-824 MHz; the receive channel is 45 MHz below the selected transmitter frequency channel. The RF bandwidth utilized for both transmission and reception is 25 kHz.


The Base Station operates full duplex with a nominal maximum output power of 75 Watts. At this maximum output power, the base station can cover up to a thirty-mile radius—given normal terrain—and provide service for up to 200 users.

Physically, the standard base station consists of three chassis and all the associated interconnect cables. The three chassis are mounted in a rugged 19" standard equipment rack. Base stations may be augmented through the addition of specific options such as a duplexer.

The standard base station is comprised of three distinct functional units: the Base Station Controller (BSC-1010), Base Station Transceiver (BSX-802), and the High Power Amplifier (HPA-875.) An interconnection diagram for these chassis is shown below.

DOCUMENT #: EMI1953.US
DATE: March 23, 1999

PAGE 49 OF 52

The base station's flexibility allows customers the freedom to implement site configurations that can range from a single base station to multiple base stations requiring additional RF and control networks.

Benefits of the OpenSky Base Station

The value inherent from owning an OpenSky Base Station is derived from three central benefits. These benefits are increased capacity, software upgrades and long hardware life.

The suite of current OpenSky protocols provide SMR channel utilization that exceeds that offered by any competitors' products. Through the use of digital voice compression and efficient modulation techniques, OpenSky protocols are able to provide true, "as advertised" high data rates. Given the increasingly high cost of RF spectrum, the ability to maximize channel capacity provides direct financial benefit.

To ensure that channel usage continues to outpace all other current technology, the OpenSky base station's performance can be continually improved through software upgrades. The unique architecture of the OpenSky Base Station is differentiated from its competitors as being software-based, rather than hardware-based. Since all signal processing functions are performed in software, it is a simply a matter of loading new software-based protocols as they are developed, to improve even the current high rate.

An additional benefit that stems from the ability to enhance performance through software-based upgrades is increased hardware life. With an eye toward the goal of extending the time until hardware obsolescence, the OpenSky Base Station is designed for maximum hardware flexibility. This hardware flexibility combined with software-based upgrades, increases the useful life of the OpenSky Base Station, leading directly to a very low cost of ownership.

Summary of Key Features

The OpenSky Base Station employs a modular design approach. All three functional elements—the BSC-1010, BSX-802 and HPA-875—are self-contained within their respective chassis. This modular approach offers customers the benefit of ease of service. Replacement of any of the three main functional components can be accomplished in minutes. All three functional elements of the base station are separately mounted within the 19" equipment rack, making chassis substitution a simple matter of a few mounting screws and a couple of cables.

This 19" 4U rack also includes the required integral cooling fans and AC power supply. The division of the three main functional elements and the power supply into separate metal enclosures minimizes spurious emissions and component interaction.

BSC-1010 - Base Station Controller: The BSC-1010 is the processing engine of the base station. Utilizing software exclusively, the BSC-1010 implements all base station network and digital signal-processing functions. These functions include the Physical Layer (PHY), Medium Access Control (MAC), Mobile Data Link Protocol (MDLP), Radio Resource Management (RRM), Network Management (NMS) and Secondary Registration.

BSX-802 - Base Station Transceiver: The BSX-802 consists of a transmitter and receiver section, each of which implements the corresponding analog transmit and receive functions.

As seen in the accompanying figure, during transmission, the BSC-1010 generates an In-Phase/Quadrature (IQ) baseband signal that is routed to the baseband input of the BSX-802 transmitter. The BSX-802 transmitter converts this baseband signal to a RF output signal, at the selected SMR channel frequency. The nominal output power of this output signal is 0 dBm when measured into a $50\ \Omega$ load.

The receiver section of the BSX-802 essentially reverses the transmit process. The antenna routes the desired receive signal to the RF input of the BSX-802. The receiver section converts the signal to a baseband I/Q signal that is routed to the BSC-1010 for further processing.

DOCUMENT #: EMI 1953, US 99
DATE: March 23, 1999

PAGE 51 OF 52

A DC reference signal is also provided by the BSC-1010 to the BSX-802 to provide a common reference for both the receive and transmit I/Q baseband signals.

HPA-875 - High Power Amplifier: The HPA-875 provides the high power transmit signal to the antenna. To generate this transmit signal, the HPA-875 amplifies the nominal 0 dBm RF input provided by the BSX-802, to generate a maximum output power of 75 Watts.

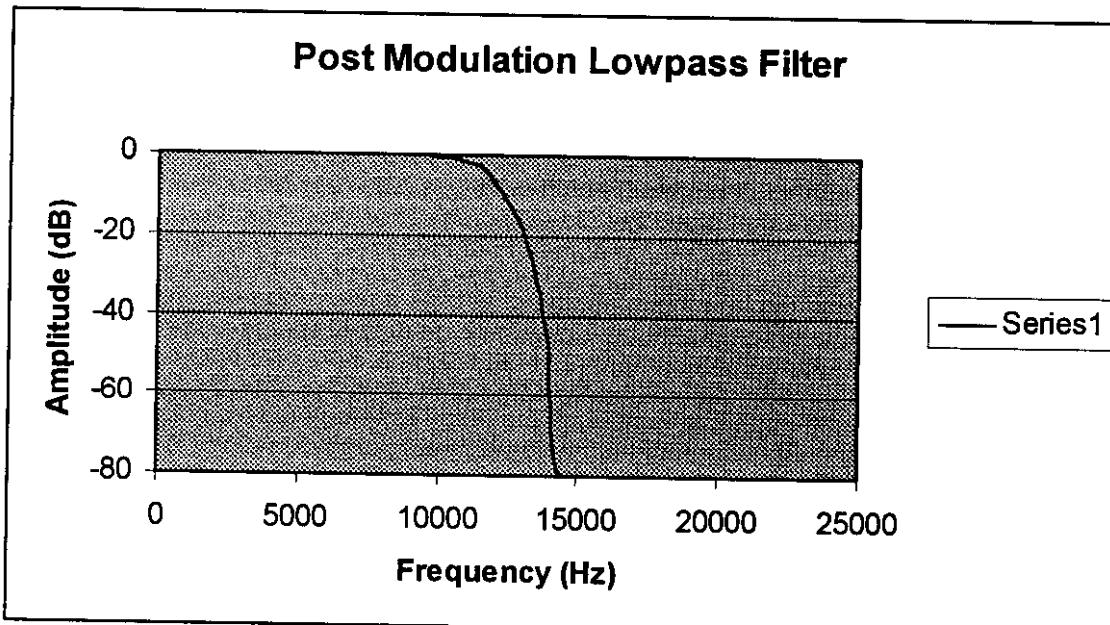
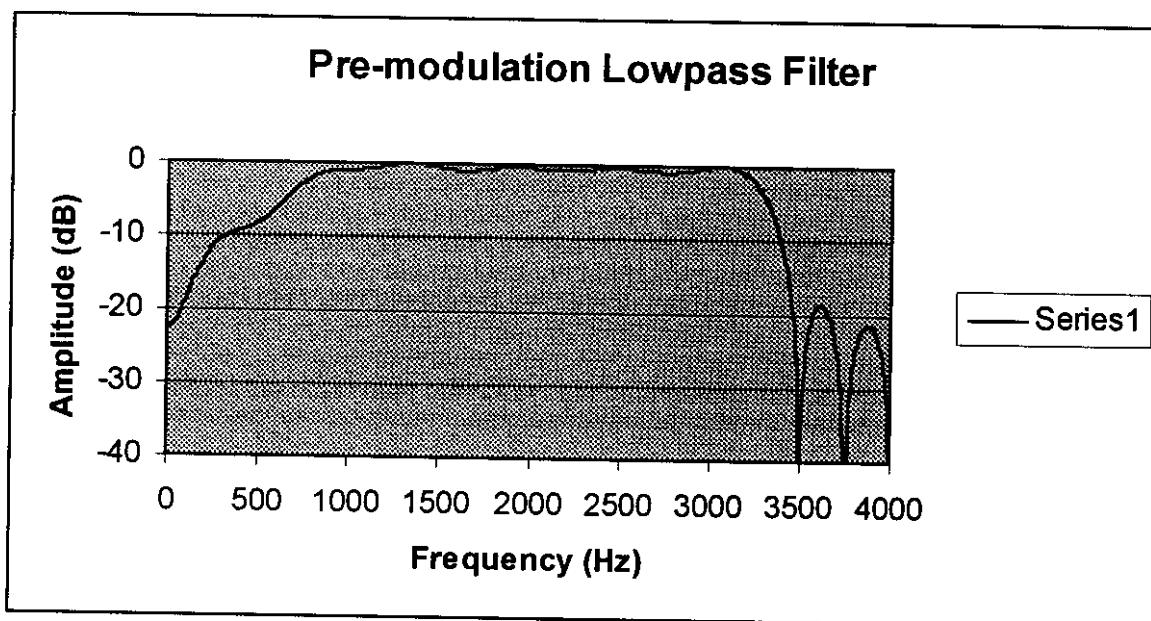
The HPA-875 also includes an RS-485 communications port that provides control, monitoring, and alarm generation. The HPA-875's output power is controllable via this RS-485 connection from the BSC-1010. Using this serial connection the BSC-1010 can adjust the output power of the HPA-875 from 15 to 75 Watts.

The HPA-875 generates alarms in the case of excessive reflected power or input power, low power output and over-temperature alarms. These alarms are reported to the BSC-1010 and subsequently relayed through the NMS interface across the network port.

Signal input power above 6 dBm causes the HPA to generate an input overdrive alarm and de-key the HPA-875 output. Input signal levels below -10 dBm may prevent the HPA-875 from generating full output power. This condition generates a power leveling control loop alarm, which de-keys the HPA-875.

As described previously, the HPA-875 provides a programmable 15 – 75 watt RF output signal into a 50Ω load. Output protection insures no damage to the HPA from any mismatch condition. However, a programmable threshold on reflected power would normally de-key the HPA under mismatch conditions.

AC Power Strip: The rack-mounted power strip provides all electrical power to the base station. This power strip provides a maximum power output of 1875 Watts and can accept line voltages from 95-135 AC.



The input to the power strip is through a standard three-prong AC plug, with the line length being ten feet.

DOCUMENT #: EMI1953.US.99
DATE: March 23, 1999

PAGE 52 OF 52

Audio Filter Used For FM Transmission

The OpenSky base station transmitter includes lowpass filtering before and after FM modulation. The lowpass filter before modulation is shown below. A more selective filter is provided after modulation. Its response is also included.

Description of Modulation System

The digital modes, FMP, OCP, and OTP, use a 4 level gaussian frequency shift keying (GFSK) signal to send data at a symbol rate of 9600 baud and a corresponding data rate of 19.2kbits/sec. Before FM modulation symbols are filtered by a gaussian filter with a B_B $T=0.7$ and peak frequency deviation of 5.5 kHz. All data, control and encoded voice are sent using the GFSK waveform. All baseband signal processing, filtering, tone generation, and modulation is implemented by digital signal processing (DSP) software and is therefore not subject to temperature drift and aging effects.