



Engineering and Testing for EMC and Safety Compliance

## Class II Permissive Change Report

**M/A-Com, Inc.**  
221 Jefferson Ridge Parkway  
Lynchburg, VA 24501  
Daryl Popowitch  
Phone: (434) 455-9527  
E-Mail: [popowitda@tycoelectronics.com](mailto:popowitda@tycoelectronics.com)

**MODEL: CS-7200 OpenSky Control Station**

**FCC ID: BV8M7200**  
**IC: 3670A-M7200**

**April 16, 2007**

| <b>Standards Referenced for this Report</b> |                                                                                         |
|---------------------------------------------|-----------------------------------------------------------------------------------------|
| Part 2: 2006                                | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations           |
| Part 15: 2006                               | Radio Frequency Devices - §15.109: Radiated Emissions Limits                            |
| Part 90: 2006                               | Private Land Portable Radio Services                                                    |
| ANSI TIA-603-C-2004                         | Land Portable FM or PM Communications Equipment - Measurement and Performance Standards |
| ANSI/TIA/EIA-102.CAAA; 2002                 | Digital C4FM/CQPSK Transceiver Measurement Methods                                      |
| RSS-119; Issue 6; 2000                      | Land Portable and Fixed Radio Transmitters and Receivers 27.41 to 960.0 MHz             |

**REPORT PREPARED BY TEST ENGINEER: DAN BALTZELL**

Document Number: 2007152/QRTL07-089

*This report may not be reproduced, except in full, without the full written approval of Rhein Tech Laboratories, Inc.  
Test results relate only to the item tested.*



Engineering and Testing for EMC and Safety Compliance

| Frequency Range (MHz) | Measured Output Power (W) Conducted | Frequency Tolerance (ppm) | Modulation                | Mode                        | Emission Designator |
|-----------------------|-------------------------------------|---------------------------|---------------------------|-----------------------------|---------------------|
| 806-824               | 14.3                                | 1.5                       | P25 (digitized data)      | Trunked/Conventional        | 8K4F1D              |
| 806-824               | 14.6                                | 1.5                       | P25 (digitized voice)     | Trunked/Conventional        | 8K4F1E              |
| 851-869               | 14.4                                | 1.5                       | P25 (digitized data)      | T/A                         | 8K4F1D              |
| 851-869               | 14.3                                | 1.5                       | P25 (digitized voice)     | T/A                         | 8K4F1E              |
| 806-824               | 14.2                                | 1.5                       | OTP                       | SMR/NPSPAC Trunked          | 12K1F9W             |
| 806-809               | 15.2                                | 1.5                       | Analog FM (NPSPAC)        | Trunked/Conventional        | 14K0F3E             |
| 806-821               | 15.1                                | 1.5                       | Analog FM (SMR)           | Trunked/Conventional        | 16K0F3E             |
| 821-824               | 15.4                                | 1.5                       | Analog FM (SMR)           | Trunked/Conventional        | 16K0F3E             |
| 821-824               | 15.2                                | 1.5                       | Analog FM (NPSPAC)        | Trunked/Conventional        | 14K0F3E             |
| 851-854               | 14.8                                | 1.5                       | Analog FM (NPSPAC)        | T/A                         | 14K0F3E             |
| 851-869               | 14.4                                | 1.5                       | Analog FM (SMR)           | T/A                         | 16K0F3E             |
| 866-869               | 14.3                                | 1.5                       | Analog FM (NPSPAC)        | T/A                         | 14K0F3E             |
| 806-809               | 14.4                                | 1.5                       | 2-level (digitized data)  | NPSPAC Trunked/Conventional | 11K9F1D             |
| 806-809               | 14.4                                | 1.5                       | 2-level (digitized voice) | NPSPAC Trunked/Conventional | 11K9F1E             |
| 806-809               | 14.3                                | 1.5                       | 2-level (digitized data)  | SMR Trunked/Conventional    | 14K2F1D             |
| 806-809               | 14.3                                | 1.5                       | 2-level (digitized voice) | SMR Trunked/Conventional    | 14K2F1E             |
| 809-824               | 14.2                                | 1.5                       | 2-level (digitized data)  | SMR Trunked/Conventional    | 14K2F1D             |
| 809-824               | 14.2                                | 1.5                       | 2-level (digitized voice) | SMR Trunked/Conventional    | 14K2F1E             |
| 821-824               | 14.2                                | 1.5                       | 2-level (digitized data)  | NPSPAC Trunked/Conventional | 11K9F1D             |
| 821-824               | 14.2                                | 1.5                       | 2-level (digitized voice) | NPSPAC Trunked/Conventional | 11K9F1E             |
| 851-854               | 15.2                                | 1.5                       | 2-level (digitized data)  | NPSPAC T/A                  | 11K9F1D             |
| 851-854               | 15.2                                | 1.5                       | 2-level (digitized voice) | NPSPAC T/A                  | 11K9F1E             |
| 851-854               | 15.1                                | 1.5                       | 2-level (digitized data)  | SMR T/A                     | 14K2F1D             |
| 851-854               | 15.1                                | 1.5                       | 2-level (digitized voice) | SMR T/A                     | 14K2F1E             |
| 854-866               | 15.1                                | 1.5                       | 2-level (digitized data)  | SMR T/A                     | 14K2F1D             |
| 854-866               | 15.1                                | 1.5                       | 2-level (digitized voice) | SMR T/A                     | 14K2F1E             |
| 866-869               | 15.2                                | 1.5                       | 2-level (digitized data)  | SMR T/A                     | 14K2F1D             |
| 866-869               | 15.2                                | 1.5                       | 2-level (digitized voice) | SMR T/A                     | 14K2F1E             |
| 866-869               | 15.4                                | 1.5                       | 2-level (digitized data)  | NPSPAC T/A                  | 11K9F1D             |
| 866-869               | 15.4                                | 1.5                       | 2-level (digitized voice) | NPSPAC T/A                  | 11K9F1E             |



Engineering and Testing for EMC and Safety Compliance

| Frequency Range (MHz)              | Measured Output Power (W) Conducted | Frequency Tolerance (ppb) | Modulation                  | Mode                      | Emission Designator |
|------------------------------------|-------------------------------------|---------------------------|-----------------------------|---------------------------|---------------------|
| 764-767, 773-776, 794-797, 803-806 | 14.0                                | 400                       | P25 (digitized data)        | T/A, Trunked/Conventional | 8K4F1D              |
| 764-767, 773-776, 794-797, 803-806 | 14.0                                | 400                       | P25 (digitized voice)       | T/A, Trunked/Conventional | 8K4F1E              |
| 794-797, 803-806                   | 14.0                                | 400                       | OTP                         | Trunked                   | 12K1F9W             |
| 764-767, 773-776, 794-797, 803-806 | 15.0                                | 400                       | Analog FM (12.5 kHz spaced) | T/A, Trunked/Conventional | 11K0F3E             |

These powers are as listed on the original grant.

## Table of Contents

---

---

|       |                                                                                                                                  |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------|----|
| 1     | General Information.....                                                                                                         | 4  |
| 1.1   | Test Facility .....                                                                                                              | 4  |
| 1.2   | Related Submittal(s)/Grant(s) .....                                                                                              | 4  |
| 2     | Tested System Details .....                                                                                                      | 5  |
| 3     | FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output: Conducted; RSS-119 §5.4: Output Power Test .....                   | 7  |
| 3.1   | Test Procedure.....                                                                                                              | 7  |
| 3.2   | Test Data.....                                                                                                                   | 7  |
| 4     | FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §5.8.10.2: Out-of-Band Emissions..... | 8  |
| 4.1   | Test Procedure.....                                                                                                              | 8  |
| 4.2   | Test Data.....                                                                                                                   | 8  |
| 4.2.1 | CFR 47 Part 90.210 Requirements .....                                                                                            | 8  |
| 5     | AC Conducted Emissions.....                                                                                                      | 10 |
| 5.1   | Site and Test Description .....                                                                                                  | 10 |
| 5.2   | Test Limits.....                                                                                                                 | 10 |
| 5.3   | Conducted Emissions Test Results .....                                                                                           | 11 |
| 6     | Radiated Emissions.....                                                                                                          | 12 |
| 6.1   | Amendments to Emissions Test Methodology .....                                                                                   | 12 |
| 6.1.1 | Deviations from Test Methodology .....                                                                                           | 12 |
| 6.2   | Radiated Emissions Measurements .....                                                                                            | 12 |
| 6.2.1 | Site and Test Description .....                                                                                                  | 12 |
| 6.2.2 | Field Strength Calculations.....                                                                                                 | 13 |
| 6.2.3 | Measurement Uncertainty .....                                                                                                    | 13 |
| 6.2.4 | Test Limits .....                                                                                                                | 14 |
| 6.2.5 | Radiated Emissions Data .....                                                                                                    | 14 |
| 7     | Conclusion .....                                                                                                                 | 15 |

---

## Table of Figures

---

|                                                  |   |
|--------------------------------------------------|---|
| Figure 2-1: Configuration of Tested System ..... | 6 |
|--------------------------------------------------|---|

---

## Table of Tables

---

|                                                                                            |    |
|--------------------------------------------------------------------------------------------|----|
| Table 2-1: Equipment Under Test (EUT) .....                                                | 5  |
| Table 2-2: Support Equipment.....                                                          | 5  |
| Table 3-1: RF Power Output (High Power): Carrier Output Power (Unmodulated).....           | 7  |
| Table 3-2: RF Power Output (Rated Power).....                                              | 7  |
| Table 3-3: Test Equipment Used For Testing RF Power Output - Conducted.....                | 7  |
| Table 4-1: Field Strength of Spurious Radiation – 806.0125 MHz.....                        | 8  |
| Table 4-2: Test Equipment Used for Testing Field Strength of Spurious Radiation.....       | 9  |
| Table 5-1: Conducted Emissions First AC Line In, Standby Mode; Neutral Side (Line 1) ..... | 11 |
| Table 5-2: Conducted Emissions First AC Line In, Standby Mode; Hot Side (Line 2) .....     | 11 |
| Table 5-3: Test Equipment Used for Testing Conducted Emissions.....                        | 11 |
| Table 6-1: Radiated Emissions Test Data .....                                              | 14 |
| Table 6-2: Test Equipment Used for Testing Radiated Emissions.....                         | 14 |

---

## Table of Appendices

---

|                                                  |    |
|--------------------------------------------------|----|
| Appendix A: Agency Authorization.....            | 16 |
| Appendix B: Confidentiality Request Letter ..... | 17 |
| Appendix C: Description of Change .....          | 18 |
| Appendix D: Schematics.....                      | 19 |
| Appendix E: Parts List .....                     | 20 |
| Appendix F: User Manual.....                     | 21 |
| Appendix G: Test Configuration Photographs ..... | 22 |
| Appendix H: External Photographs .....           | 26 |
| Appendix I: Internal Photographs .....           | 28 |

---

## Table of Photographs

---

|                                                        |    |
|--------------------------------------------------------|----|
| Photograph 1: Radiated Emissions – Front View.....     | 22 |
| Photograph 2: Radiated Emissions – Rear View .....     | 23 |
| Photograph 3: Conducted AC Emissions – Front View..... | 24 |
| Photograph 4: Conducted AC Emissions – Rear View ..... | 25 |
| Photograph 5: External – Front View .....              | 26 |
| Photograph 6: External – Rear View.....                | 27 |
| Photograph 7: Internal View.....                       | 28 |

## 1 General Information

This Class II Permissive Change Report is prepared on behalf of **M/A-COM, Inc.** in accordance with the Federal Communications Commission and Industry Canada Rules and Regulations. The Equipment Under Test (EUT) was the **CS-7200 OpenSky Control Station** to be listed under BV8M7200 as a product variant to the M7200 mobile radio grant; **FCC ID: BV8M7200, IC: 3670A-M7200**. The test results reported in this document relate only to the item that was tested.

All measurements contained in this application were conducted in accordance with FCC Rules and Regulations CFR 47 and Industry Canada RSS-119. Calibration checks are performed regularly on the instruments, and all accessories including high pass filter, coaxial attenuator, preamplifier and cables.

### 1.1 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing.

### 1.2 Related Submittal(s)/Grant(s)

This is a Class II Permissive Change request; the original FCC grant was issued on October 4, 2005.

This permissive change is being requested since the EUT has been mounted within an external chassis/housing and a power supply has been added, the user control head is the only other difference between the models.

The CS-7200 OpenSky Control Station is made up of a M7200 mobile radio which was tested. The control station is a product variant of the mobile radio, which is to be listed under BV8M7200 as a product variant to the M7200 mobile radio grant

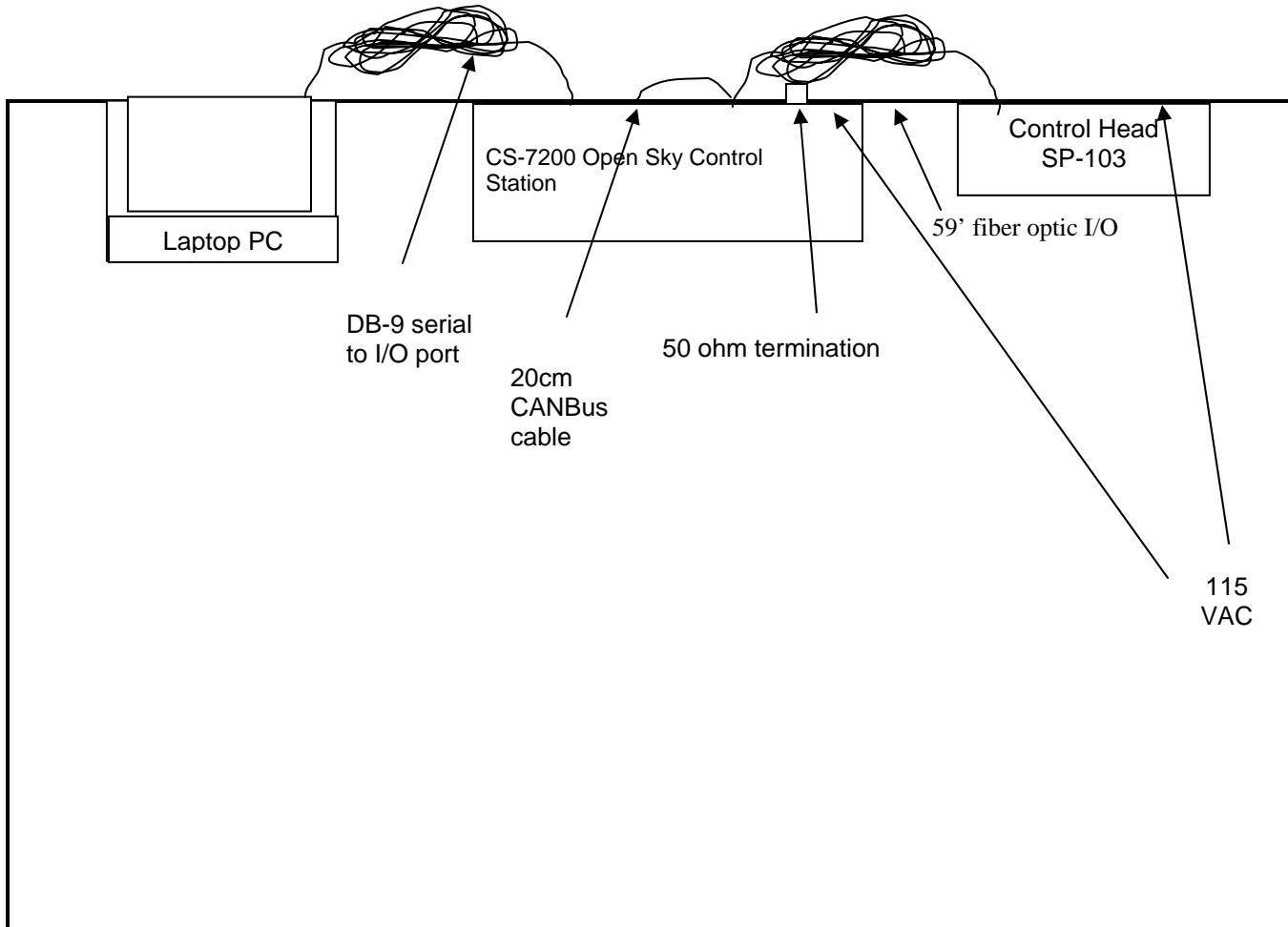
Rhein Tech Laboratories  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A COM, Inc.  
Model: CS-7200 OpenSky Control Station  
FCC ID: BV8M7200/3670A-M7200  
Standards: Part 90/RSS-119  
Report #: 2007152

## 2 Tested System Details

Listed below are the identifiers and descriptions of all equipment, cables, and internal devices used with the EUT for this testing, as applicable. The EUT was tested on one channel, 806.0125 MHz, for radiated receiver and transmitter emissions testing. Transmitter radiated spurious emissions was tested in analog mode.

**Table 2-1: Equipment Under Test (EUT)**


| Part            | Manufacturer  | Model        | PN/SN        | FCC ID   | RTL Bar Code |
|-----------------|---------------|--------------|--------------|----------|--------------|
| Control Station | M/A Com, Inc. | M7200 Series | A40059000001 | BV8M7200 | 17873        |
| Control Head    | M/A Com, Inc. | SP-103       | A4000F00337E | N/A      | 17493        |

**Table 2-2: Support Equipment**

| Part            | Manufacturer | Model         | PN/SN | FCC ID | RTL Bar Code |
|-----------------|--------------|---------------|-------|--------|--------------|
| Laptop Computer | Dell         | Inspiron 6400 | N/A   | N/A    | 901465       |

Rhein Tech Laboratories  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A COM, Inc.  
Model: CS-7200 OpenSky Control Station  
FCC ID: BV8M7200/3670A-M7200  
Standards: Part 90/RSS-119  
Report #: 2007152



**Figure 2-1: Configuration of Tested System**

Rhein Tech Laboratories  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A COM, Inc.  
Model: CS-7200 OpenSky Control Station  
FCC ID: BV8M7200/3670A-M7200  
Standards: Part 90/RSS-119  
Report #: 2007152

### 3 FCC Rules and Regulations Part 2 §2.1046(a): RF Power Output: Conducted; RSS-119 §5.4: Output Power Test

#### 3.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.1

The EUT was connected to a coaxial attenuator having a  $50 \Omega$  load impedance.

#### 3.2 Test Data

**Table 3-1: RF Power Output (High Power): Carrier Output Power (Unmodulated)**

| Frequency (MHz) | RF Power Measured  |
|-----------------|--------------------|
| 806.0125        | 41.65 dBm (14.6 W) |

\* Measurement accuracy:  $\pm .02$  dB (logarithmic mode)

**Table 3-2: RF Power Output (Rated Power)**

| Rated Power        |
|--------------------|
| 41.76 dBm (15.0 W) |

**Table 3-3: Test Equipment Used For Testing RF Power Output - Conducted**

| RTL Asset # | Manufacturer         | Model             | Part Type                         | Serial Number | Calibration Due Date |
|-------------|----------------------|-------------------|-----------------------------------|---------------|----------------------|
| 901184      | Agilent Technologies | E4416A            | EPM-P Power Meter, Single Channel | GB41050573    | 10/3/07              |
| 901356      | Agilent Technologies | E9323A            | Power Sensor                      | 31764-264     | 10/3/07              |
| 901139      | Weinschel Corp.      | 48-20-34 DC-18GHz | Attenuator, 100 W 20 dB           | BK5859        | 1/13/09              |

#### TEST PERSONNEL:

|               |                                                                                     |               |
|---------------|-------------------------------------------------------------------------------------|---------------|
| Dan Baltzell  |  | April 9, 2007 |
| Test Engineer | Signature                                                                           | Date Of Test  |

#### 4 FCC Rules and Regulations Part 2 §2.1053(a): Field Strength of Spurious Radiation; RSS-119 §5.8.10.2: Out-of-Band Emissions

##### 4.1 Test Procedure

ANSI TIA-603-C-2004, section 2.2.12

Analog Modulation: The transmitter is terminated with a  $50 \Omega$  load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1,000 Hz.

The spurious emissions levels were measured and the device under test was replaced by a substitution antenna connected to a signal generator. This signal generator level was then corrected by subtracting the cable loss from the substitution antenna to the signal generator, and the gain of the antenna was further corrected to a half wave dipole.

##### 4.2 Test Data

###### 4.2.1 CFR 47 Part 90.210 Requirements

The worst case emissions test data are shown. The magnitude of emissions attenuated more than 20 dB below the FCC limit need not be recorded.

**Table 4-1: Field Strength of Spurious Radiation – 806.0125 MHz**

$$\text{Limit} = 43 + 10 \log P = 54.7 \text{ dBc}$$

Conducted Power = 41.7 dBm = 14.6 W

| Frequency (MHz) | Spectrum Analyzer Level (dBuV) | Signal Generator Level (dBm) | Cable Loss* (dB) | Antenna Gain (dBi) | Corrected Signal Generator Level (dBc) | Margin (dB) |
|-----------------|--------------------------------|------------------------------|------------------|--------------------|----------------------------------------|-------------|
| 1612.0250       | 77.5                           | -26.1                        | 5.7              | 7.3                | 66.2                                   | -11.5       |
| 2418.0375       | 65.2                           | -38.8                        | 6.8              | 9.1                | 78.2                                   | -23.5       |
| 3224.0500       | 60.4                           | -38.6                        | 8.5              | 9.6                | 79.2                                   | -24.5       |
| 4030.0625       | 67.0                           | -20.4                        | 9.4              | 9.5                | 62.0                                   | -7.3        |
| 4836.0750       | 54.0                           | -35.5                        | 10.7             | 10.4               | 77.5                                   | -22.8       |
| 5642.0875       | 52.6                           | -37.6                        | 11.0             | 10.6               | 79.7                                   | -25.0       |
| 6448.1000       | 48.7                           | -40.6                        | 12.1             | 11.4               | 83.0                                   | -28.3       |
| 7254.1125       | 46.4                           | -40.9                        | 12.6             | 11.1               | 84.1                                   | -29.4       |
| 8060.1250       | 32.3                           | -52.5                        | 13.0             | 11.2               | 96.0                                   | -41.3       |

\*This insertion loss corresponds to the cable connecting the RF Signal Generator to the  $\frac{1}{2}$  wave dipole antenna.

Rhein Tech Laboratories  
 360 Herndon Parkway  
 Suite 1400  
 Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A COM, Inc.  
 Model: CS-7200 OpenSky Control Station  
 FCC ID: BV8M7200/3670A-M7200  
 Standards: Part 90/RSS-119  
 Report #: 2007152

**Table 4-2: Test Equipment Used for Testing Field Strength of Spurious Radiation**

| RTL Asset # | Manufacturer         | Model              | Part Type                           | Serial Number | Calibration Due Date |
|-------------|----------------------|--------------------|-------------------------------------|---------------|----------------------|
| 900791      | Chase                | CBL6111B           | Bilog antenna<br>30 MHz–2000 MHz    | N/A           | 6/12/07              |
| 901364      | MITEQ                | JS4-00102600-41-5P | Amplifier, 0.1-26 GHz, 28dB gain    | N/A           | 3/12/08              |
| 901215      | Hewlett Packard      | 8596EM             | Spectrum Analyzer<br>9 kHz-12.8 GHz | 3826A00144    | 10/16/07             |
| 900928      | Hewlett Packard      | 83752A             | Synthesized Sweeper,<br>0.01-20 GHz | 3610A00866    | 11/30/07             |
| 901426      | Insulated Wire Inc.  | KPS-1503-3600-KPS  | RF cable, 30'                       | NA            | 12/5/07              |
| 901425      | Insulated Wire, Inc. | KPS-1503-2400-KPS  | RF cable, 20'                       | NA            | 12/5/07              |
| 901424      | Insulated Wire Inc.  | KPS-1503-360-KPS   | RF cable 36"                        | NA            | 12/5/07              |
| 900927      | Tektronix            | ASG 100            | Audio Signal Generator              | B03274 V2.3   | N/A                  |
| 901413      | Agilent Technologies | E4448A             | Spectrum Analyzer                   | US44020346    | 12/14/07             |

**TEST PERSONNEL:**

|                 |                                                                                     |               |
|-----------------|-------------------------------------------------------------------------------------|---------------|
| Daniel Baltzell |  | April 9, 2007 |
| Test Engineer   | Signature                                                                           | Date Of Test  |

## 5 AC Conducted Emissions

### 5.1 Site and Test Description

The power line conducted emissions measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50 ohm/50 microhenry Line Impedance Stabilization Network (LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50 ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar 100 kHz high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 100 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. Video filter less than 10 times the resolution bandwidth is not used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 150 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limits were measured and have been recorded. The limits for Class A and Class B are contained therein.

### 5.2 Test Limits

| Class A Line-Conducted Emissions |            |         |
|----------------------------------|------------|---------|
| Limit (dB $\mu$ V)               |            |         |
| Frequency (MHz)                  | Quasi-Peak | Average |
| 0.15 to 0.50                     | 79         | 66      |
| 0.50 to 30.0                     | 73         | 60      |

| Class B Line-Conducted Emissions |            |          |
|----------------------------------|------------|----------|
| Limit (dB $\mu$ V)               |            |          |
| Frequency (MHz)                  | Quasi-Peak | Average  |
| 0.15 to 0.50                     | 66 to 56   | 56 to 46 |
| 0.50 to 5.00                     | 56         | 46       |
| 5.00 to 30.00                    | 60         | 50       |

Rhein Tech Laboratories  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A COM, Inc.  
Model: CS-7200 OpenSky Control Station  
FCC ID: BV8M7200/3670A-M7200  
Standards: Part 90/RSS-119  
Report #: 2007152

### 5.3 Conducted Emissions Test Results

**Table 5-1: Conducted Emissions First AC Line In, Standby Mode; Neutral Side (Line 1)**

| Emission Frequency (MHz) | Test Detector | Analyzer Reading (dBuV) | Site Correction Factor (dB) | Emission Level (dBuV) | FCC 15.207 QP Limit (dBuV) | FCC 15.207 QP Margin (dBuV) | FCC 15.207 AV Limit (dBuV) | FCC 15.207 AV Margin (dBuV) | Pass/ Fail |
|--------------------------|---------------|-------------------------|-----------------------------|-----------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|------------|
| 0.160                    | Pk            | 45.9                    | 0.2                         | 46.1                  | 65.5                       | -19.4                       | 55.5                       | -9.4                        | Pass       |
| 0.212                    | Pk            | 38.1                    | 0.2                         | 38.3                  | 63.1                       | -24.8                       | 53.1                       | -14.8                       | Pass       |
| 0.279                    | Pk            | 29.7                    | 0.3                         | 30.0                  | 60.8                       | -30.8                       | 50.8                       | -20.8                       | Pass       |
| 11.590                   | Pk            | 32.2                    | 2.1                         | 34.3                  | 60.0                       | -25.7                       | 50.0                       | -15.7                       | Pass       |
| 17.670                   | Pk            | 29.0                    | 2.5                         | 31.5                  | 60.0                       | -28.5                       | 50.0                       | -18.5                       | Pass       |
| 26.780                   | Pk            | 30.2                    | 2.9                         | 33.1                  | 60.0                       | -26.9                       | 50.0                       | -16.9                       | Pass       |

**Table 5-2: Conducted Emissions First AC Line In, Standby Mode; Hot Side (Line 2)**

| Emission Frequency (MHz) | Test Detector | Analyzer Reading (dBuV) | Site Correction Factor (dB) | Emission Level (dBuV) | FCC 15.207 QP Limit (dBuV) | FCC 15.207 QP Margin (dBuV) | FCC 15.207 AV Limit (dBuV) | FCC 15.207 AV Margin (dBuV) | Pass/ Fail |
|--------------------------|---------------|-------------------------|-----------------------------|-----------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|------------|
| 0.153                    | Pk            | 49.3                    | 0.2                         | 49.5                  | 65.8                       | -16.3                       | 55.8                       | -6.3                        | Pass       |
| 0.228                    | Pk            | 39.7                    | 0.2                         | 39.9                  | 62.5                       | -22.6                       | 52.5                       | -12.6                       | Pass       |
| 0.309                    | Pk            | 33.5                    | 0.3                         | 33.8                  | 60.0                       | -26.2                       | 50.0                       | -16.2                       | Pass       |
| 11.590                   | Pk            | 31.1                    | 2.1                         | 33.2                  | 60.0                       | -26.8                       | 50.0                       | -16.8                       | Pass       |
| 17.670                   | Pk            | 29.7                    | 2.5                         | 32.2                  | 60.0                       | -27.8                       | 50.0                       | -17.8                       | Pass       |
| 26.810                   | Pk            | 28.5                    | 2.9                         | 31.4                  | 60.0                       | -28.6                       | 50.0                       | -18.6                       | Pass       |

**Table 5-3: Test Equipment Used for Testing Conducted Emissions**

| RTL Asset # | Manufacturer      | Model  | Part Type                           | Serial Number | Calibration Due Date |
|-------------|-------------------|--------|-------------------------------------|---------------|----------------------|
| 900339      | Hewlett Packard   | 85650A | Quasi-Peak Adapter<br>30 Hz-1 GHz   | 2521A00743    | 9/14/07              |
| 900968      | Hewlett Packard   | 8567A  | Spectrum Analyzer<br>10 kHz-1.5 GHz | 2602A00160    | 9/14/07              |
| 901083      | AFJ International | LS16   | 16A LISN (110 V)                    | 16010020080   | 3/28/08              |

#### TEST PERSONNEL:

|                 |                                                                                     |               |
|-----------------|-------------------------------------------------------------------------------------|---------------|
| Daniel Baltzell |  | April 9, 2007 |
| Test Engineer   | Signature                                                                           | Date Of Test  |

## 6 Radiated Emissions

### 6.1 Amendments to Emissions Test Methodology

#### 6.1.1 Deviations from Test Methodology

There was no deviation from, additions to, or exclusions from the test method.

### 6.2 Radiated Emissions Measurements

#### 6.2.1 Site and Test Description

Before final radiated emissions measurements were made on the OATS, the EUT was scanned indoors at both one and three meter distances. This was done in order to determine its emission spectrum signal. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emission measurements on the OATS, at each frequency, in order to ensure that maximum emission amplitudes were measured. Final radiated emissions measurements were made on the OATS at a distance of 3 meters. The floor-standing EUT was placed on a nonconductive turntable. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emissions maximum levels. Measurements were taken using both horizontal and vertical antenna polarization. The spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the quasi-peak detection mode. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

### 6.2.2 Field Strength Calculations

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FI(dB\mu V / m) = SAR(dB\mu V) + SCF(dB / m)$$

FI = Field Intensity

SAR = Spectrum Analyzer Reading

SCF = Site Correction Factor

The Site Correction Factor (SCF) used in the above equation is determined empirically, and is expressed in the following equation:

$$SCF(dB / m) = -PG(dB) + AF(dB / m) + CL(dB)$$

SCF = Site Correction Factor

PG = Pre-Amplifier Gain

AF = Antenna Factor

CL = Cable Loss

The field intensity in microvolts per meter can then be determined according to the following equation:

$$FI(\mu V / m) = 10^{FI(dB\mu V / m)/20}$$

For example, assume a signal frequency of 125 MHz has a received level measured as 49.3 dBuV. The total Site Correction Factor (antenna factor plus cable loss minus preamplifier gain) for 125 MHz is -11.5 dB/m. The actual radiated field strength is calculated as follows:

$$49.3dB\mu V - 11.5dB / m = 37.8dB\mu V / m$$

$$10^{37.8/20} = 10^{1.89} = 77.6\mu V / m$$

### 6.2.3 Measurement Uncertainty

Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech Quality Manual, Section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.

Rhein Tech Laboratories  
 360 Herndon Parkway  
 Suite 1400  
 Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A COM, Inc.  
 Model: CS-7200 OpenSky Control Station  
 FCC ID: BV8M7200/3670A-M7200  
 Standards: Part 90/RSS-119  
 Report #: 2007152

#### 6.2.4 Test Limits

| FCC Class B Radiated Emissions |                      |
|--------------------------------|----------------------|
| Frequency (MHz)                | At 3m (dB $\mu$ V/m) |
| 30-88                          | 40.0                 |
| 88-216                         | 43.5                 |
| 216-960                        | 46.0                 |
| >1000                          | 54                   |

#### 6.2.5 Radiated Emissions Data

Table 6-1: Radiated Emissions Test Data

| Emission Frequency (MHz) | Analyzer Reading (dB $\mu$ V) | Site Correction Factor (dB/m) | Emission Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Pass/Fail |
|--------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|-------------|-----------|
| 48.878                   | 38.9                          | -19.9                         | 19.0                          | 40.0                 | -21.0       | Pass      |
| 270.520                  | 53.7                          | -16.6                         | 37.1                          | 46.0                 | -8.9        | Pass      |
| 516.094                  | 47.8                          | -11.4                         | 36.4                          | 46.0                 | -9.6        | Pass      |
| 576.026                  | 49.3                          | -9.8                          | 39.5                          | 46.0                 | -6.5        | Pass      |
| 1032.153                 | 22.7                          | -4.7                          | 18.0                          | 54.0                 | -36.0       | Pass      |
| 1548.230                 | 15.5                          | -1.1                          | 14.4                          | 54.0                 | -39.6       | Pass      |

Table 6-2: Test Equipment Used for Testing Radiated Emissions

| RTL Asset # | Manufacturer         | Model              | Part Type                           | Calibration Due Date | Calibration Due Date |
|-------------|----------------------|--------------------|-------------------------------------|----------------------|----------------------|
| 900791      | Chase                | CBL6111B           | Bilog antenna<br>30 MHz–2000 MHz    | N/A                  | 6/12/07              |
| 901364      | MITEQ                | JS4-00102600-41-5P | Amplifier, 0.1-26 GHz, 28dB gain    | N/A                  | 3/12/08              |
| 901215      | Hewlett Packard      | 8596EM             | Spectrum Analyzer<br>9 kHz-12.8 GHz | 3826A00144           | 10/16/07             |
| 901426      | Insulated Wire Inc.  | KPS-1503-3600-KPS  | RF cable, 30'                       | NA                   | 12/5/07              |
| 901425      | Insulated Wire, Inc. | KPS-1503-2400-KPS  | RF cable, 20'                       | NA                   | 12/5/07              |

#### TEST PERSONNEL:

|                 |                                                                                     |               |
|-----------------|-------------------------------------------------------------------------------------|---------------|
| Daniel Baltzell |  | April 9, 2007 |
| Test Engineer   | Signature                                                                           | Date Of Test  |

Rhein Tech Laboratories  
360 Herndon Parkway  
Suite 1400  
Herndon, VA 20170  
<http://www.rheintech.com>

Client: M/A COM, Inc.  
Model: CS-7200 OpenSky Control Station  
FCC ID: BV8M7200/3670A-M7200  
Standards: Part 90/RSS-119  
Report #: 2007152

## 7 Conclusion

The data in this measurement report shows that the **M/A-COM, Inc.** Model **CS-7200 OpenSky Control Station**, **FCC ID: BV8M7200, IC: 3670A-M7200**, complies with all the requirements of Parts 90, 15 and 2 of the FCC Rules, and Industry Canada RSS-119.